
ASAP: Fast, Approximate Graph 
Pattern Mining at Scale 

 
Anand Iyer et al. @ OSDI 2018 

 
Presenter:	Yunang	Chen	

1	



	 A	Swift	Approximate	Pattern-miner	

	 Navigates	tradeoff	between	result	accuracy	and	latency	

	 Runs	on	general-purpose	distributed	dataflow	platform	

	 Supports	for	generalized	graph	pattern	mining	algorithms	

2	

ASAP	Design	Overview	



	 Standard	approach:	Iterative	expansion	

	

Graph	Pattern	Mining 		

3	

	 Lack	of	scalability		
◦ Generate	exponentially	large	intermediate	candidate	sets	
◦ Need	to	store	+	exchange	them	in	distributed	environment	



	 Standard	approach:	Iterative	expansion	

	

Graph	Pattern	Mining 		

4	

	 Lack	of	scalability		
◦ Generate	exponentially	large	intermediate	candidate	sets	
◦ Need	to	store	+	exchange	them	in	distributed	environment	

*Experiments	performed	on	a	cluster	of	20	machines,		
each	having	256GB	of	memory.	



	 Many	pattern	mining	tasks	do	not	need	exact	answers.	
◦ Frequent	sub-graph	mining	(FSM)	finds	the	frequency	of	subgraphs	but	with	
an	end-goal	of	ordering	them	by	occurrences.	

5	

Graph	Pattern	Mining	

	 Leverage	approximation	for	pattern	mining	



	 Previous	approach:	Apply	the	exact	same	algorithm	on	subsets	of	
the	input	data,	then	use	the	statistical	properties	of	these	subsets	to	
estimate	final	results.	

6	

Approximate	Pattern	Mining	



	 Previous	approach:	Apply	the	exact	same	algorithm	on	subsets	of	
the	input	data,	then	use	the	statistical	properties	of	these	subsets	to	
estimate	final	results.	

7	

Approximate	Pattern	Mining	

◦ No	significant	speedup	
◦ Large	error	rate	



	 Neighborhood	sampling:	
1.  Model	the	edges	in	the	graph	as	a	stream	
2.  Sample	one	edge,	​𝑒↓1 	
3.  Gradually	add	more	adjacent	edges,	 ​𝑒↓2 ,…, ​𝑒↓𝑘 	
4.  Stop	when	the	edges	form	the	pattern	or	becomes	impossible	to	do	so	
5.  Use	the	probability	of	sampling	to	bound	the	total	number	of	occurrences	

of	the	pattern:	
	𝑃(​𝑒↓1 ,…, ​𝑒↓𝑘 )=𝑃(​𝑒↓1 )×𝑃(​𝑒↓2 ∣​𝑒↓1 )×…×𝑃(​𝑒↓𝑘 ∣​𝑒↓1 ,…, ​𝑒↓𝑘−1 )	

6.  Repeat	Step	1-5	multiple	times	

8	

Approximate	Pattern	Mining	



	 Neighborhood	sampling:	Triangle	Counting	
1.  Model	the	edges	in	the	graph	as	a	stream	

9	

Approximate	Pattern	Mining	

edge	stream:	(0,1),	(0,2),	(0,3),	(0,4),	(1,2),	(1,3),	(1,4),	(2,3),	(2,4),	(3,4)	



	 Neighborhood	sampling:	Triangle	Counting	
2.  Sample	one	edge		

10	

Approximate	Pattern	Mining	

edge	stream:	(0,1),	(0,2),	(0,3),	(0,4),	(1,2),	(1,3),	(1,4),	(2,3),	(2,4),	(3,4)	



	 Neighborhood	sampling:	Triangle	Counting	
3.  Gradually	add	more	adjacent	edges	

11	

Approximate	Pattern	Mining	

edge	stream:	(0,1),	(0,2),	(0,3),	(0,4),	(1,2),	(1,3),	(1,4),	(2,3),	(2,4),	(3,4)	



	 Neighborhood	sampling:	Triangle	Counting	
4.  Stop	when	the	edges	form	the	pattern	or	becomes	impossible	to	do	so	

12	

Approximate	Pattern	Mining	

edge	stream:	(0,1),	(0,2),	(0,3),	(0,4),	(1,2),	(1,3),	(1,4),	(2,3),	(2,4),	(3,4)	



	 Neighborhood	sampling:	Triangle	Counting	
4.  Stop	when	the	edges	form	the	pattern	or	becomes	impossible	to	do	so	

13	

Approximate	Pattern	Mining	

edge	stream:	(0,1),	(0,2),	(0,3),	(0,4),	(1,2),	(1,3),	(1,4),	(2,3),	(2,4),	(3,4)	



	 Neighborhood	sampling:	Triangle	Counting	
5.  Use	the	probability	of	sampling	to	bound	the	total	number	of	occurrences	

14	

Approximate	Pattern	Mining	

edge	stream:	(0,1),	(0,2),	(0,3),	(0,4),	(1,2),	(1,3),	(1,4),	(2,3),	(2,4),	(3,4)	



	 Neighborhood	sampling:	Triangle	Counting	
6.  Repeat	Step	1-5	multiple	times	

15	

Approximate	Pattern	Mining	

edge	stream:	(0,1),	(0,2),	(0,3),	(0,4),	(1,2),	(1,3),	(1,4),	(2,3),	(2,4),	(3,4)	



16	

ASAP	Architecture	



	 Neighborhood	sampling:	
1.  Model	the	edges	in	the	graph	as	a	stream	
2.  Sample	one	edge,	​𝑒↓1 	
3.  Gradually	add	more	adjacent	edges,	 ​𝑒↓2 ,

…, ​𝑒↓𝑘 	
4.  Stop	when	the	edges	form	the	pattern	or	

becomes	impossible	to	do	so	
5.  Use	the	probability	of	sampling	to	bound	

the	total	number	of	occurrences	of	the	
pattern:	
	𝑃(​𝑒↓1 ,…, ​𝑒↓𝑘 )=𝑃(​𝑒↓1 )×𝑃(​𝑒↓2 ∣​
𝑒↓1 )×…×𝑃(​𝑒↓𝑘 ∣​𝑒↓1 ,…, ​𝑒↓𝑘−1 )	

6.  Repeat	Step	1-5	multiple	times	

17	

Programming	API	



18	

Programming	API	

Sampling	Phase:	fix	the	vertices	
for	a	pattern	

Closing	Phase:	waiting	for	
remaining	edges	to	complete	
the	pattern	



	 Rely	on	map	and	reduce	operations		
1.  Partition	the	vertices	across	𝑤	workers	
2.  Apply	estimator	task	on	each	subgraph	to	produce	a	partial	count	
3.  Sum	up	partial	counts	
4.  Adjust	for	underestimation	by	multiplying	𝑓(𝑤)	

e.g.	for	triangle	count,	𝑓(𝑤)=1/​𝑤↑2 	

19	

Distributed	Execution	



	 Rely	on	map	and	reduce	operations		
1.  Partition	the	vertices	across	𝑤	workers	
2.  Apply	estimator	task	on	each	subgraph	to	produce	a	partial	count	
3.  Sum	up	partial	counts	
4.  Adjust	for	underestimation	by	multiplying	𝑓(𝑤)	

e.g.	for	triangle	count,	𝑓(𝑤)= ​𝑤↑2 	

20	

Distributed	Execution	

​
𝑤
↓
2 	

​
𝑤
↓
2 	

​
𝑤
↓
2 	​

𝑤
↓
1 	

​
𝑤
↓
1 	

•  Patterns	across	partitions	are	ignored	
•  Total	occurrence	is	reduced	by	1/𝑓(𝑤)	



21	

ASAP	Architecture	



	 ASAP	can	perform	tasks	in	two	modes:	
◦ Time	budget	𝑇	
◦ Error	budget	𝜖	

	 Given	a	time	/	error	bound,	how	many	estimators	should	ASAP	use?	

22	

Error-Latency	Profile	(ELP)	



	 Running	time	scales	linearly	with	number	of	estimators	

	 Test	exponentially	spaced	points	+	extrapolation	to	build	a	linear	
model	

23	

Error-Latency	Profile	(ELP)	



	 Chernoff	bound	for	triangle	counting:	 ​𝑁↓𝑒 > ​𝐾×𝑚×Δ/​𝜖↑2 𝑃 	
	 Estimate	ground	truth	 ​​𝑃↓𝑠  	on	a	small	sample	of	the	graph	+	scale	
to	 ​𝑃 	

24	

Error-Latency	Profile	(ELP)	



	 77x	speedup	with	under	5%	loss	of	accuracy	for	smaller	graphs	
(0.01-30	million	edges)	

25	

Evaluation		



	 258x	speedup	with	under	5%	loss	of	accuracy	for	larger	graphs	

26	

Evaluation		



	 ASAP	is	the	first	system	that	does	fast,	scalable	approximate	graph	
pattern	mining	on	large	graphs.	

	 ASAP	outperforms	Arabesque	by	more	than	a	magnitude	faster	
with	a	sacrifice	of	5%	accuracy.	

	 ASAP	scales	to	larger	graphs	whereas	Arabesque	fails	to	complete	
execution.	

27	

Conclusion	



◦ https://www.usenix.org/sites/default/files/conference/protected-files/
osdi18_slides_iyer.pdf	

◦  Iyer,	Anand	Padmanabha,	et	al.	"ASAP:	fast,	approximate	graph	pattern	
mining	at	scale."	Proceedings	of	the	12th	USENIX	conference	on	Operating	
Systems	Design	and	Implementation.	USENIX	Association,	2018.	

◦  Iyer,	Anand	Padmanabha,	et	al.	"Towards	fast	and	scalable	graph	pattern	
mining."	10th	{USENIX}	Workshop	on	Hot	Topics	in	Cloud	Computing	
(HotCloud	18).	USENIX}	Association},	2018.	

	

28	

Reference	


