ASAP: Fast, Approximate Graph
Pattern Mining at Scale

Anand lyer et al. @ OSDI 2018

Presenter: Yunang Chen

B ———

ASAP Design Overview

A Swift Approximate Pattern-miner

Navigates tradeoff between result accuracy and latency

Runs on general-purpose distributed dataflow platform

Supports for generalized graph pattern mining algorithms

Graph Pattern Mining

Standard approach: Iterative expansion

0 00 00 0490
@ 00 06 00
@ @ 0—6 60 60
@ 0—0 6060

Lack of scalability
o Generate exponentially large intermediate candidate sets
> Need to store + exchange them in distributed environment

Graph Pattern Mining

Standard approach: Iterative expansion

0900

1111
111
1999

Lack of scalability @

o Generate exponentially large intermediate candidate sets
> Need to store + exchange them in distributed environment

BN # Edges
B Computation Time

Arabesque
(SOSP '15)

*Experiments performed on a cluster of 20 machines,
each having 256GB of memory.

(e
.0
-
+—
—

I ~1 billion
11 hours

140 s

Motifs with size =3 PageRank

Graph Pattern Mining

Many pattern mining tasks do not need exact answers.

> Frequent sub-graph mining (FSM) finds the frequency of subgraphs but with
an end-goal of ordering them by occurrences.

[Leverage approximation for pattern mining]

Approximate Pattern Mining

Previous approach: Apply the exact same algorithm on subsets of
the input data, then use the statistical properties of these subsets to
estimate final results.

graph edge sampling triangle result
(p=0.5) counting

@ % - o

Approximate Pattern Mining

Previous approach: Apply the exact same algorithm on subsets of
the input data, then use the statistical properties of these subsets to

EStlmate flnal rESUItS. graph edg?saon;[))lmg triangle result
p=0. counting
—> —>e=1—> €:2=2
100 12
Error —+—
80 ["Speedup —— 10
S 18 <= s
: 16 3 > No significant speedup
G 40 1, & o Large error rate

20 .)
0 I R B 0

O 10 20 30 40 50 60 70 80 90
Edges Dropped (%)

Approximate Pattern Mining

Neighborhood sampling:

Model the edges in the graph as a stream

Sample one edge, e!/1

Gradually add more adjacent edges, ed2,....elk

Stop when the edges form the pattern or becomes impossible to do so

Use the probability of sampling to bound the total number of occurrences

of the pattern:
Plell,...elk)=P(ell)XP(el2 |ell)X..XP(elklell,...elk—1)

6. Repeat Step 1-5 multiple times

S N

Approximate Pattern Mining

Neighborhood sampling: Triangle Counting

1. Model the edges in the graph as a stream
graph

Edge Stream: (Oll)l (Olz)l (OI3)I (Olll')l (1I2)I (1I3)I (1I4)I (2I3)I (2I4)I (314)

Approximate Pattern Mining

Neighborhood sampling: Triangle Counting

2. Sample one edge

graph

0 —>\

edge Stream: (Oll)l (Olz)l (OI3)I (Olll')l (1I2)I (1I3)I (1I4)I (2I3)I (2I4)I (314)

Approximate Pattern Mining

Neighborhood sampling: Triangle Counting

3. Gradually add more adjacent edges

graph

£ —>

edge Stream: (Oll)l (Olz)l (OI3)I (Olll')l (1I2)I (1I3)I (1I4)I (2I3)I (2I4)I (314)

Approximate Pattern Mining

Neighborhood sampling: Triangle Counting

4. Stop when the edges form the pattern or becomes impossible to do so

graph

0 —>

edge Stream: (Oll)l (Olz)l (OI3)I (Olll')l (1I2)I (113)I (1I4)I (2I3)I (2I4)I (314)

Approximate Pattern Mining

Neighborhood sampling: Triangle Counting

4. Stop when the edges form the pattern or becomes impossible to do so
graph

0 —> ¥

edge Stream: (Oll)l (Olz)l (OI3)I (Olll')l (1I2)I (113)I (1I4)I (2I3)I (2I4)I (314)

Approximate Pattern Mining

Neighborhood sampling: Triangle Counting

5. Use the probability of sampling to bound the total number of occurrences
graph 1 1

p:—*—

10 4
EO ﬁv 80:40

edge Stream: (Oll)l (Olz)l (OI3)I (Olll')l (1I2)I (113)I (1I4)I (2I3)I (2I4)I (314)

Approximate Pattern Mining

Neighborhood sampling: Triangle Counting
6. Repeat Step 1-5 multiple times

graph estimator neighborhood result
(r=4) sampling

EQ _>V ey = 40

E1 > e =0 1
;Zeile

E2 —> e=0 =0

E3 —m—> e; =0

edge Stream: (Oll)l (Olz)l (OI3)I (Olll')l (1I2)I (113)I (1I4)I (2I3)I (2I4)I (3[4)

ASAP Architecture

gI'aphA.pattel'nS(“a->b->C”, “1003” a coun‘.t [21 4553 +/; 1 4
graphB.fourClique(“5.0%”,“95.0%") confidence: 95%,

Generalized Approximate 0 time: 92s
Estimates:{error: <56%, time: 95s} Pattern Mining
Estimates{error: <5%, time: 60s q‘ .4 q' ~

Estimator Count Selection

Embeddings (optional)
L
E %20 k o —
B oD T D
N QS < 9
NS S5
4 5 3 &
3 [Twiter Graph Profing —— | 40 : m 9 8 E
E 5 SR 2.8
1 33) &
[g (’J
o osM 1M 1sM 21m°g 05m im 16m 24m 1
No. of Estimators No. of Estimators é 3 g— E 5
s > \E
00 - |8 c
= A —
Graph updates 9

Programming API

Neighborhood sampling: APL

1. Model the edges in the graph as a stream sampleVertex: ()— (v, p)

2. Sample one edge, /1 > | SampleEdge: ()—(e,p)

3. Gradually add more adjacent edges, ed2, ConditionalSampleVertex: (subgraph)—(v,p)
,elk

ConditionalSampleEdge: (subgraph) —>(e,p)

4. Stop when the edges form the patternor |
becomes impossible to do so —

ConditionalClose: (subgraph, subgraph)—boolean

5. Use the probability of sampling to bound L—
the total number of occurrences of the
pattern:
Plell ,...elk))=P(ell)X P(el2 |
edl)X..XPlelklell,..,elk—1)

6. Repeat Step 1-5 multiple times

Programming API

(el, pl) = sampleEdge()

(e2, p2) = conditionalSampleEdge(Subgraph(el))
if ('e2) return 0

subgraphl = Subgraph(el, e2)

subgraph2 = Triangle(el, e2)-subgraphl
1frectounfnltll/o(npalllcplzo)se(subg raphl, subgraph2) - Closing Phase: waiting for
else return 0 | remaining edges to complete

the pattern

— Sampling Phase: fix the vertices
for a pattern

J\

Distributed Execution

Rely on map and reduce operations
1. Partition the vertices across wworkers

2. Apply estimator task on each subgraph to produce a partial count
3. Sum up partial counts
A

Adjust for underestimation by multiplying /(w)
e.g. for triangle count, f(w)=1/wT2

map: w(=3) workers reduce
subgraph > partial count ¢y
0 (using r estimators)
w-1
gapn (| | SEGERN > pertmcante Y r0 Y

subgraph > partial count ¢,
2 (using r estimators)

Distributed Execution

Rely on map and reduce operations
1. Partition the vertices across wworkers

2. Apply estimator task on each subgraph to produce a partial count
3. Sum up partial counts
A

. Adjust for underestimation by multiplying /(w)
e.g. for triangle count, /(w)=wT2

* Patterns across partitions are ignored // \\

 Total occurrence is reduced by 1/Aw) \M/

ASAP Architecture

graphA.patterns(“a->b->c”, “100s” a count: 21453 +/- 14

graphB fourClique(“5.0%” “95.0%”) confidence: 95%,
Generalized Approximate 0 time: 92s
Estimates:{error: <5%, time: 95s} Pattern Mining
Estimates {error: <5%, time: 60s —> N
A he Spark .4 V.
:) ache Spar R/_/
Estimator Count Selection P P Embeddings (optional)
K 28—
o[—— 2 o x
= i = X
i S o S >
N QS S 9
| = S &
o 8
3 [Twitier Graph Profiing —— | 40 : m &J E
= 2 &
N1 35) &
0 osM M 1sM 2A1M80 05m m 16m 21m L] 2
No. of Estimators No. of Estimators é B & QQ B
= S
00— |8 \o
AN
Y N
Graph updates 9

Error-Latency Profile (ELP)

ASAP can perform tasks in two modes:
o Time budget 7

o Error budget €

Given a time [error bound, how many estimators should ASAP use?

Time vs Estimators Error vs Estimators

A y

Time
Error

n »

Numberofestimators' Numberofestimators'

Error-Latency Profile (ELP)

Running time scales linearly with number of estimators

Test exponentially spaced points + extrapolation to build a linear

model
Time vs Estimators

Time

v

Number of estimators

Error-Latency Profile (ELP)

Chernoff bound for triangle counting: Vle >AXmXA /T2 P

Estimate ground truth 2Js on a small sample of the graph + scale

to P
Error vs Estimators

Error

>

Number of estimators

Evaluation

77x speedup with under 5% loss of accuracy for smaller graphs

(0.01-30 million edges)

RN
o

>
w

"Il ASAP

-l ASAP

3 2992 3161
2 1 Arabesque] 2 ,4gng | Arabesque

GEJ 1072 + o 291.4

£ £ 162

2 10F ™ 3 > 121149 | 18.1

E 28 4.5 = 10 7.3

S 1.1 l 5 J

€ 1 x (1 | .

CiteSeer Mico Youtube Lived
(a) 3-Motif Counting

CiteSeer Mico Youtube Lived
(b) 4-Motif Counting

Evaluation

258x speedup with under 5% loss of accuracy for larger graphs

1000 645
M Arabesque M ASAP

Time (min)

5 5.9
= 01 B
. =

0.9 1.5 1.8 3.7

Edges (Billions)

Conclusion

ASAP is the first system that does fast, scalable approximate graph
pattern mining on large graphs.

ASAP outperforms Arabesque by more than a magnitude faster
with a sacrifice of 5% accuracy.

ASAP scales to larger graphs whereas Arabesque fails to complete
execution.

Reference

o https://www.usenix.org/sites/default/files/conference/protected-files/
0sdi18 slides iyer.pdf

o lyer, Anand Padmanabha, et al. "ASAP: fast, approximate graph pattern
mining at scale." Proceedings of the 12th USENIX conference on Operating
Systems Design and Implementation. USENIX Association, 2018.

o lyer, Anand Padmanabha, et al. "Towards fast and scalable graph pattern
mining." 1oth {USENIX} Workshop on Hot Topics in Cloud Computing
(HotCloud 18). USENIX} Association}, 2018.

