
CS 744: Big Data Systems 

Shivaram Venkataraman 
Fall 2018 



ADMINISTRIVIA 

-  Assignment 1 grades up,  Assignment 2 in progress 
-  Midterm review session on Nov 2 at 5pm 
-  Course Project Proposal (5%) 



SQL: STRUCTURED QUERY LANGUAGE 



DATABASE SYSTEMS 



SQL in BiG DATA SYSTEMS 

-   Scale: How do we handle large datasets, clusters ? 
 
-  Wide-area: How do we handle queries across datacenters ? 

-  Hardware: Making efficient use of hardware ? 



SPARK SQL: Architecture  



PROCEDURAL VS. RELATIONAL 

ctx	=	new	HiveContext	()	
users	=	ctx.table(“users")	
young	=	users.where(	

	users(“age")	<	21)	
println(young.count())	

lines	=	sc.textFile(“users")	
csv	=	lines.map(x	=>	
				x.split(‘,’))	
young	=	csv.filter(x	=>		
				x(1)	<	21)	
println(young.count())	



OPERATORS à EXPRESSIONS 

Projection (select), Filter,  Join,  Aggregations take in Expressions 

 
employees.join(dept,	
		employees	(“deptId")	===	dept	("id	")	
)	
	
Build up Abstract Syntax Tree (AST) 



OTHER FEATURES 

1. Debugging: Eager analysis of logical plans 
 
2. Interoperability: Convert RDD to Dataframes 
 
3. Caching: Columnar caching with compression 
 
4. UDFs: Python or Scala functions 



CATALYST 
Goal: Extensibility to add new optimization rules  



CATALYST DESIGN 

Library for representing trees and 
rules to manipulate them 
 
Pattern match à replace sub-trees 
 
Only applied in sub-trees that match 
 
Run in batches till fixed point 
 

tree.	transform	{	
		case	Add(Literal(c1),Literal(c2))	=>	

			Literal(c1+c2)	
		case	Add(left	,	Literal(0))	=>	left	
		case	Add(Literal(0),	right)	=>	right	
}	



LOGICAL, PHYSICAL PLANS 

1.  Analyzer Lookup relations, map named attributes, propagate types 
2.  Logical Optimization 

–  Constant folding 
–  Predicate push-down 
–  Project pruning …  

3.  Physical Planning 
–  Select between plans using cost (join algorithm) 
–  Pipeline multiple projection, filter into map  



CODE GENERATION 

CPU bound when data is in-memory 
Branches, virtual function calls etc. 

def	compile(node:	Node	):	AST	=	node	match	{	
		case	Literal(value)	=>	q"$value"	
		case	Attribute	(name)	=>	q"row.get($name)"	
		case	Add(left,	right)	=>	

	q"${compile(left)}	+	${compile(right)}"	
}	

- Literal(1) becomes1 
- Attribute(“x”) becomes row.get(“x”) 
- Directly access Java field row.x 



EXTENSIONS 

Data sources 
 - Define a BaseRelation that contains schema 
 - TableScan	returns RDD[Row]	
 - Pruning / Filtering optimizations 

 
User-Defined Types (UDTs) 

 - Support advanced analytics with e.g.  Vector 
 - Users provide mapping from UDT to Catalyst Row 



SCHEMA INFERENCE 

Common data formats: JSON, CSV, semi-structured data 
 
JSON schema inference 

 -  Find most specific SparkSQL type that matches instances 
    e.g. if tweet.loc.latitude are all 32-bit then it is a INT 
 - Fall back to STRING if unknown 
 - Implemented using a reduce over trees of types 



SUMMARY, TAKEAWAYS 

Relational API 
 - Enables rich space of optimizations 

  - Easy to use, integration with Scala, Python 
  

Catalyst Optimizer 
 - Extensible, rule-based optimizer 
 - Code generation for high-performance 

 
Evolution of Spark API 



QUESTIONS / DISCUSSION ? 


