GS 744: BIG DATA SYSTEMS

Shivaram Venkataraman
Fall 2018

ADMINISTRIVIA

- Assignment | grades up, Assignment 2 in progress

- Midterm review session on Nov 2 at 5pm

- Course Project Proposal (5%)

SQL: STRUCTURED QUERY LANGUAGE

DATABASE SYSTEMS

Remote Client Catalog

Local Client
Protocols
Manager

Protocols
Client Communications Manager

Admission

Control
Memory
Query Parsing and Authorization Manager

Dispatch
and
Scheduling

Query Rewrite

Query Optimizer

Plan Executor

DDL and Utility
Processing

Administration,
Monitoring &
Utilities

Relational Query Processor (Section 4)

Process

Access Methods

Buffer Manager

Replication and
Loading
Services

Lock Manager

Log Manager

Batch Utilities

Shared
Components and

Manager
(Section 2) Transactional Storage Utilities (Section 7)

SAL IN BIG DATA SYSTEMS

- Scale: How do we handle large datasets, clusters ?

- Wide-area: How do we handle queries across datacenters ?

- Hardware: Making efficient use of hardware ?

SPARK SQL: ARCHITECTURE

JDBC Console

User Programs
(Java, Scala, Python)

v v

v

Spark SQL

DataFrame API

Catalyst Optimizer

v

Spark

Resilient Distributed Datasets

PROCEDURAL VS. RELATIONAL

lines = sc.textFile(*“users")
csv = lines.map(x =>
x.split(9,”’))
young = csv.filter(x =>
x(1) < 21)
println(young.count())

ctx = new HiveContext ()
users = ctx.table(“users")
young = users.where(
users(“age") < 21)
println(young.count())

OPERATORS —> EXPRESSIONS

Projection (select), Filter, Join, Aggregations take in Expressions

employees.join(dept,
employees (“deptId") === dept ("id ")
)

Build up Abstract Syntax Tree (AST)

OTHER FEATURES

|. Debugging: Eager analysis of logical plans
2. Interoperability: Convert RDD to Dataframes
3. Caching: Columnar caching with compression

4. UDFs: Python or Scala functions

CATALYST

Goal: Extensibility to add new optimization rules

. Logical Physical Code
Analysis Optimization Planning Generation
SQL Query 3
- Selected
Unresolved : Optimized , S .
. Logical PlanH : ’-—@ Physical E = Physical RDDs

Logical Plan “’[g Logical Plan Plans 3 Fylan

DataFrame O

Catalog

CATALYST DESIGN

Library for representing trees and (Aw
rules to manipulate them
[Atrbute() | [Add |

Pattern match = replace sub-trees /\

[Literal(1)] [Literal(2)]

Only applied in sub-trees that match tree, transform {

case Add(Literal(cl),Literal(c2)) =>
Literal(cl+c2)
case Add(left , Literal(9)) => left
case Add(Literal(@), right) => right
}

Run in batches till fixed point

LOGICAL, PHYSICAL PLANS

|. Analyzer Lookup relations, map named attributes, propagate types
2. Logical Optimization

— Constant folding

— Predicate push-down

— Project pruning ...
3. Physical Planning

— Select between plans using cost (join algorithm)

— Pipeline multiple projection, filter into map

CODE GENERATION

CPU bound when data is in-memory

Branches, virtual function calls etc.

def compile(node: Node): AST = node match {
case Literal(value) => g"$value"
case Attribute (name) => g"row.get($name)"”
case Add(left, right) =>
g"${compile(left)} + ${compile(right)}"
}

- Literal(l) becomesl|

€¢_ 9 €¢_ 9

- Attribute("“x”) becomes row.get("x
- Directly access Java field row.x

EXTENSIONS

Data sources
- Define a BaseRelation that contains schema
- TableScan returns RDD[Row]

- Pruning / Filtering optimizations

User-Defined Types (UDTs)

- Support advanced analytics with e.g. Vector
- Users provide mapping from UDT to Catalyst Row

SCHEMA INFERENCE

Common data formats: J[SON, CSV, semi-structured data

JSON schema inference
- Find most specific SparkSQL type that matches instances
e.g. if tweet.loc.latitude are all 32-bit then itis a INT
- Fall back to STRING if unknown

- Implemented using a reduce over trees of types

SUMMARY, TAKEAWAYS

Relational API

- Enables rich space of optimizations

- Easy to use, integration with Scala, Python
Catalyst Optimizer
- Extensible, rule-based optimizer

- Code generation for high-performance

Evolution of Spark API

QUESTIONS / DISCUSSION ?

