
Drizzle: Fast and Adaptable Stream Processing at Scale

Shivaram Venkataraman*

UC Berkeley
Aurojit Panda
UC Berkeley

Kay Ousterhout
UC Berkeley

Michael Armbrust
Databricks

Ali Ghodsi
Databricks, UC Berkeley

Michael J. Franklin
University of Chicago

Benjamin Recht
UC Berkeley

Ion Stoica
Databricks, UC Berkeley

ABSTRACT
Large scale streaming systems aim to provide high throughput
and low latency. They are often used to run mission-critical
applications, and must be available 24x7. Thus such systems
need to adapt to failures and inherent changes in workloads,
with minimal impact on latency and throughput. Unfortu-
nately, existing solutions require operators to choose between
achieving low latency during normal operation and incur-
ring minimal impact during adaptation. Continuous operator
streaming systems, such as Naiad and Flink, provide low
latency during normal execution but incur high overheads
during adaptation (e.g., recovery), while micro-batch systems,
such as Spark Streaming and FlumeJava, adapt rapidly at the
cost of high latency during normal operations.

Our key observation is that while streaming workloads
require millisecond-level processing, workload and cluster
properties change less frequently. Based on this, we develop
Drizzle, a system that decouples the processing interval from
the coordination interval used for fault tolerance and adapt-
ability. Our experiments on a 128 node EC2 cluster show that
on the Yahoo Streaming Benchmark, Drizzle can achieve end-
to-end record processing latencies of less than 100ms and can
get 2–3x lower latency than Spark. Drizzle also exhibits better
adaptability, and can recover from failures 4x faster than Flink
while having up to 13x lower latency during recovery.

*Correspondence to: shivaram@cs.berkeley.edu

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SOSP ’17, October 28, 2017, Shanghai, China
© 2017 Copyright held by the owner/author(s). Publication rights licensed to
Association for Computing Machinery.
ACM ISBN 978-1-4503-5085-3/17/10. . . $15.00
https://doi.org/10.1145/3132747.3132750

CCS CONCEPTS
• Computer systems organization ! Dependable and
fault-tolerant systems and networks; Distributed architec-
tures;

KEYWORDS
Stream Processing, Reliability, Performance

ACM Reference Format:
Shivaram Venkataraman, Aurojit Panda, Kay Ousterhout, Michael
Armbrust, Ali Ghodsi, Michael J. Franklin, Benjamin Recht, and Ion
Stoica. 2017. Drizzle: Fast and Adaptable Stream Processing at
Scale. In Proceedings of SOSP ’17, Shanghai, China, October 28,
2017, 16 pages.
https://doi.org/10.1145/3132747.3132750

1 INTRODUCTION
Recent trends [48, 52] in data analytics indicate the wide-
spread adoption of stream processing workloads [3, 59] that
require low-latency and high-throughput execution. Examples
of such workloads include real time object recognition [68]
and internet quality of experience prediction [37]. Systems
designed for stream processing [14, 67] often process mil-
lions of events per second per machine and aim to provide
sub-second processing latencies.

Stream processing systems are deployed to process data
24x7 [41, 50], and therefore in addition to meeting perfor-
mance requirements, these systems must also be able to han-
dle changes in the cluster, workload or incoming data. This
requires that they gracefully react to software, machine or
disk failures, that can happen once every few hours in large
clusters [27], straggler tasks, which can slow down jobs by
6–8x [4, 6] and varying workload patterns [45, 50], which
can result in more than 10x difference in load between peak
and non-peak durations. To handle such changes data process-
ing, systems have to adapt, i.e, dynamically change nodes
on which operators are executed, and update the execution
plan while ensuring consistent results. These adaptions occur
frequently, and as a result systems need to handle them during
normal execution, without sacrificing throughput or latency.

SOSP ’17, October 28, 2017, Shanghai, China S.Venkataraman et al.

Unfortunately existing solutions for stream processing have
either focused on providing low-latency during normal oper-
ation or on ensuring that adaptation does not affect latency.
Systems like Naiad [48] and Apache Flink [14, 54] use a con-
tinuous operator streaming model that provides low latency
during normal execution. However recovering from failures
(or adapting to changes) in such systems is expensive, as even
in cases where a single machine fails, the state for all oper-
ators must be reset to the last checkpoint, and computation
must resume from that point. In contrast, micro-batch based
systems like Spark Streaming [67] and FlumeJava [16] pro-
cess data in batches using the bulk-synchronous processing
(BSP) model. This design makes fault recovery (and other
adaptations) more efficient as it is possible to reuse partial
results and perform parallel recovery [67]. However such sys-
tems typically impose a barrier across all nodes after every
batch, resulting in high latency [63].

Furthermore, aspects of both solutions are required to meet
throughput and latency goals. While continuous operator sys-
tems can achieve lower latency by immediately processing an
input record, processing too few records at a time does not
allow the use of techniques such as vectorizations [10] and
query optimization [55] which require batching records. On
the other hand, while batching in BSP systems naturally en-
ables the use of these techniques, the coordination required at
barriers induces additional processing time. As a result, reduc-
ing batch size to lower latency often results in unacceptable
overhead.

In this paper we propose an alternate design based on
the observation that while streaming workloads require
millisecond-level processing latency, workload and cluster
properties change at a much slower rate (several seconds or
minutes) [27, 45]. As a result, it is possible to decouple the
processing interval from the coordination interval used for
fault tolerance, adaptability. This means that we can process
tuples every few milliseconds, while coordinating to respond
to workload and cluster changes every few seconds.

We implement this model in Drizzle. Our design makes use
of a micro-batch processing model with a centralized sched-
uler and introduces a number of techniques to improve per-
formance. To avoid the centralized scheduling bottleneck, we
introduce group scheduling (§3.1), where multiple batches (or
a group) are scheduled at once. This decouples the granularity
of data processing from scheduling decisions and amortizes
the costs of task serialization and launch. One key challenge
is in launching tasks before their input dependencies have
been computed. We solve this using pre-scheduling (§3.2),
where we proactively queue tasks to be run on worker ma-
chines, and rely on workers to trigger tasks when their input
dependencies are met. To achieve better throughput, we utilize
query optimization techniques [10] while processing small

batches of inputs. In combination these techniques help Driz-
zle to achieve the latency and throughput requirements while
remaining adaptable.

Choosing an appropriate group size is important to ensure
that Drizzle achieves the desired properties. To simplify se-
lecting a group size, we implement an automatic group-size
tuning mechanism that adjusts the granularity of scheduling
given a performance target.

We build Drizzle on Apache Spark and integrate Spark
Streaming [67] with Drizzle. Using micro-benchmarks on a
128 node EC2 cluster we show that group scheduling and
pre-scheduling are effective at reducing coordination over-
heads by up to 5.5x compared to Apache Spark. With these
improvements we show that on Yahoo’s stream processing
benchmark [63], Drizzle can achieve end-to-end record pro-
cessing latencies of less than 100ms and is up to 3.5x faster
when compared with Spark. Furthermore, as a result of the
optimizations enabled by Drizzle, we achieve up to 3x better
latency compared to Flink when throughput is held constant,
and between 2-3x better throughput at fixed latency. Finally,
in terms of fault tolerance, our experiments show that Driz-
zle recovers around 4x faster from failures than Flink while
having up to 13x lower latency during recovery.

2 BACKGROUND
We begin by providing some background about properties
that are required for large scale stream processing, following
which we describe and compare two computation models
used by existing stream processing systems.

2.1 Desirable Properties of Streaming
To illustrate the requirements of production stream jobs, we
briefly discuss the design of a prediction service at a video
analytics company.

Case Study: Video Quality Prediction. The prediction
service is run as a streaming application that computes a
number of aggregates based on heartbeats from clients and
then queries a machine learning model [37] to determine the
optimal parameters for bitrate, CDN location, etc. The output
from the streaming job needs to be computed approximately
every 100ms to reflect the most recent state of the network
to the video frontends. Further the number of heartbeats
can range in thousands to millions of updates per second. If
the system cannot meet the 100ms deadline (either due to
failures or other changes), the use of stale prediction results
can lead to a user perceivable degradation in service due
to say a wrong choice of bitrate. As a result the prediction
service must ensure that it can rapidly recover from failures,
and minimize violations of the target latency. Finally, due
to the diurnal pattern, the number of viewers and heartbeats

Drizzle: Fast, Adaptable Stream Processing SOSP ’17, October 28, 2017, Shanghai, China

(3) Driver launches next stage
and sends size, location of data

blocks tasks should read

(4) Tasks fetch data output by
previous tasks

Task Control Message Data Message Driver

Micro-batch

(1) Driver launches
tasks on workers

(2) On completion, tasks
report size of each output to

driver

data	=	input.map()	
												.filter()	

data.groupBy()	
				.sum	

Stage

Micro-batch

Barrier

Figure 1: Execution of a streaming job when using the batch processing model. We show two micro-batches of execution here. The
left-hand side shows the various steps used to coordinate execution. The query being executed in shown on the right hand side

varies over the course of a day with specific events (e.g.,
Superbowl) leading to large increase in load. Thus the system
also needs to adapt the number of machines used based on
demand. Based on this example, we next discuss the main
properties [56] required by large scale streaming systems.

High Throughput. There has been a rapid increase in the
amount of data being generated and collected for analysis,
and high-throughput processing is essential to keeping up
with data streams. For example, in a recent blog post [23]
LinkedIn reported generating over 1 trillion messages per
day using Kafka, similarly Twitter [58] reports that their
timeseries databases need to handle 2.8 billion writes per
minute. Keeping up with these ingest rates requires using
distributed stream processing systems whose throughput
matches or exceeds the incoming data rate.

Low Latency. We define the latency of a stream processing
system as the time that elapses between receiving a new
record and producing output that accounts for this record. For
example, in an anomaly detection workload which predicts
trends [2] using a 1-second tumbling window, the processing
latency is the time taken to process all events in a one second
window and produce the necessary output. Processing latency
impacts the system’s responsiveness and high latency can
both limit the applications that can be supported by a system
and user perceived responsiveness. As a result, distributed
streaming systems need to provide low latency, and should be
designed to ensure that latencies remain low even when the
system is scaled across machines.

Adaptability. Unlike traditional analytic queries, stream-
ing jobs process live data and are long lived. As a result the
system needs to be able to adapt to changes in both workload
and cluster properties. For example, recent papers from
Twitter [26, 41] observe that failing hardware, load changes

or misbehaving user code occur frequently in production
clusters. Additionally it is important to ensure that adaptation
does not lead to correctness or prolonged latency spikes [46].

Consistency. A central challenge in distributed stream
processing is ensuring consistency for results produced
over time. Consistency could be defined in terms of
application-level semantics or lower-level message delivery
semantics. For example if we have two counters, one tracking
the number of requests and another tracking the number
of responses, it is important to ensure that requests are
accounted for before responses. This can be achieved by
guaranteeing prefix integrity, where every output produced is
equivalent to processing a well-specified prefix of the input
stream. Additionally, lower-level message delivery semantics
like exactly once delivery are useful for programmers
implementing fault tolerant streaming applications. In this
work we aim to maintain the consistency semantics offered by
existing systems and focus on performance and adaptability.

2.2 Computation Models for Streaming
BSP for Streaming Systems. The bulk-synchronous parallel
(BSP) model has influenced many data processing frame-
works. In this model, the computation consists of a phase
whereby all parallel nodes in the system perform some local
computation, followed by a blocking barrier that enables all
nodes to communicate with each other, after which the pro-
cess repeats itself. The MapReduce [24] paradigm adheres
to this model, whereby a map phase can do arbitrary local
computations, followed by a barrier in the form of an all-to-
all shuffle, after which the reduce phase can proceed with
each reducer reading the output of relevant mappers (often
all of them). Systems such as Dryad [34, 64], Spark [66],
and FlumeJava [16] extend the MapReduce model to allow
combining many phases of map and reduce after each other,

SOSP ’17, October 28, 2017, Shanghai, China S.Venkataraman et al.

Property Micro-batch Model Continuous Operator Model
Latency seconds milliseconds

Consistency exactly-once, prefix integrity [22] exactly once [13]
Fault Recovery sync checkpoints, parallel recovery sync / async checkpoints, replay

Adaptability at micro-batch boundaries checkpoint and restart
Table 1: Comparison of the micro-batch and continuous operator models for different properties useful for streaming
systems

and also include specialized operators, e.g. filter, sum, group-
by, join. Thus, the computation is a directed acyclic graph
(DAG) of operators and is partitioned into different stages
with a barrier between each of them. Within each stage, many
map functions can be fused together as shown in Figure 1.
Further, many operators (e.g., sum, reduce) can be efficiently
implemented [8] by pre-combining data in the map stage and
thus reducing the amount of data transferred.

Streaming systems, such as Spark Streaming [67], Google
Dataflow [3] with FlumeJava, adopt the aforementioned BSP
model. They implement streaming by creating a micro-batch
of duration T seconds. During the micro-batch, data is col-
lected from the streaming source, processed through the entire
DAG of operators and is followed by a barrier that outputs
all the data to the streaming sink, e.g. Kafka. Thus, there is a
barrier at the end of each micro-batch, as well as within the
micro-batch if the DAG consists of multiple stages, e.g. if it
has a group-by operator.

In the micro-batch model, the duration T constitutes a
lower bound for record processing latency. Unfortunately, T
cannot be set to adequately small values due to how barriers
are implemented in all these systems. Consider a simple job
consisting of a map phase followed by a reduce phase (Fig-
ure 1). A centralized driver schedules all the map tasks to take
turns running on free resources in the cluster. Each map task
then outputs records for each reducer based on some partition
strategy, such as hashing or sorting. Each task then informs
the centralized driver of the allocation of output records to the
different reducers. The driver can then schedule the reduce
tasks on available cluster resources, and pass this metadata
to each reduce task, which then fetches the relevant records
from all the different map outputs. Thus, each barrier in a
micro-batch requires communicating back and forth with the
driver. Hence, setting T too low will result in a substantial
communication overhead, whereby the communication with
the driver eventually dominates the processing time. In most
systems, T is limited to 0.5 seconds or more [63].

The use of barriers greatly simplifies fault-tolerance and
scaling in BSP systems. First, the scheduler is notified at
the end of each stage, and can reschedule tasks as necessary.
This allows the scheduler to change the degree of parallelism
provided to the job at the end of each stage, and effectively

make use of any additional resources available to the job.
Furthermore, fault tolerance in these systems is typically
implemented by taking a snapshot when at a barrier. This
snapshot can either be physical, i.e., record the output from
each task in a stage; or logical, i.e., record the computational
dependencies for some data. Task failures can be trivially
recovered from using these snapshots since the scheduler
can reschedule the task and have it read (or reconstruct)
inputs from the previous stage’s snapshot. Further since every
task in the micro-batch model has deterministic inputs, fault
recovery can be accelerated by running tasks from different
micro-batches or different operators in parallel [67]. For
example, consider a job with one map and one reduce stage
in each microbatch as shown in Figure 1. If a machine fails,
we might lose some map outputs from each timestep. With
parallel recovery, map tasks from different timesteps can be
run in parallel during recovery.

Continuous Operator Streaming. An alternate computa-
tion model that is used in systems specialized for low la-
tency workloads is the dataflow [38] computation model
with long running or continuous operators. Dataflow mod-
els have been used to build database systems [29], stream-
ing databases [1, 17] and have been extended to support
distributed execution in systems like Naiad [48], Stream-
Scope [42] and Flink [54]. In such systems, user programs
are similarly converted to a DAG of operators, and each oper-
ator is placed on a processor as a long running task. As data
is processed, operators update local state and messages are
directly transferred from between operators. Barriers are in-
serted only when required by specific operators. Thus, unlike
BSP-based systems, there is no scheduling or communica-
tion overhead with a centralized driver. Unlike BSP-based
systems, which require a barrier at the end of a micro-batch,
continuous operator systems do not impose any such barriers.

To handle machine failures, dataflow systems typically use
distributed checkpointing algorithms [18] to create consistent
snapshots periodically. The execution model is flexible and
can accommodate either asynchronous [13] checkpoints (in
systems like Flink) or synchronous checkpoints (in systems
like Naiad). Recent work on Falkirk Wheel [33] provides a
more detailed description comparing these two approaches

Drizzle: Fast, Adaptable Stream Processing SOSP ’17, October 28, 2017, Shanghai, China

and also describes how the amount of state that is check-
pointed in timely dataflow can be minimized by checkpoint-
ing at the end of a processing epoch. However checkpoint
replay during recovery can be more expensive in this model.
In both synchronous and asynchronous approaches, when-
ever a node fails, all the nodes are rolled back to the last
consistent checkpoint and records are then replayed from
this point. As the continuous operators cannot be easily split
into smaller components this precludes parallelizing recovery
across timesteps (as in the BSP model) and each continuous
operator is recovered serially.

2.3 Comparing Computation Models
Table 1 summarizes the difference between the models. As
mentioned, BSP-based systems suffer from poor latency due
to scheduling and communication overheads which lower-
bound the micro-batch length. If the micro-batch duration T
is set lower than that, the system will fall behind and become
unstable. Continuous operator systems do not have this disad-
vantage, as no barrier-related scheduling and communication
overhead is necessary.

On the other hand, BSP-based systems can naturally adapt
at barrier boundaries to recover from failures or add/remove
nodes. Continuous operator systems would have to roll-back
to a checkpoint and replay from that point on. Both models
can guarantee exactly-one semantics.

Finally the execution model in BSP-systems also makes it
easy to achieve high throughput by applying optimized exe-
cution techniques [10] within each micro-batch. This is espe-
cially advantageous for aggregation-based workloads where
combining updates across records in a batch can significantly
reduce the amount of data transferred over the network. Sup-
porting such optimizations in continuous operator systems
and requires explicit buffering or batching.

3 DESIGN
Next we detail the design of Drizzle. Drizzle builds on exist-
ing BSP-based streaming systems, and we begin by showing
how the BSP model can be changed to dramatically reduce
average scheduling and communication overheads. In design-
ing Drizzle, we chose to extend the BSP model since it allows
us to inherit existing support for parallel recovery and opti-
mizations for high-throughput batch processing. We believe
one could go in the other direction, that is start with a contin-
uous operator system, modify it to add support for tasks with
periodic centralized coordination and get similar benefits.

Our high level approach to removing the overheads in the
BSP-based streaming model is to decouple the size of the
micro-batch being processed from the interval at which coor-
dination takes place. This decoupling will allow us to reduce
the size of a micro-batch to achieve sub-second processing

Task Control Message Driver

(a) Existing Scheduling

(b) Group Scheduling

Figure 2: Group scheduling amortizes the scheduling over-
heads across multiple micro-batches of a streaming job.

latency, while ensuring that coordination, which helps the sys-
tem adapt to failures and cluster membership changes, takes
place every few seconds. We focus on the two sources of
coordination that exists in BSP systems (Figure 1). First we
look at the centralized coordination that exists between micro-
batches and how we can remove this with group scheduling.
Following that, we discuss how we can remove the barrier
within a micro-batch using pre-scheduling.

3.1 Group Scheduling
BSP frameworks like Spark, FlumeJava [16] or Scope [15]
use centralized schedulers that implement many complex
scheduling techniques; these include: algorithms to account
for locality [65], straggler mitigation [6], fair sharing [35]
etc. Scheduling a single stage in these systems proceeds as
follows: first, a centralized scheduler computes which worker
each task should be assigned to, taking in the account local-
ity and other constraints. Following this tasks are serialized
and sent to workers using an RPC. The complexity of the
scheduling algorithms used coupled with computational and
network limitations of the single machine running the sched-
uler imposes a fundamental limit on how fast tasks can be
scheduled.

The limitation a single centralized scheduler has been iden-
tified before in efforts like Sparrow [52], Apollo [11]. How-
ever, these systems restrict themselves to cases where sched-
uled tasks are independent of each other, e.g., Sparrow for-
wards each scheduling request to one of many distributed
schedulers which do not coordinate among themselves and
hence cannot account for dependencies between requests. In
Drizzle, we focus on micro-batch streaming jobs where there
are dependencies between batches and thus coordination is
required when scheduling parts of a single streaming job.

To alleviate centralized scheduling overheads, we study the
execution DAG of streaming jobs. We observe that in stream
processing jobs, the computation DAG used to process micro-
batches is largely static, and changes infrequently. Based on

SOSP ’17, October 28, 2017, Shanghai, China S.Venkataraman et al.

this observation, we propose reusing scheduling decisions
across micro-batches. Reusing scheduling decisions means
that we can schedule tasks for multiple micro-batches (or a
group) at once (Figure 2) and thus amortize the centralized
scheduling overheads. To see how this can help, consider a
streaming job used to compute moving averages. Assuming
the data sources remain the same, the locality preferences
computed for every micro-batch will be same. If the cluster
configuration also remains static, the same worker to task map-
ping will be computed for every micro-batch. Thus we can
run scheduling algorithms once and reuse its decisions. Simi-
larly, we can reduce network overhead of RPCs by combining
tasks from multiple micro-batches into a single message.

When using group scheduling, one needs to be careful in
choosing how many micro-batches are scheduled at a time.
We discuss how the group size affects the performance and
adaptability properties in §3.3 and present techniques for
automatically choosing this size in §3.4.

3.2 Pre-Scheduling Shuffles
While the previous section described how we can eliminate
the barrier between micro-batches, as described in Section 2
(Figure 1), existing BSP systems also impose a barrier within
a micro-batch to coordinate data transfer for shuffle opera-
tions. We next discuss how we can eliminate these barriers as
well and thus eliminate all coordination within a group.

In a shuffle operation we have a set of upstream tasks (or
map tasks) that produce output and a set of downstream tasks
(or reduce tasks) that receive the outputs and run the reduc-
tion function. In existing BSP systems like Spark or Hadoop,
upstream tasks typically write their output to local disk and
notify the centralized driver of the allocation of output records
to the different reducers. The driver then applies task place-
ment techniques [19] to minimize network overheads and
creates downstream tasks that pull data from the upstream
tasks. Thus in this case the metadata is communicated through
the centralized driver and then following a barrier, the data
transfer happens using a pull based mechanism.

To remove this barrier, we pre-schedule downstream tasks
before the upstream tasks (Figure 3) in Drizzle. We perform
scheduling so downstream tasks are launched first; upstream
tasks are then scheduled with metadata that tells them which
machines running the downstream tasks need to be notified on
completion. Thus, data is directly transferred between work-
ers without any centralized coordination. This approach has
two benefits. First, it scales better with the number of workers
as it avoids centralized metadata management. Second, it re-
moves the barrier, where succeeding stages are launched only
when all the tasks in the preceding stage complete.

We implement pre-scheduling by adding a local scheduler
on each worker machine that manages pre-scheduled tasks.

When pre-scheduled tasks are first launched, these tasks are
marked as inactive and do not use any resources. The local
scheduler on the worker machine tracks the data dependen-
cies that need to be satisfied. When an upstream task finishes,
it materializes the output on local disk, notifies the corre-
sponding downstream workers and asynchronously notifies
the centralized scheduler. The local scheduler at the down-
stream task then updates the list of outstanding dependencies.
When all the data dependencies for an inactive task have been
met, the local scheduler makes the task active and runs it.
When the task is run, it fetches the files materialized by the
upstream tasks and continues processing. Thus we implement
a push-metadata, pull-based data approach that minimizes the
time to trigger tasks while allowing the downstream tasks to
control when the data is transferred.

3.3 Adaptability in Drizzle
Group scheduling and shuffle pre-scheduling eliminate bar-
riers both within and across micro-batches and ensure that
barriers occur only once every group. However in doing so,
we incur overheads when adapting to changes and we dis-
cuss how this affects fault tolerance, elasticity and workload
changes below. This overhead largely does not affect record
processing latency, which continues to happen within a group.

Fault tolerance. Similar to existing BSP systems we cre-
ate synchronous checkpoints at regular intervals in Drizzle.
The checkpoints can be taken at the end of any micro-batch
and the end of a group of micro-batches presents one natural
boundary. We use heartbeats from the workers to the central-
ized scheduler to detect machine failures. Upon noticing a
failure, the scheduler resubmits tasks that were running on the
failed machines. By default these recovery tasks begin execu-
tion from the latest checkpoint available. As the computation
for each micro-batch is deterministic we further speed up the
recovery process with two techniques. First, recovery tasks
are executed in parallel [67] across many machines. Second,
we also reuse any intermediate data that was created by map
stages run in earlier micro-batches. This is implemented with
lineage tracking, a feature that is already present in existing
BSP systems.

Using pre-scheduling means that there are some additional
cases we need to handle during fault recovery in Drizzle. For
reduce tasks that are run on a new machine, the centralized
scheduler pre-populates the list of data dependencies that
have been completed before. This list is maintained based on
the asynchronous updates from upstream tasks. Similarly the
scheduler also updates the active upstream (map) tasks to send
outputs for succeeding micro-batches to the new machines.
In both cases, if the tasks encounter a failure in either sending
or fetching outputs they forward the failure to the centralized

Drizzle: Fast, Adaptable Stream Processing SOSP ’17, October 28, 2017, Shanghai, China

Task

Control Message

Data Message

Driver

(1) Driver assigns tasks in all
stages to workers, and tells each

task where to send output.

(3) Tasks asynchronously notify driver
they have completed (not shown)

(2) When tasks complete, they notify
output locations that data is ready

(4) Tasks in next stage begin
fetching input data

Figure 3: Using pre-scheduling, execution of a micro-batch that has two stages: the first with 4 tasks; the next with 2 tasks. The driver
launches all stages at the beginning (with information about where output data should be sent to) so that executors can exchange data
without contacting the driver.

scheduler. Thus we find having a centralized scheduler sim-
plifies design and helps ensure that there is a single source
that workers can rely on to make progress.

Elasticity. In addition to handling nodes being removed,
we can also handle nodes being added to improve perfor-
mance. To do this we integrate with existing cluster managers
such as YARN [7] and Mesos [32] and the application layer
can choose policies [20] on when to request or relinquish re-
sources. At the end of a group boundary, Drizzle updates the
list of available resources and adjusts the tasks to be scheduled
for the next group. Thus in this case, using a larger group size
could lead to larger delays in responding to cluster changes.

3.4 Automatically selecting group size
Intuitively, the group size controls the performance to co-
ordination trade-off in Drizzle. The total runtime of the job
can be split between time spent in coordination and time
spent in data-processing. In the absence of failures, the job’s
running time is minimized by avoiding coordination , while
more frequent coordination enables better adaptability. These
two objectives are thus at odds with each other. In Drizzle,
we explore the tradeoff between these objectives by bounding
coordination overheads while maximizing adaptability. Thus,
we aim to choose a group size that is the smallest possible
while having a fixed bound on coordination overheads.

We implement an adaptive group-size tuning algorithm
that is inspired by TCP congestion control [12]. During the
execution of a group we use counters to track the amount of
time spent in various parts of the system. Using these counters
we are then able to determine what fraction of the end-to-end
execution time was spent in scheduling and other coordination
vs. time spent on the workers executing tasks. The ratio of
time spent in scheduling to the overall execution gives us the
scheduling overhead and we aim to maintain this overhead
within user specified lower and upper bounds.

When the overhead goes above the upper bound, we multi-
plicatively increase the group size to ensure that the overhead
decreases rapidly. Once the overhead goes below the lower
bound, we additively decrease the group size to improve

Aggregate Percentage of Queries
Count 60.55

First/Last 25.9
Sum/Min/Max 8.640

User Defined Function 0.002
Other 4.908

Table 2: Breakdown of aggregations used in a workload con-
taining over 900,000 SQL and streaming queries.

adaptivity. This is analogous to applying AIMD policy to de-
termine the coordination frequency for a job. AIMD is widely
used in TCP, and has been shown to provably converge in
general [36]. We use exponentially averaged scheduling over-
head measurements when tuning group size. This ensures that
we are stable despite transient latency spikes from garbage
collection and other similar events.

The adaptive group-size tuning algorithms presents a sim-
ple approach that handles the most common scenarios we
find in large scale deployments. However the scheme requires
users to provide upper and lower bounds for the coordination
overhead and these bounds could be hard to determine in a
new execution environment. In the future we plan to study
techniques that can measure various aspects of the environ-
ment to automatically determine the scheduling efficiency.

3.5 Data-plane Optimizations
The previous sections describe the design of the control-plane
used in Drizzle, next we describe data plane optimizations
enabled by Drizzle. To show the practical importance of batch-
ing in the data plane, we start by analyzing the query workload
for a popular cloud hosted data analytics provider. We use
this analysis to motivate the need for efficient support for
aggregations and describe how batching can provide better
throughput and latency for such workloads.
Workload analysis. We analyze over 900,000 SQL queries
and streaming queries executed on a popular cloud-based
data analytics platform. These queries were executed by
different users on a variety of data sets. We parsed these
queries to determine the set of frequently used operators:

SOSP ’17, October 28, 2017, Shanghai, China S.Venkataraman et al.

we found that around 25% of queries used one or more
aggregation functions. While our dataset did not explicitly
distinguish between streaming and ad-hoc SQL queries, we
believe that streaming queries which update dashboards
naturally require aggregations across time. This platform
supports two kinds of aggregation functions: aggregations
that can use partial merge operations (e.g., sum) where
the merge operation can be distributed across workers and
complete aggregations (e.g., median) which require data to
be collected and processed on a single machine. We found
that over 95% of aggregation queries only made use of
aggregates supporting partial merges. A complete breakdown
is shown in Table 2. In summary, our analysis shows
that supporting efficient computation of partial aggregates
like count, sum is important for achieving good performance.

Optimization within a batch. In order to support aggregates
efficiently, batching the computation of aggregates can
provide significant performance benefits. These benefits
come from two sources: using vectorized operations on
CPUs [10] and by minimizing network traffic from partial
merge operations [8]. For example to compute a count of
how many ad-clicks were generated for each publisher, we
can aggregate the counts per publisher on each machine
during a map and combine them during the reduce phase.
We incorporate optimizations within a batch in Drizzle and
measure the benefits from this in Section §5.4.

Optimization across batches and queries. Using Drizzle’s
architecture also enables optimizations across batches. This is
typically useful in case the query plan needs to be changed due
to changes in the data distribution. To enable such optimiza-
tions, during every micro-batch, a number of metrics about
the execution are collected. These metrics are aggregated at
the end of a group and passed on to a query optimizer [8, 47]
to determine if an alternate query plan would perform better.
Finally, a micro-batch based architecture also enables reuse
of intermediate results across streaming queries. This could
be useful in scenarios where a number of streaming queries
are run on the same dataset and we plan to investigate the
benefits from this in the future.

3.6 Discussion
We next discuss other design approaches to group scheduling
and extensions to pre-scheduling that can further improve
performance.
Other design approaches. An alternative design approach
we considered was to treat the existing scheduler in BSP
systems as a black-box and pipeline scheduling of one micro-
batch with task execution of the previous micro-batch. That
is, while the first micro-batch executes, the centralized driver

schedules one or more of the succeeding micro-batches. With
pipelined scheduling, if the execution time for a micro-batch
is texec and scheduling overhead is tsched , then the overall
running time for b micro-batches is b⇥maxtexec, tsched . The
baseline would take b⇥ texec + tsched . We found that this ap-
proach is insufficient for larger cluster sizes, where the value
of tsched can be greater than texec.

Another design approach we considered was to model
task scheduling as leases [30] that could be revoked if the
centralized scheduler wished to make any changes to the
execution plan. By adjusting the lease duration we can
similarly control the coordination overheads. However
using this approach would require reimplementing the
task-based execution model used by BSP-style systems and
we found that group scheduling offered similar behavior
while providing easier integration with existing systems.

Improving Pre-Scheduling. While using pre-scheduling
in Drizzle, the reduce tasks usually need to wait for a
notification from all upstream map tasks before starting
execution. We can reduce the number of inputs a task waits
for if we have sufficient semantic information to determine
the communication structure for a stage. For example, if
we are aggregating information using binary tree reduction,
each reduce task only requires the output from two map
tasks run in the previous stage. In general inferring the
communication structure of the DAG that is going to be
generated is a hard problem because of user-defined map and
hash partitioning functions. For some high-level operators
like treeReduce or broadcast the DAG structure is
predictable. We have implemented support for using the DAG
structure for treeReduce in Drizzle and plan to investigate
other operations in the future.

Quality of Scheduling. Using group and pre-scheduling re-
quires some minor modifications to the scheduling algorithm
used by the underlying systems. The main effect this intro-
duces for scheduling quality is that the scheduler’s decision
algorithm is only executed once for each group of tasks. This
coarser scheduling granularity can impact algorithms like fair
sharing, but this impact is bounded by the size of a group,
which in our experience is limited to a few seconds at most.
Further, while using pre-scheduling, the scheduler is unaware
of the size of the data produced from the upstream tasks
and thus techniques to optimize data transfer [19] cannot be
applied. Similarly database-style optimizations that perform
dynamic rebalancing [39] of tasks usually depend on data
statistics and cannot be used within a group. However for
streaming applications we see that the data characteristics
change over the course of seconds to minutes and thus we can
still apply these techniques using previously collected data.

Drizzle: Fast, Adaptable Stream Processing SOSP ’17, October 28, 2017, Shanghai, China

4 IMPLEMENTATION
We have implemented Drizzle by extending Apache Spark
2.0.0. Our implementation required around 4000 lines of
Scala code changes to the Spark scheduler and execution en-
gine. We next describe some of the additional performance
improvements we made in our implementation and also de-
scribe how we integrated Drizzle with Spark Streaming.
Spark Improvements. The existing Spark scheduler imple-
mentation uses two threads: one to compute the stage depen-
dencies and locality preferences, and the other to manage task
queuing, serializing, and launching tasks on executors. We
observed that when several stages are pre-scheduled together,
task serialization and launch is often a bottleneck. In our im-
plementation we separated serializing and launching tasks
to a dedicated thread and optionally use multiple threads if
there are many stages that can be scheduled in parallel. We
also optimized locality lookup for pre-scheduled tasks and
these optimizations help reduce the overheads when schedul-
ing many stages in advance. However there are other sources
of performance improvements we have not yet implemented
in Drizzle. For example, while iterative jobs often share the
same closure across iterations we do not amortize the closure
serialization across iterations. This requires analysis of the
Scala byte code that is part of the closure and we plan to
explore this in the future.
Spark Streaming. The Spark Streaming architecture con-
sists of a JobGenerator that creates a Spark RDD and a
closure that operates on the RDD when processing a micro-
batch. Every micro-batch in Spark Streaming is associated
with an execution timestamp and therefore each generated
RDD has an associated timestamp. In Drizzle, we extend the
JobGenerator to submit a number of RDDs at the same
time, where each generated RDD has its appropriate times-
tamp. For example, when Drizzle is configured to use group
size of 3, and the starting timestamp is t, we would generate
RDDs with timestamps t, t + 1 and t + 2. One of the chal-
lenges in this case lies in how to handle input sources like
Kafka [40], HDFS etc. In the existing Spark architecture, the
metadata management of which keys or files to process in
a micro-batch is done by the centralized driver. To handle
this without centralized coordination, we modified the input
sources to compute the metadata on the workers as a part of
the tasks that read input. Finally, we note these changes are
restricted to the Spark Streaming implementation and user
applications do not need modification to work with Drizzle.

5 EVALUATION
We next evaluate the performance of Drizzle. First, we use a
series of microbenchmarks to measure the scheduling perfor-
mance of Drizzle and breakdown the time taken at each step
in the scheduler. Next we measure the impact of using Drizzle

with an industrial streaming benchmark [63]. We compare
Drizzle to Apache Spark, a BSP style-system and Apache
Flink, a continuous operator stream processing system. Fi-
nally, we evaluate the adaptability of Drizzle to a number of
scenarios including failures, elastic scaling and also evaluate
the efficacy of our group size tuning algorithm.

Our evaluation shows that
• On microbenchmarks, we find that group scheduling

and pre-scheduling are effective at reducing coordina-
tion overheads by up to 5.5x.

• Using optimizations within a micro-batch, Drizzle is
able to achieve less than 100ms latency on the Yahoo
Streaming benchmark and is up to 3x faster than Flink
and Spark.

• Drizzle recovers from failures around 4x faster than
Flink and has up to 13x lower latency during recovery.

5.1 Setup
We ran our experiments on 128 r3.xlarge instances in Ama-
zon EC2. Each machine has 4 cores, 30.5 GB of memory and
80 GB of SSD storage. We configured Drizzle to use 4 slots
for executing tasks on each machine. For all our experiments
we warm up the JVM before taking measurements. We use
Apache Spark v2.0.0 and Apache Flink v1.1.1 as baselines
for our experiments. All three systems are run on the JVM
and in our evaluation we use the same JVM heap size and
garbage collection flags across all of them.

5.2 Micro benchmarks
In this section we present micro-benchmarks that evaluate
the benefits of group scheduling and pre-scheduling. We run
ten trials for each of our micro-benchmarks and report the
median, 5th and 95th percentiles.

5.2.1 Group Scheduling. We first evaluate the benefits
of group scheduling in Drizzle, and its impact in reducing
scheduling overheads with growing cluster size. We use a
weak scaling experiment where the amount of computation
per task is fixed but the size of the cluster (and hence number
of tasks) grow. For this experiment, we set the number of tasks
to be equal to the number of cores in the cluster. In an ideal
parallel system the total time taken should remain constant.
We use a simple workload where each task computes the
sum of random numbers and the computation time for each
micro-batch is less than 1ms. Note that there are no shuffle
operations in this benchmark. We measure the average time
taken per micro-batch while running 100 micro-batches and
we scale the cluster size from 4–128 machines.

As discussed in §2, we see that (Figure 4(a)) in Spark task
scheduling overheads grow as we increase cluster and are
around 200ms when using 128 machines. Drizzle is able to

SOSP ’17, October 28, 2017, Shanghai, China S.Venkataraman et al.

4 8 16 32 64 128

Ti
m

e
/ m

ic
ro
−b

at
ch

 (m
s)

1

10

100

1000

4 8 16 32 64 128

Ti
m

e
/ m

ic
ro
−b

at
ch

 (m
s) Spark

Drizzle, Group=25
Drizzle, Group=50
Drizzle, Group=100

Machines

(a) Time taken for a single stage job with 100 micro-batches while
varying the group size. We see that with group size of 100, Drizzle
takes less than 5ms per micro-batch.

SchedulerDelay Task Transfer Compute

Ti
m

e(
m

s)

0.1

1.0

10.0

100.0

1000.0
Spark
Drizzle, Group=25
Drizzle, Group=50
Drizzle, Group=100

(b) Breakdown of time taken by a task in the single stage micro-
benchmark when using 128 machines. We see that Drizzle can lower
the scheduling overheads.

Figure 4: Micro-benchmarks for performance improvements from group scheduling

4 8 16 32 64 128

Ti
m

e
/ i

te
ra

tio
n

(m
s)

1

10

100

1000

4 8 16 32 64 128

Ti
m

e
/ i

te
ra

tio
n

(m
s)

Spark
Drizzle, Group=25
Drizzle, Group=50
Drizzle, Group=100

Machines

(a) Time taken for a single stage job with 100x more data while run-
ning 100 micro-batches and varying the group size. We see that with
group size greater than 25, the benefits diminish.

4 8 16 32 64 128

Ti
m

e
/ m

ic
ro
−b

at
ch

 (m
s)

0

100

200

300

400

4 8 16 32 64 128

Ti
m

e
/ m

ic
ro
−b

at
ch

 (m
s)

0

100

200

300

400
Spark
Only Pre−Scheduling
Pre−Scheduling, Group=10
Pre−Scheduling, Group=100

Machines

(b) Time taken per micro-batch for a streaming job with shuffles. We
break down the gains between pre-scheduling and group scheduling.

Figure 5: Micro-benchmarks for performance improvements from group scheduling and pre-scheduling

amortize these overheads leading to a 7�46⇥ speedup across
cluster sizes. With a group size of 100 and a cluster of 128
machines, Drizzle’s scheduler overheads are less than 5ms
compared to around 195ms for Spark.

We provide a breakdown of the source of these improve-
ments in Figure 4(b). We do so by analyzing the average time
taken by each task for scheduling, task transfer (including
serialization, deserialization, and network transfer of the task)
and computation. We find that when this benchmark is run
on Spark, scheduling and task transfer times dominate, while
Drizzle is able to amortize both of these operations using
group scheduling.

However the benefits for a workload also depends on the
amount of computation being performed in each iteration. To
measure this effect we increased the amount of data in each
partition by 100x and results are shown in Figure 5(a). In this
case, using a group size of 25 captures most of the benefits

and as the running time is dominated by computation we see
no additional benefits from larger group sizes.

5.2.2 Pre-Scheduling Shuffles. To measure benefits
from pre-scheduling we use the same setup as in the previ-
ous subsection but add a shuffle stage to every micro-batch
with 16 reduce tasks. We compare the time taken per micro-
batch while running 100 micro-batches in Figure 5(b). Drizzle
achieves between 2.7x to 5.5x speedup over Spark as we vary
cluster size.

Figure 5(b) also shows the benefits of just using pre-
scheduling (i.e., group size = 1). In this case, we still have
barriers between the micro-batches and only eliminate barri-
ers within a single micro-batch. We see that the benefits from
just pre-scheduling are limited to only 20ms when using 128
machines. However for group scheduling to be effective we
need to pre-schedule all of the tasks in the DAG and thus
pre-scheduling is essential.

Drizzle: Fast, Adaptable Stream Processing SOSP ’17, October 28, 2017, Shanghai, China

0 500 1000 1500 2000 2500

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

20M events/sec, without optimization

Final Event Latency (ms)

Drizzle
Flink
Spark

(a) CDF of event processing latencies when using groupBy operations
in the micro-batch model. Drizzle matches the latencies of Flink and is
around 3.6x faster than Spark.

(b) Maximum throughput achievable at a given latency target by Driz-
zle, Spark and Flink. Spark is unable to sustain latency of 250ms while
Drizzle and Flink achieve similar throughput.

Figure 6: Latency and throughput comparison of Drizzle with Spark and Flink on the Yahoo Streaming benchmark.

1

10

100

1000

10000

100000

150 200 250 300 350

La
te

nc
y

(m
s)

Time (seconds)

Drizzle
Spark
Flink

Figure 7: Event Latency for the Yahoo Streaming Benchmark
when handling failures. At 240 seconds, we kill one machine
in the cluster. Drizzle has lower latency during recovery and
recovers faster.

Finally, we see that the time per micro-batch of the two-
stage job (45ms for 128 machines) is significantly higher
than the time per micro-batch of the one-stage job in the
previous section (5 ms). While part of this overhead is from
messages used to trigger the reduce tasks, we also observe
that the time to fetch and process the shuffle data in the re-
duce task grows as the number of map tasks increase. To
reduce this overhead, we plan to investigate techniques that
reduce connection initialization time and improve data serial-
ization/deserialization [44].

5.3 Streaming workloads
We demonstrate Drizzle’s benefits for streaming applications
using the Yahoo! streaming benchmark [63] which mimics
running analytics on a stream of ad-impressions. A producer
inserts JSON records into a stream. The benchmark then
groups events into 10-second windows per ad-campaign and
measures how long it takes for all events in the window to be
processed after the window has ended. For example if a win-
dow ended at time a and the last event from the window was
processed at time b, the processing latency for this window is
said to be b�a.

When implemented using the micro-batch model in Spark
and Drizzle, this workload consists of two stages per micro-
batch: a map-stage that reads the input JSONs and buckets
events into a window and a reduce stage that aggregates events

in the same window. For the Flink implementation we use the
optimized version [21] which creates windows in Flink using
the event timestamp that is present in the JSON. Similar to
the micro-batch model we have two operators here, a map
operator that parses events and a window operator that collects
events from the same window and triggers an update every
10 seconds.

For our evaluation, we created an input stream that inserts
JSON events and measure the event processing latency. We
use the first five minutes to warm up the system and report
results from the next five minutes of execution. We tuned
each system to minimize latency while meeting throughput
requirements. In Spark this required tuning the micro-batch
size, while in Flink we tuned the buffer flush duration.

Latency. The CDF of processing latencies for 20M
events/second on 128 machines is shown in Figure 6(a). We
see Drizzle is able to achieve a median latency of around
350ms and matches the latency achieved by Flink, a contin-
uous operator streaming system. We also verified that the
latency we get from Flink match previously reported num-
bers [21, 63] on the same benchmark. We also see that by re-
ducing scheduling overheads, Drizzle gets around 3.6x lower
median latency than Spark.

We next analyze how latency improvements change across
workloads. To do this we run a video streaming analytics
benchmark which processes heartbeats sent by video stream-
ing clients. The heartbeats are structured as JSON events and
contain metadata about the clients, and the type of event being
recorded. The heartbeats are grouped together by their session
identifier and, and the application uses all the heartbeats for
a session, to updates the session summary for each session.
This session summary is used by other applications to power
dashboards and CDN predictions as described in Section 2.

We show a comparison of Drizzle on both the Yahoo bench-
mark and the video streaming benchmark in Figure 9. From
the figure we see that Drizzle has a similar median latency of
around 400ms for this workload but that the 95th percentile
latency goes to around 780ms from 480ms. The main reason

SOSP ’17, October 28, 2017, Shanghai, China S.Venkataraman et al.

0 100 200 300 400 500 600

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

20M events/sec, with optimization

Final Event Latency (ms)

Drizzle
Flink
Spark

(a) CDF of event processing latencies when using micro-batch optimiza-
tions with the Yahoo Streaming Benchmark. Drizzle is 2x faster than
Spark and 3x faster than Flink.

(b) Maximum throughput achievable at a given latency target by Driz-
zle, Spark and Flink when using micro-batch optimizations. Spark and
Flink fail to meet the 100ms latency target and Drizzle’s throughput in-
creases by 2–3x by optimizing execution within a micro-batch.

Figure 8: Effect of micro-batch optimization in Drizzle in terms of latency and throughput.

0 200 400 600 800 1000

0.0
0.2
0.4
0.6
0.8
1.0

Final Event Latency (ms)

CD
F

Comparing Drizzle across workloads

Drizzle−Yahoo
Drizzle−Video

Figure 9: Comparing Drizzle across the Yahoo Streaming
Benchmark and a video streaming workload.

for this is that the heartbeats used in video analytics are big-
ger in size when compared to the ad-campaign events in the
Yahoo benchmark and hence the workload involves more data
being shuffled. Further the workload also has some inherent
skew where some sessions have more events when compared
to others. This workload skew results in the 95th percentile
latency being much higher than the Yahoo benchmark.

Throughput. We next compare the maximum throughput
that can be achieved given a latency target. We use the Yahoo
Streaming benchmark for this and for Spark and Drizzle we
set the latency target by adjusting the micro-batch size and
measure the maximum throughput that can be sustained in
a stable fashion. For continuous operator systems like Flink
there is no direct way to configure a latency target. Thus, we
measure the latency achieved as we increase the throughput
and report the maximum throughput achieved within our la-
tency bound. The results from this experiment are shown in
Figure 6(b). From the figure we can see that while Spark
crashes at very low latency target of 250ms, Drizzle and Flink
both get around 20M events/s. At higher latency targets we
find that Drizzle gets 1.5-3x more throughput than Spark and
that this number reduces as the latency target grows. This
is because the overheads from scheduling become less im-
portant at higher latency targets and thus the benefits from
Drizzle become less relevant.

Fault Tolerance. We use the same Yahoo streaming bench-
mark as above and benchmark the fault tolerance properties
of all three systems. In this experiment we kill one machine in
the cluster after 240 seconds and measure the event process-
ing latency as before. Figure 7 shows the latency measured
for each window across time. We plot the mean and standard
deviation from five runs for each system. We see that using
the micro-batch model in Spark has good relative adaptivity
where the latency during failure is around 3x normal process-
ing latency and that only 1 window is affected. Drizzle has
similar behavior where the latency during failure increases
from around 350ms to around 1s. Similar to Spark, Drizzle’s
latency also returns to normal after one window.

On the other hand Flink experiences severe slowdown dur-
ing failure and the latency spikes to around 18s. Most of this
slow down is due to the additional coordination required to
stop and restart all the operators in the topology and to restore
execution from the latest checkpoint. We also see that having
such a huge delay means that the system is unable to catch
up with the input stream and that it takes around 40s (or 4
windows) before latency returns to normal range.

5.4 Micro-batch Optimizations
As discussed in §3.5, one of the advantages of using the
micro-batch model for streaming is that it enables additional
optimizations to be used within a batch. In the case of the
Yahoo streaming benchmark, as the output only requires the
number of events in a window we can reduce the amount of
data shuffled by aggregating counters for each window on
the map side. We implemented this optimization in Drizzle
and Spark by using the reduceBy operator instead of the
groupBy operator and study the latency, throughput improve-
ments bought about by this change.

Latency. Figure 8(a) shows the CDF of the processing
latency when the optimization is enabled. Since Flink creates
windows after the keys are partitioned, we could not directly
apply the same optimization. In this case we see that using

Drizzle: Fast, Adaptable Stream Processing SOSP ’17, October 28, 2017, Shanghai, China

1
10
100
1000
10000
100000

150 200 250 300 350

Ev
en

t L
at

en
cy

 (m
s)

Time (seconds)

Group=10 Group=50 Group=100 Group=300

(a) Event Latency for the Yahoo Streaming Benchmark when handling
failures. At 240 seconds, we kill one machine in the cluster and we see
that having a smaller group allows us to react faster to this.

0
50
100
150
200

150 200 250 300 350

La
te

nc
y

(m
s)

Time (seconds)

Group=50 Group=100 Group=300 Group=600

(b) Average time taken per micro-batch as we change the number of
machines used. At 240 seconds, we increase the number of machines
from 64 to 128. Having a smaller group allows us to react faster to this.

Figure 10: Effect of varying group size in Drizzle.

optimization leads to Drizzle getting around 94ms median
latency and is 2x faster than Spark and 3x faster than Flink.

Throughput. Similarly we again measure the maximum
throughput that can be achieved given a latency target in
Figure 8(b). We see that using optimization within a batch
can lead to significant wins in throughput as well. Drizzle
is able to sustain around 35M events/second with a 100ms
latency target, a target that both Spark and Flink are unable to
meet for different reasons: Spark due to scheduling overheads
and Flink due to lack of batch optimizations. Similar to the
previous comparison we see that the benefits from Drizzle be-
come less pronounced at larger latency targets and that given
a 1s target both Spark and Drizzle achieve similar throughput
of 100M events/second. We use the optimized version for
Drizzle and Spark in the following sections of the evaluation.

In summary, we find that by combining the batch-oriented
data processing with the coarse grained scheduling in Drizzle
we are able to achieve better performance than existing BSP
systems like Spark and continuous operator systems like Flink.
We also see that Drizzle also recovers faster from failures
when compared to Flink and maintains low latency during
recovery.

5.5 Adaptivity in Drizzle
We next evaluate the importance of group size in Drizzle
and specifically how it affects adapativity in terms of fault
tolerance and elasticity. Following that we show how our
auto-tuning algorithm can find the optimal group size.

5.5.1 Fault tolerance with Group Scheduling. To mea-
sure the importance of group size for fault recovery in Drizzle,
we use the same Yahoo workload as the previous section and
we vary the group size. In this experiment we create check-
points at the end of every group. We measure processing
latency across windows and the median processing latency
from five runs is shown in Figure 10(a).

We can see that using a larger group size can lead to higher
latencies and longer recovery times. This is primarily because
of two reasons. First, since we only create checkpoints at

the end of every group having a larger group size means
that more records would need to be replayed. Further, when
machines fail pre-scheduled tasks need to be updated in order
to reflect the new task locations and this process takes longer
when there are larger number of tasks. In the future we plan
to investigate if checkpoint intervals can be decoupled from
group and better treatment of failures in pre-scheduling.

5.5.2 Handling Elasticity. To measure how Drizzle en-
ables elasticity we consider a scenario where we start with the
Yahoo Streaming benchmark but only use 64 machines in the
cluster. We add 64 machines to the cluster after 4 minutes and
measure how long it takes for the system to react and use the
new machines. To measure elasticity we monitor the average
latency to execute a micro-batch and results from varying the
group size are shown in Figure 10(b).

We see that using a larger group size can delay the time
taken to adapt to cluster changes. In this case, using a group
size of 50 the latency drops from 150ms to 100ms within 10
seconds. On the other hand, using group size of 600 takes
100 seconds to react. Finally, as seen in the figure, elasticity
can also lead to some performance degradation when the new
machines are first used. This is because some of the input data
needs to be moved from machines that were being used to the
new machines.

5.5.3 Group Size Tuning. To evaluate our group size
tuning algorithm, we use the same Yahoo streaming bench-
mark but change the micro-batch size. Intuitively the schedul-
ing overheads are inversely proportional to the micro-batch
size, as small micro-batches imply there are more tasks to
schedule. We run the experiment with the scheduling over-
head target of 5% to 10% and start with a group size of 2. The
progress of the tuning algorithm is shown in Figure 11 for
micro-batch size of 100ms and 250ms.

We see that for a smaller micro-batch the overheads are
high initially with the small group size and hence the al-
gorithm increases the group size to 64. Following that as
the overhead goes below 5% the group size is additively de-
creased to 49. In the case of the 250ms micro-batch we see

SOSP ’17, October 28, 2017, Shanghai, China S.Venkataraman et al.

G
roupSize

O
verhead

0 50 100 150 200

0
20
40
60

0
25
50
75

Time

MicroBatch 100ms 250ms
Figure 11: Behavior of group size auto tuning with the Yahoo
Streaming benchmark when using two different micro-batch
sizes. The optimal group size is lower for the larger micro-
batch.

that a group size of 8 is good enough to maintain a low sched-
uling overhead.

6 RELATED WORK
Stream Processing. Stream processing on a single machine
has been studied by database systems including Aurora [1]
and TelegraphCQ [17]. As the input event rate for many
data streams is high, recent work has looked at large-scale,
distributed stream processing frameworks, e.g., Spark
Streaming [67], Storm [57], Flink [54], Google Dataflow [3],
etc., to scale stream processing across a cluster. In addition to
distributed checkpointing, recent work on StreamScope [42]
has proposed using reliable vertices and reliable channels
for fault tolerance. In Drizzle, we focus on re-using existing
fault tolerance semantics from BSP systems and improving
performance to achieve low latency.

BSP Performance. Recent work including Nimbus [43] and
Thrill [9] has focused on implementing high-performance
BSP systems. Both systems claim that the choice of runtime
(i.e., JVM) has a major effect on performance, and choose
to implement their execution engines in C++. Furthermore,
Nimbus similar to our work finds that the scheduler is a
bottleneck for iterative jobs and uses scheduling templates.
However, during execution Nimbus uses mutable state and
focuses on HPC applications while we focus on improving
adaptivity by using deterministic micro-batches for streaming
jobs in Drizzle. On the other hand Thrill focuses on query
optimization in the data plane; our work is therefore
orthogonal to Thrill.

Cluster Scheduling. Systems like Borg [61], YARN [7] and
Mesos [32] schedule jobs from different frameworks and
implement resource sharing policies [28]. Prior work [51] has
also identified the benefits of shorter task durations and this
has led to the development of distributed job schedulers such
as Sparrow [52], Apollo [11], etc. These frameworks assume
that the jobs are independent of each other and hence perform
distributed scheduling across jobs. In Drizzle, we target micro-
batch streaming jobs where there are dependencies between

batches and thus a single streaming job cannot be easily split
across distributed schedulers.

To improve performance within a job, techniques for im-
proving data locality [5, 66], mitigating stragglers [6, 62],
re-optimizing queries [39] and accelerating network trans-
fers [19, 31] have been proposed. In Drizzle we study how
we can use these techniques for streaming jobs without incur-
ring significant overheads. Prior work [60] has also looked
at the benefits of removing the barrier across shuffle stages
to improve performance. In addition to removing the barrier,
pre-scheduling in Drizzle also helps remove the centralized
co-ordination for data transfers. Finally, Ciel [49] proposed
a data flow framework that can distribute execution based
on data-dependent decisions. In contrast, we exploit the pre-
dictable structure of streaming queries in Drizzle to reduce
scheduling overheads.

7 CONCLUSION AND FUTURE WORK
In this paper we presented techniques to optimize schedul-
ing and other control plane operations for stream processing
workloads, and showed that these techniques enable low la-
tency, high throughput and adaptability. In the future we plan
to investigate additional techniques that can be used to im-
prove the performance of the data plane including the use of
compute accelerators or specialized network hardware [25]
for low latency RPCs. We also plan to extend Drizzle and
integrate it with other execution engines (e.g., Impala, Green-
plum) and thus develop an architecture for general purpose
low latency scheduling.

While we have focused on stream processing in this pa-
per, other workloads including iterative machine learning
algorithms [53] can also also benefit from the control plane
optimizations in Drizzle. In the future we plan to study how
we can support low latency iterative algorithms and how pa-
rameter servers can be effectively integrated.

Big data stream processing systems have positioned them-
selves as either BSP or continuous operators. In Drizzle, we
present a new design that decouples the data processing from
the fault tolerance, adaptability and show that we can develop
a streaming system that combines the best features from both
models. This allows Drizzle to achieve high throughput with
very low latency not only during normal operation, but also
during adaptation.
Acknowledgements: We would like to thank the anonymous
reviewers and our shepherd, Marco Serafini, for their insight-
ful comments that improved this paper. We would also like
to thank Ganesh Ananthanarayanan, Evan Sparks and Matei
Zaharia for their feedback on earlier drafts of this paper. We
also thank Jibin Zhan and Yan Li for discussions on video ana-
lytics applications. This research is supported in part by DHS
Award HSHQDC-16-3-00083, NSF CISE Expeditions Award

Drizzle: Fast, Adaptable Stream Processing SOSP ’17, October 28, 2017, Shanghai, China

CCF-1139158, and gifts from Ant Financial, Amazon Web
Services, CapitalOne, Ericsson, GE, Google, Huawei, Intel,
IBM, Microsoft and VMware. BR is generously supported by
ONR award N00014-17-1-2401, NSF award CCF-1359814,
ONR awards N00014-14-1-0024 and N00014-17-1-2191, a
Sloan Research Fellowship, a Google Faculty Award, and
research grants from Amazon.

REFERENCES
[1] ABADI, D. J., CARNEY, D., ÇETINTEMEL, U., CHERNIACK, M.,

CONVEY, C., LEE, S., STONEBRAKER, M., TATBUL, N., AND
ZDONIK, S. Aurora: a new model and architecture for data stream
management. VLDB (2003).

[2] AKIDAU, T., BALIKOV, A., BEKIROGLU, K., CHERNYAK, S.,
HABERMAN, J., LAX, R., MCVEETY, S., MILLS, D., NORDSTROM,
P., AND WHITTLE, S. Millwheel: Fault-tolerant stream processing at
internet scale. In VLDB (2013), pp. 734–746.

[3] AKIDAU, T., BRADSHAW, R., CHAMBERS, C., CHERNYAK, S.,
FERNÃĄNDEZ-MOCTEZUMA, R. J., LAX, R., MCVEETY, S., MILLS,
D., PERRY, F., SCHMIDT, E., AND WHITTLE, S. The Dataflow Model:
A Practical Approach to Balancing Correctness, Latency, and Cost in
Massive-Scale, Unbounded, Out-of-Order Data Processing. VLDB
(2015), 1792–1803.

[4] ANANTHANARAYANAN, G., GHODSI, A., SHENKER, S., AND STO-
ICA, I. Effective straggler mitigation: Attack of the clones. In NSDI
(2013).

[5] ANANTHANARAYANAN, G., GHODSI, A., WANG, A., BORTHAKUR,
D., KANDULA, S., SHENKER, S., AND STOICA, I. Pacman: Coordi-
nated memory caching for parallel jobs. In NSDI (2012).

[6] ANANTHANARAYANAN, G., KANDULA, S., GREENBERG, A., STO-
ICA, I., LU, Y., SAHA, B., AND HARRIS, E. Reining in the outliers in
Map-Reduce clusters using Mantri. In OSDI (2010).

[7] Apache Hadoop NextGen MapReduce (YARN). Retrieved
9/24/2013, URL: http://hadoop.apache.org/docs/current/hadoop-yarn/
hadoop-yarn-site/YARN.html.

[8] ARMBRUST, M., XIN, R. S., LIAN, C., HUAI, Y., LIU, D., BRADLEY,
J. K., MENG, X., KAFTAN, T., FRANKLIN, M. J., GHODSI, A., ET AL.
Spark SQL: Relational data processing in Spark. In SIGMOD (2015).

[9] BINGMANN, T., AXTMANN, M., JÖBSTL, E., LAMM, S., NGUYEN,
H. C., NOE, A., SCHLAG, S., STUMPP, M., STURM, T., AND
SANDERS, P. Thrill: High-performance algorithmic distributed batch
data processing with c++. CoRR abs/1608.05634 (2016).

[10] BONCZ, P. A., ZUKOWSKI, M., AND NES, N. Monetdb/x100: Hyper-
pipelining query execution. In CIDR (2005), vol. 5, pp. 225–237.

[11] BOUTIN, E., EKANAYAKE, J., LIN, W., SHI, B., ZHOU, J., QIAN, Z.,
WU, M., AND ZHOU, L. Apollo: scalable and coordinated scheduling
for cloud-scale computing. In OSDI (2014).

[12] BRAKMO, L. S., AND PETERSON, L. L. TCP Vegas: End to End
congestion avoidance on a global Internet. IEEE Journal on Selected
Areas in Communications 13, 8 (Oct. 1995), 1465–1480.

[13] CARBONE, P., FÓRA, G., EWEN, S., HARIDI, S., AND TZOUMAS, K.
Lightweight asynchronous snapshots for distributed dataflows. CoRR
abs/1506.08603 (2015).

[14] CARBONE, P., KATSIFODIMOS, A., EWEN, S., MARKL, V., HARIDI,
S., AND TZOUMAS, K. Apache Flink: Stream and Batch Processing in
a Single Engine. IEEE Data Engineering Bulletin (2015).

[15] CHAIKEN, R., JENKINS, B., LARSON, P.-Å., RAMSEY, B., SHAKIB,
D., WEAVER, S., AND ZHOU, J. SCOPE: easy and efficient parallel
processing of massive data sets. VLDB (2008), 1265–1276.

[16] CHAMBERS, C., RANIWALA, A., PERRY, F., ADAMS, S., HENRY,

R., BRADSHAW, R., AND NATHAN. FlumeJava: Easy, Efficient Data-
Parallel Pipelines. In PLDI (2010).

[17] CHANDRASEKARAN, S., COOPER, O., DESHPANDE, A., FRANKLIN,
M. J., HELLERSTEIN, J. M., HONG, W., KRISHNAMURTHY, S.,
MADDEN, S. R., REISS, F., AND SHAH, M. A. TelegraphCQ: contin-
uous dataflow processing. In SIGMOD (2003), ACM.

[18] CHANDY, K. M., AND LAMPORT, L. Distributed snapshots: deter-
mining global states of distributed systems. ACM Transactions on
Computer Systems (TOCS) 3, 1 (1985), 63–75.

[19] CHOWDHURY, M., ZAHARIA, M., MA, J., JORDAN, M. I., AND
STOICA, I. Managing data transfers in computer clusters with orchestra.
In SIGCOMM (2011).

[20] DAS, T., ZHONG, Y., STOICA, I., AND SHENKER, S. Adaptive stream
processing using dynamic batch sizing. In SOCC (2014).

[21] Extending the Yahoo! Streaming Benchmark. http://data-artisans.com/
extending-the-yahoo-streaming-benchmark.

[22] Structured Streaming In Apache Spark: A new high-level
API for streaming. https://databricks.com/blog/2016/07/28/
structured-streaming-in-apache-spark.html.

[23] DATANAMI. Kafka Tops 1 Trillion Messages Per Day at LinkedIn.
https://goo.gl/cY7VOz.

[24] DEAN, J., AND GHEMAWAT, S. MapReduce: Simplified Data Process-
ing on Large Clusters. Communications of the ACM 51, 1 (2008).

[25] DRAGOJEVIĆ, A., NARAYANAN, D., NIGHTINGALE, E. B., REN-
ZELMANN, M., SHAMIS, A., BADAM, A., AND CASTRO, M. No
Compromises: Distributed Transactions with Consistency, Availability,
and Performance. In SOSP (2015).

[26] FLORATOU, A., AGRAWAL, A., GRAHAM, B., RAO, S., AND RA-
MASAMY, K. Dhalion: self-regulating stream processing in heron.
Proceedings of the VLDB Endowment 10, 12 (2017), 1825–1836.

[27] FORD, D., LABELLE, F., POPOVICI, F. I., STOKELY, M., TRUONG,
V.-A., BARROSO, L., GRIMES, C., AND QUINLAN, S. Availability in
globally distributed storage systems. In OSDI (2010), pp. 61–74.

[28] GHODSI, A., ZAHARIA, M., HINDMAN, B., KONWINSKI, A.,
SHENKER, S., AND STOICA, I. Dominant resource fairness: Fair
allocation of multiple resource types. In NSDI (2011).

[29] GRAEFE, G. Encapsulation of parallelism in the volcano query pro-
cessing system. In SIGMOD (1990), pp. 102–111.

[30] GRAY, C., AND CHERITON, D. Leases: An efficient fault-tolerant
mechanism for distributed file cache consistency. In SOSP (1989),
pp. 202–210.

[31] GROSVENOR, M. P., SCHWARZKOPF, M., GOG, I., WATSON, R.
N. M., MOORE, A. W., HAND, S., AND CROWCROFT, J. Queues
don’t matter when you can jump them! In NSDI (2015).

[32] HINDMAN, B., KONWINSKI, A., ZAHARIA, M., GHODSI, A.,
JOSEPH, A. D., KATZ, R., SHENKER, S., AND STOICA, I. Mesos: A
platform for fine-grained resource sharing in the data center. In NSDI
(2011).

[33] ISARD, M., AND ABADI, M. Falkirk wheel: Rollback recovery for
dataflow systems. arXiv preprint arXiv:1503.08877 (2015).

[34] ISARD, M., BUDIU, M., YU, Y., BIRRELL, A., AND FETTERLY,
D. Dryad: distributed data-parallel programs from sequential building
blocks. In Eurosys (2007).

[35] ISARD, M., PRABHAKARAN, V., CURREY, J., WIEDER, U., TALWAR,
K., AND GOLDBERG, A. Quincy: Fair scheduling for distributed
computing clusters. In SOSP (2009).

[36] JACOBSON, V. Congestion avoidance and control. ACM SIGCOMM
Computer Communication Review 18, 4 (1988), 314–329.

[37] JIANG, J., SEKAR, V., MILNER, H., SHEPHERD, D., STOICA, I.,
AND ZHANG, H. CFA: A Practical Prediction System for Video QoE
Optimization. In NSDI (2016), pp. 137–150.

[38] JOHNSTON, W. M., HANNA, J., AND MILLAR, R. J. Advances in

SOSP ’17, October 28, 2017, Shanghai, China S.Venkataraman et al.

dataflow programming languages. ACM Computing Surveys (CSUR)
36, 1 (2004), 1–34.

[39] KE, Q., ISARD, M., AND YU, Y. Optimus: a dynamic rewriting
framework for data-parallel execution plans. In Eurosys (2013), pp. 15–
28.

[40] KREPS, J., NARKHEDE, N., RAO, J., ET AL. Kafka: A distributed
messaging system for log processing. In NetDB (2011).

[41] KULKARNI, S., BHAGAT, N., FU, M., KEDIGEHALLI, V., KELLOGG,
C., MITTAL, S., PATEL, J. M., RAMASAMY, K., AND TANEJA, S.
Twitter heron: Stream processing at scale. In SIGMOD (2015), pp. 239–
250.

[42] LIN, W., QIAN, Z., XU, J., YANG, S., ZHOU, J., AND ZHOU, L.
Streamscope: continuous reliable distributed processing of big data
streams. In NSDI (2016), pp. 439–453.

[43] MASHAYEKHI, O., QU, H., SHAH, C., AND LEVIS, P. Scalable, fast
cloud computing with execution templates. CoRR abs/1606.01972
(2016).

[44] MCSHERRY, F., ISARD, M., AND MURRAY, D. G. Scalability! but
at what cost? In 15th Workshop on Hot Topics in Operating Systems
(HotOS XV) (2015).

[45] MEISNER, D., SADLER, C. M., BARROSO, L. A., WEBER, W.-D.,
AND WENISCH, T. F. Power management of online data-intensive
services. In ISCA (2011).

[46] SLA for Stream Analytics. https://azure.microsoft.com/en-us/support/
legal/sla/stream-analytics/v1_0/.

[47] MOTWANI, R., WIDOM, J., ARASU, A., BABCOCK, B., BABU,
S., DATAR, M., MANKU, G., OLSTON, C., ROSENSTEIN, J., AND
VARMA, R. Query processing, resource management, and approxima-
tion in a data stream management system. In CIDR (2003).

[48] MURRAY, D. G., MCSHERRY, F., ISAACS, R., ISARD, M., BARHAM,
P., AND ABADI, M. Naiad: a timely dataflow system. In SOSP (2013),
pp. 439–455.

[49] MURRAY, D. G., SCHWARZKOPF, M., SMOWTON, C., SMITH, S.,
MADHAVAPEDDY, A., AND HAND, S. Ciel: a universal execution
engine for distributed data-flow computing. In NSDI (2011), pp. 113–
126.

[50] Stream-processing with Mantis. http://techblog.netflix.com/2016/03/
stream-processing-with-mantis.html.

[51] OUSTERHOUT, K., PANDA, A., ROSEN, J., VENKATARAMAN, S.,
XIN, R., RATNASAMY, S., SHENKER, S., AND STOICA, I. The case
for tiny tasks in compute clusters. In HotOS (2013).

[52] OUSTERHOUT, K., WENDELL, P., ZAHARIA, M., AND STOICA, I.
Sparrow: distributed, low latency scheduling. In SOSP (2013), pp. 69–
84.

[53] RECHT, B., RE, C., WRIGHT, S., AND NIU, F. HOGWILD!: A lock-
free approach to parallelizing stochastic gradient descent. In Advances

in Neural Information Processing Systems (2011), pp. 693–701.
[54] SCHELTER, S., EWEN, S., TZOUMAS, K., AND MARKL, V. All

roads lead to rome: optimistic recovery for distributed iterative data
processing. In CIKM (2013).

[55] SELINGER, P. G., ASTRAHAN, M. M., CHAMBERLIN, D. D., LORIE,
R. A., AND PRICE, T. G. Access path selection in a relational database
management system. In SIGMOD (1979), pp. 23–34.

[56] STONEBRAKER, M., ÇETINTEMEL, U., AND ZDONIK, S. The 8
requirements of real-time stream processing. SIGMOD Record 34, 4
(Dec. 2005), 42–47.

[57] TOSHNIWAL, A., TANEJA, S., SHUKLA, A., RAMASAMY, K., PATEL,
J. M., KULKARNI, S., JACKSON, J., GADE, K., FU, M., DONHAM,
J., ET AL. Storm at twitter. In SIGMOD (2014).

[58] Observability at Twitter: technical overview. https://goo.gl/wAHi2I.
[59] Apache Spark, Preparing for the Next Wave of Reactive Big Data.

http://goo.gl/FqEh94.
[60] VERMA, A., CHO, B., ZEA, N., GUPTA, I., AND CAMPBELL, R. H.

Breaking the mapreduce stage barrier. Cluster computing 16, 1 (2013),
191–206.

[61] VERMA, A., PEDROSA, L., KORUPOLU, M., OPPENHEIMER, D.,
TUNE, E., AND WILKES, J. Large-scale cluster management at google
with borg. In Eurosys (2015).

[62] YADWADKAR, N. J., ANANTHANARAYANAN, G., AND KATZ, R.
Wrangler: Predictable and faster jobs using fewer resources. In SOCC
(2014).

[63] Benchmarking Streaming Computation Engines at Yahoo! https://
yahooeng.tumblr.com/post/135321837876.

[64] YU, Y., ISARD, M., FETTERLY, D., BUDIU, M., ERLINGSSON, Ú.,
GUNDA, P., AND CURREY, J. Dryadlinq: A system for general-purpose
distributed data-parallel computing using a high-level language. In
OSDI (2008).

[65] ZAHARIA, M., BORTHAKUR, D., SEN SARMA, J., ELMELEEGY, K.,
SHENKER, S., AND STOICA, I. Delay scheduling: A Simple Technique
for Achieving Locality and Fairness in Cluster Scheduling. In Eurosys
(2010).

[66] ZAHARIA, M., CHOWDHURY, M., DAS, T., DAVE, A., MA, J., MC-
CAULEY, M., FRANKLIN, M., SHENKER, S., AND STOICA, I. Re-
silient distributed datasets: A fault-tolerant abstraction for in-memory
cluster computing. In NSDI (2012).

[67] ZAHARIA, M., DAS, T., LI, H., HUNTER, T., SHENKER, S., AND
STOICA, I. Discretized streams: Fault-tolerant streaming computation
at scale. In SOSP (2013).

[68] ZHANG, T., CHOWDHERY, A., BAHL, P. V., JAMIESON, K., AND
BANERJEE, S. The design and implementation of a wireless video
surveillance system. In Proceedings of the 21st Annual Interna-
tional Conference on Mobile Computing and Networking (2015), ACM,
pp. 426–438.

