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ASAP Design Overview

A Swift Approximate Pattern-miner

Navigates tradeoff between result accuracy and latency

Runs on general-purpose distributed dataflow platform

Supports for generalized graph pattern mining algorithms




Graph Pattern Mining

Standard approach: Iterative expansion
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Lack of scalability
o Generate exponentially large intermediate candidate sets
> Need to store + exchange them in distributed environment
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Graph Pattern Mining

Many pattern mining tasks do not need exact answers.

> Frequent sub-graph mining (FSM) finds the frequency of subgraphs but with
an end-goal of ordering them by occurrences.

[ Leverage approximation for pattern mining ]




Approximate Pattern Mining

Previous approach: Apply the exact same algorithm on subsets of
the input data, then use the statistical properties of these subsets to
estimate final results.
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Approximate Pattern Mining

Previous approach: Apply the exact same algorithm on subsets of
the input data, then use the statistical properties of these subsets to
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Approximate Pattern Mining

Neighborhood sampling:

Model the edges in the graph as a stream

Sample one edge, e!/1

Gradually add more adjacent edges, ed2,....elk

Stop when the edges form the pattern or becomes impossible to do so

Use the probability of sampling to bound the total number of occurrences

of the pattern:
Plell,...elk )=P(ell )XP(el2 |ell )X..XP(elklell,...elk—1)

6. Repeat Step 1-5 multiple times
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Approximate Pattern Mining

Neighborhood sampling: Triangle Counting

1. Model the edges in the graph as a stream
graph

Edge Stream: (Oll)l (Olz)l (OI3)I (Olll')l (1I2)I (1I3)I (1I4)I (2I3)I (2I4)I (314)



Approximate Pattern Mining

Neighborhood sampling: Triangle Counting

2. Sample one edge

graph
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Approximate Pattern Mining

Neighborhood sampling: Triangle Counting

3. Gradually add more adjacent edges

graph

£ —>

edge Stream: (Oll)l (Olz)l (OI3)I (Olll')l (1I2)I (1I3)I (1I4)I (2I3)I (2I4)I (314)




Approximate Pattern Mining

Neighborhood sampling: Triangle Counting

4. Stop when the edges form the pattern or becomes impossible to do so
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Approximate Pattern Mining

Neighborhood sampling: Triangle Counting

4. Stop when the edges form the pattern or becomes impossible to do so
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Approximate Pattern Mining

Neighborhood sampling: Triangle Counting

5. Use the probability of sampling to bound the total number of occurrences
graph 1 1
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Approximate Pattern Mining

Neighborhood sampling: Triangle Counting
6. Repeat Step 1-5 multiple times
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ASAP Architecture
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Programming API

Neighborhood sampling: APL

1. Model the edges in the graph as a stream sampleVertex: ()— (v, p)

2. Sample one edge, /1 > | SampleEdge: ()—(e,p)

3. Gradually add more adjacent edges, ed2, ConditionalSampleVertex: (subgraph)—(v,p)
,elk

ConditionalSampleEdge: (subgraph) —>(e,p)

4. Stop when the edges form the patternor |
becomes impossible to do so —

ConditionalClose: (subgraph, subgraph)—boolean

5. Use the probability of sampling to bound L—
the total number of occurrences of the
pattern:
Plell ,...elk ))=P(ell )X P(el2 |
edl )X..XPlelklell,..,elk—1)

6. Repeat Step 1-5 multiple times




Programming API

(el, pl) = sampleEdge()

(e2, p2) = conditionalSampleEdge(Subgraph(el))
if ('e2) return 0

subgraphl = Subgraph(el, e2)

subgraph2 = Triangle(el, e2)-subgraphl
1frectounfnltll/o(npalllcplzo)se(subg raphl, subgraph2) - Closing Phase: waiting for
else return 0 | remaining edges to complete

the pattern

—  Sampling Phase: fix the vertices
for a pattern
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Distributed Execution

Rely on map and reduce operations
1. Partition the vertices across wworkers

2. Apply estimator task on each subgraph to produce a partial count
3. Sum up partial counts
A

Adjust for underestimation by multiplying /(w)
e.g. for triangle count, f(w)=1/wT2

map: w(=3) workers reduce
subgraph > partial count ¢y
0 (using r estimators)
w-1
gapn (| | SEGERN > pertmcante Y r0 Y

subgraph > partial count ¢,
2 (using r estimators)




Distributed Execution

Rely on map and reduce operations
1. Partition the vertices across wworkers

2. Apply estimator task on each subgraph to produce a partial count
3. Sum up partial counts
A

. Adjust for underestimation by multiplying /(w)
e.g. for triangle count, /(w)=wT2

* Patterns across partitions are ignored // \\

 Total occurrence is reduced by 1/Aw) \M/




ASAP Architecture
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Error-Latency Profile (ELP)

ASAP can perform tasks in two modes:
o Time budget 7

o Error budget €

Given a time [ error bound, how many estimators should ASAP use?

Time vs Estimators Error vs Estimators
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Error-Latency Profile (ELP)

Running time scales linearly with number of estimators

Test exponentially spaced points + extrapolation to build a linear

model
Time vs Estimators

Time
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Error-Latency Profile (ELP)

Chernoff bound for triangle counting: Vle >AXmXA /T2 P

Estimate ground truth 2Js on a small sample of the graph + scale

to P
Error vs Estimators
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Evaluation

77x speedup with under 5% loss of accuracy for smaller graphs

(0.01-30 million edges)
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Evaluation

258x speedup with under 5% loss of accuracy for larger graphs
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Conclusion

ASAP is the first system that does fast, scalable approximate graph
pattern mining on large graphs.

ASAP outperforms Arabesque by more than a magnitude faster
with a sacrifice of 5% accuracy.

ASAP scales to larger graphs whereas Arabesque fails to complete
execution.
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