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ADMINISTRIVIA

- Assignment | grades up, Assignment 2 in progress

- Midterm review session on Nov 2 at 5pm

- Course Project Proposal (5%)



SQL: STRUCTURED QUERY LANGUAGE
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SAL IN BIG DATA SYSTEMS

- Scale: How do we handle large datasets, clusters ?

- Wide-area: How do we handle queries across datacenters ?

- Hardware: Making efficient use of hardware ?



SPARK SQL: ARCHITECTURE
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PROCEDURAL VS. RELATIONAL

lines = sc.textFile(*“users")
csv = lines.map(x =>
x.split(9,”’))
young = csv.filter(x =>
x(1) < 21)
println(young.count())

ctx = new HiveContext ()
users = ctx.table(“users")
young = users.where(
users(“age") < 21)
println(young.count())



OPERATORS —> EXPRESSIONS

Projection (select), Filter, Join, Aggregations take in Expressions

employees.join(dept,
employees (“deptId") === dept ("id ")
)

Build up Abstract Syntax Tree (AST)



OTHER FEATURES

|. Debugging: Eager analysis of logical plans
2. Interoperability: Convert RDD to Dataframes
3. Caching: Columnar caching with compression

4. UDFs: Python or Scala functions



CATALYST

Goal: Extensibility to add new optimization rules
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CATALYST DESIGN

Library for representing trees and ( Aw
rules to manipulate them
[ Atrbute() | [ Add |

Pattern match = replace sub-trees /\

[ Literal(1) ] [ Literal(2) ]

Only applied in sub-trees that match  tree, transform {

case Add(Literal(cl),Literal(c2)) =>
Literal(cl+c2)
case Add(left , Literal(9)) => left
case Add(Literal(@), right) => right
}

Run in batches till fixed point



LOGICAL, PHYSICAL PLANS

|. Analyzer Lookup relations, map named attributes, propagate types
2. Logical Optimization

—  Constant folding

—  Predicate push-down

—  Project pruning ...
3. Physical Planning

—  Select between plans using cost (join algorithm)

—  Pipeline multiple projection, filter into map



CODE GENERATION

CPU bound when data is in-memory

Branches, virtual function calls etc.

def compile(node: Node ): AST = node match {
case Literal(value) => g"$value"
case Attribute (name) => g"row.get($name)"”
case Add(left, right) =>
g"${compile(left)} + ${compile(right)}"
}

- Literal(l) becomesl|

€¢_ 9 €¢_ 9

- Attribute("“x”) becomes row.get("x
- Directly access Java field row.x



EXTENSIONS

Data sources
- Define a BaseRelation that contains schema
- TableScan returns RDD[Row]

- Pruning / Filtering optimizations

User-Defined Types (UDTs)

- Support advanced analytics with e.g. Vector
- Users provide mapping from UDT to Catalyst Row



SCHEMA INFERENCE

Common data formats: J[SON, CSV, semi-structured data

JSON schema inference
- Find most specific SparkSQL type that matches instances
e.g. if tweet.loc.latitude are all 32-bit then itis a INT
- Fall back to STRING if unknown

- Implemented using a reduce over trees of types



SUMMARY, TAKEAWAYS

Relational API

- Enables rich space of optimizations

- Easy to use, integration with Scala, Python
Catalyst Optimizer
- Extensible, rule-based optimizer

- Code generation for high-performance

Evolution of Spark API



QUESTIONS / DISCUSSION ?



