
Impala 
A	Modern,	Open	Source	SQL	Engine	for	Hadoop	

Yogesh	
Chockalingam	



Agenda 

•  Introduction	
• Architecture	
•  Front	End	
• Back	End	
•  Evaluation	
• Comparison	with	Spark	SQL	



Introduction 







Why not use Hive or HBase? 

• HBase	is	a	NoSQL	database	that	
runs	on	top	of	HDFS	that	
provides	real-time	read/write	
access.	

• Hive	is	a	data	warehousing	tool	
built	on	top	of	Hadoop	and	uses	
Hive	Query	Language(HQL)	for	
querying	data	stored	in	a	
Hadoop	cluster.		

• HQL	automatically	translates	
queries	into	MapReduce	jobs.	

• Hive	doesn’t	support	
transactions.	



Impala 

• General	purpose	SQL	query	engine:	
• Works	across	analytical	and	transactional	workloads	

• High	performance:	
•  Execution	engine	written	in	C++	
• Runs	directly	within	Hadoop	
• Does	not	use	MapReduce	

• MPP	database	support:	
• Multi-user	workloads	



Creating tables 

	
CREATE	TABLE	T	(...)	PARTITIONED	BY	(day	int,	month	

int)	LOCATION	'<hdfs-path>'	STORED	AS	PARQUET;	
	

For	a	partitioned	table,	data	is	placed	in	subdirectories	whose	paths	
reflect	the	partition	columns'	values.		
For	example,	for	day	17,	month	2	of	table	T,	all	data	files	would	be	
located	in	

<root>/day=17/month=2/	



Metadata 

•  Table	metadata	including	the	table	definition,	column	names,	data	
types,	schema	etc.	are	stored	in	HCatalog.		



INSERT / UPDATE / DELETE 

•  The	user	can	add	data	to	a	table	simply	by	copying/moving	data	files	
into	the	directory!	

• Does	NOT	support	UPDATE	and	DELETE.	
•  Limitation	of	HDFS,	as	it	does	not	support	an	in-place	update.	
•  Recompute	the	values	and	replace	the	data	in	the	partitions.	

• COMPUTE	STATS	<table>	after	inserts.	
•  Those	statistics	will	subsequently	be	used	during	query	optimization.	



Architecture 



I: Impala Daemon 
Impala	daemon	service	is	dually	responsible	for:		

1.  Accepting	queries	from	client	processes	and	
orchestrating	their	execution	across	the	
cluster.	In	this	role	it’s	called	the	query	
coordinator.	

2.  Executing	individual	query	fragments	on	
behalf	of	other	Impala	daemons.		

•  The	Impala	daemons	are	in	constant	
communication	with	the	statestore,	to	confirm	
which	nodes	are	healthy	and	can	accept	new	
work.	

•  They	also	receive	broadcast	messages	from	the	
catalog	daemon	via	the	statestore,	to	keep	track	
of	metadata	changes.		

	
	
	

Catalog	 Statestore	

Impala	Daemon	

.	.	.	 .	.	.	



II: Statestore Daemon 

• Handles	cluster	membership	information.	
• Periodically	sends	two	kinds	of	messages	to	Impala	daemons:	

•  Topic	update:	The	new	changes	made	since	the	last	topic	update	message	
•  Keepalive:	A	heartbeat	mechanism	

•  If	an	Impala	daemon	goes	offline,	the	statestore	informs	all	the	other	
Impala	daemons	so	that	future	queries	can	avoid	making	requests	to	
the	unreachable	node.	



III: Catalog Daemon 

•  Impala's	catalog	service	serves	catalog	metadata	to	Impala	daemons	
via	the	statestore	broadcast	mechanism,	and	executes	DDL	
operations	on	behalf	of	Impala	daemons.		

•  The	catalog	service	pulls	information	from	Hive	Metastore	and	
aggregates	that	information	into	an	Impala-compatible	catalog	
structure.	

•  This	structure	is	then	passed	on	to	the	statestore	daemon	which	
communicates	with	the	Impala	daemons.	



1.	Request	arrives	from	client	via	Thrift	API	

SQL	App	

ODBC	
SQL	

request	

Impala	Daemon	 Impala	Daemon	 Impala	Daemon	

Hive	Metastore	 HDFS	NN	 Statestore	



SQL	App	

ODBC	

Hive	Metastore	 HDFS	NN	 Statestore	

2.	Planner	turns	request	into	collections	of	plan	fragments.	Coordinator	
initiates	execution	on	remote	Impala	daemons.	



3.	Intermediate	results	are	streamed	between	Impala	daemons.	Query		
results	are	streamed	back	to	client.	

SQL	App	

ODBC	

Query	Executor	
HDFS	DN	 HBase	

			
	

	
Query	Planner	

Query	Coordinator	

Query	Results	

Hive	Metastore	 HDFS	NN	 Statestore	



Front-End 



Query Plans 

•  The	Impala	frontend	is	responsible	for	compiling	SQL	text	into	query	
plans	executable	by	the	Impala	backends.	

•  The	query	compilation	process	proceeds	as	follows:		
•  Query	parsing	
•  Semantic	analysis	
•  Query	planning/optimization	

• Query	planning		
1.  Single	node	planning	
2.  Plan	parallelization	and	fragmentation	



Query Planning: Single Node 

•  In	the	first	phase,	the	parse	tree	is	translated	into	a	non-executable	
single-node	plan	tree.	

E.g.	Query	joining	two	HDFS	tables	(t1,	t2)	and	one	HBase	table	(t3)	followed	by	an	
aggregation	and	order	by	with	limit	(top-n).	

HashJoin 

Scan: t1 

Scan: t3 

Scan: t2 

HashJoin 

Agg SELECT	t1.custid,	SUM(t2.revenue)	AS	revenue	
FROM	LargeHdfsTable	t1	
JOIN	LargeHdfsTable	t2	ON	(t1.id1	=	t2.id)	
JOIN	SmallHbaseTable	t3	ON	(t1.id2	=	t3.id)			
WHERE	t3.category	=	'Online'	
GROUP	BY	t1.custid	
ORDER	BY	revenue	DESC	LIMIT	10;	
	



•  The	second	planning	phase	takes	the	single-node	plan	as	input	and	
produces	a	distributed	execution	plan.	Goal:	

•  To	minimize	data	movement		
•  Maximize	scan	locality	as	remote	reads	are	considerably	slower	than	local	
ones.	

•  Cost--based	decision	based	on	column	stats/estimated	cost	of	data	transfers	

• Decide	parallel	join	strategy:	
•  Broadcast	Join:	Join	is	collocated	with	left-hand	side	input;	right--hand	side	
table	is	broadcast	to	each	node	executing	join.	Preferred	for	small	right-hand	
side	input.	

•  Partitioned	Join:	Both	tables	are	hash-partitioned	on	join	columns.	Preferred	
for	large	joins.	

	

Query Planning: Distributed Nodes 





Back-End 



Executing the Query 

•  Impala's	backend	receives	query	fragments	from	the	front-end	and	is	
responsible	for	their	execution.		

• High	performance:	
• Written	in	C++	for	minimal	execution	overhead	
•  Internal	in-memory	tuple	format	puts	fixed-width	data	at	fixed	offsets	
•  Uses	intrinsic/special	CPU	instructions	for	tasks	like	text	parsing	and	CRC	
computation.	

•  Runtime	code	generation	for	“big	loops”	



Runtime Code Generation 

Impala	uses	runtime	code	generation	to	
produce	query-specific	versions	of	functions	
that	are	critical	to	performance.	
•  For	example,	to	convert	every	record	to	
Impala’s	in-memory	tuple	format:	

•  Known	at	query	compile	time:	#	of	
tuples	in	a	batch,	tuple	layout,	column	
types,	etc.	

•  Generate	at	compile	time:	unrolled	loop	
that	inlines	all	function	calls,	dead	code	
elimination	and	minimizes	branches.	

•  Code	generated	using	LLVM	



Evaluation 



Comparison	of	query	response	times	on	single-user	runs.	



Comparison	of	query	response	times	and	throughput	on	multi-user	runs.	



Comparison	of	the	performance	of	Impala	and	a	commercial	analytic	RDBMS.	
https://github.com/cloudera/impala-tpcds-kit	



Comparison with Spark SQL 



•  Impala	is	faster	than	Spark	SQL	as	it	is	an	engine	designed	especially	
for	the	mission	of	interactive	SQL	over	HDFS,	and	it	has	architecture	
concepts	that	helps	it	achieve	that.		

•  For	example	the	Impala	‘always-on’	daemons	are	up	and	waiting	for	
queries	24/7 — something	that	is	not	part	of	Spark	SQL.		



Thank you! 


