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ABSTRACT

Current post-mortem cyber-forensic techniques may cause
significant disruption to the evidence gathering process by
breaking active network connections and unmounting en-
crypted disks. Although newer live forensic analysis tools
can preserve active state, they may taint evidence by leav-
ing footprints in memory. To help address these concerns we
present Forenscope, a framework that allows an investigator
to examine the state of an active system without the effects
of taint or forensic blurriness caused by analyzing a run-
ning system. We show how Forenscope can fit into accepted
workflows to improve the evidence gathering process.
Forenscope preserves the state of the running system and
allows running processes, open files, encrypted filesystems
and open network sockets to persist during the analysis pro-
cess. Forenscope has been tested on live systems to show
that it does not operationally disrupt critical processes and
that it can perform an analysis in less than 15 seconds while
using only 125 KB of memory. We show that Forenscope
can detect stealth rootkits, neutralize threats and expedite
the investigation process by finding evidence in memory.
Keywords: forensics, introspection, memory remanence

1. INTRODUCTION

Current forensic tools are limited by their inability to pre-
serve the hardware and software state of a system during in-
vestigation. Post-mortem analysis tools require the investi-
gator to shut down the machine to inspect the contents of the
disk and identify artifacts of interest. This process breaks
network connections and unmounts encrypted disks causing
significant loss of potential evidence and possible disruption
of critical systems. In contrast, live forensic tools can allow
an investigator to inspect the state of a running machine
without disruption. However existing tools can overwrite
evidence present in memory or alter the contents of the disk
causing forensic taint which lowers the integrity of the evi-
dence. Furthermore, taking a snapshot of the system can re-
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sult in a phenomena known as forensic blurriness [26] where
an inconsistent snapshot is captured because the system is
running while it is being observed. Forensic blurriness af-
fects the fidelity and quantity of evidence acquired and can
cast doubt on the validity of the analysis, making the courts
more reluctant to accept such evidence [4].

Experts at the SANS institute and DOJ are starting to
recognize the importance of volatile memory as a source of
evidence to help combat cybercrime [1,3]. In response, the
SANS institute recently published a report on volatile mem-
ory analysis [7]. To help address the limitations of exist-
ing volatile memory analysis tools we present Forenscope, a
framework for live forensics, that can capture, analyze and
explore the state of a computer without disrupting the sys-
tem or tainting important evidence. Section 2 shows how
Forenscope can fit into accepted workflows to enhance the
evidence gathering process.

Forenscope leverages DRAM memory remanence to pre-
serve the running operating system across a "state-preserving
reboot”(Section 3) which recovers the existing OS without
having to go through the full boot-up process. This pro-
cess enables Forenscope to gain complete control over the
system and perform taint-free forensic analysis using well
grounded introspection techniques [22]. Finally, Forenscope
resumes the existing OS, preserving active network connec-
tions and disk encryption sessions causing minimal service
interruption in the process. Forenscope captures the con-
tents of system memory to a removable USB device and
activates a software write blocker to inhibit modifications
to the disk. To maintain fidelity, it operates exclusively in
125 KB of unused legacy conventional memory and does not
taint the contents of extended memory. Since Forenscope
preserves the state of a running machine, it is suitable for
use in production and critical infrastructure environments.
We have thoroughly tested and evaluated Forenscope on an
SEL-1102, a power substation industrial computer, and an
IBM desktop workstation. The machines were able to per-
form their duties under a variety of test conditions with
minimal interruption and running Forenscope did not cause
any network applications to time out or fail. Our current im-
plementation is based on Linux 2.6, although the technique
is also applicable to other major operating systems.

We have implemented several modules that can check for
the presence of malware, detect open network sockets and
locate evidence in memory such as rootkit modifications to
help the investigator identify suspicious activity.
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The contributions of this work include:

1. An extensible software framework for high-fidelity live
forensics conforming to the best practices of a legal frame-
work of evidence.

2. Efficient techniques to gather, snapshot and explore a sys-
tem without bringing it down.

3. Implementation and evaluation on several machines in-
cluding a standard industrial machine and against several
anti forensics rootkits.

This paper is organized as follows: Section 2 introduces
cyber-forensics followed by Section 3 which describes the de-
sign of Forenscope. We evaluate the effectiveness of Foren-
scope in Section 4. Section 5 discusses forensics issues, Sec-
tion 6 surveys related work and Section 7 concludes.

2. BACKGROUND

To provide an overview of the accepted legal framework
of evidence collection currently in place, we summarize the
workflow from the CERT guide on FBI investigation [10]:

1. Preserve the state of the computer by creating a backup
copy of logs and files left by the intruder.

2. If the incident is in progress, log activity.

3. Document the losses suffered by your organization.

4. Contact law enforcement.

While the steps executed are similar for various cases, there
are special requirements for each case. For instance, in
criminal investigation, integrity and fidelity of the data is
paramount. As evidence presented in court must be as ac-
curate as possible, special steps must be taken to ensure fi-
delity. For incident response, the goal is to detect and react
to security breaches while minimizing the intrusiveness of
the process. In some critical systems it is impractical to in-
terrupt the system to perform forensic analysis of a potential
breach and service level agreements (SLAs) may impose fi-
nancial penalties for downtime. The cases chosen above are
example of evidentiary requirements but a more thorough
analysis is beyond the scope of this paper. To preserve the fi-
delity of the original evidence, many forensic workflows cap-
ture a pristine image of the evidence and draw conclusions
based on analysis of the copy. Conventional post-mortem
forensic workflows perform this task by physically shutting
down a computer and copying the contents of the hard drive
for subsequent analysis. On the other hand, live forensics
are often desired for step 2 because they provide access to
networked resources such as active SSH and VPN sessions,
remote desktop connections, IM clients and file transfers.
However even state-of-the-art solutions often cannot image
a system with high fidelity and frequently introduce taint in
the process. In summary, existing tools require the investi-
gator to make a tradeoff between increased fidelity through
post mortem analysis or the potential to collect important
volatile information using live forensic tools at the cost of
tainting evidence.

One of the key issues in collecting volatile information is
that various forms of data such as CPU registers, memory,
disk and network connections have different lifetimes. To
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maximize evidence preservation, RFC 3227 [8] outlines the
order of volatility of these resources and dictates the order in
which evidence should be collected for investigation. Com-
mercial products currently used by forensic experts for inci-
dent response such as Encase, Helix, FTK Imager and Mem-
oryze ! etc, do not capture all forms of data. A comparison
of these products is presented in Table 1. Scalpel and Sleuth
kit are solely designed for disk analysis while other tools such
as Encase, Helix and FTK include some level of memory cap-
ture and analysis capability. Memoryze is the only tool listed
in the table that performs volatile memory analysis. Some
tools such as Helix, FTK and Memoryze can list the state of
open network sockets, but the underlying network connec-
tions are not preserved during the analysis process. All live
forensic tools listed in this table rely on the integrity of the
running kernel. Compromised systems may provide inac-
curate information. Evidence preservation and minimizing
forensic intrusiveness are hard problems that haven’t been
adequately addressed in the literature.

In contrast, Forenscope was built to comply with steps
1 and 2 where it maximizes the preservation of evidence
and avoids disruption of ongoing activities to allow the cap-
ture of high fidelity evidence. As a result, we believe that
Forenscope may be more broadly applicable to various sce-
narios which require live forensics such as incident response
and criminal investigation. For incident response, we recog-
nize that the integrity of the machine may be violated by
malware and our solutions have been designed to address
this scenario. For criminal investigation, we presume that
the machine may have various security mechanisms imple-
mented such as encrypted disks coupled with authentication
mechanisms such as logon screens and screensaver locks.

3. DESIGN

Forenscope utilizes the principle of introspection to pro-
vide a consistent analysis environment free of taint and blur-
riness which we term as the golden state. In this state, the
system is essentially quiescent and queries can be made to
analyze the system. As a result, analysis modules can access
in-memory data structures introspectively. The investigator
activates forenscope by forcing a reset where the state of the
machine is preserved by memory remanence in the DRAM
chips. Then, the investigator boots off the Forenscope me-
dia which performs forensic analysis on the latent state of
the system and restores the functionality of the system for
further live analysis. Forenscope is designed to work around
security mechanisms by interposing a lightweight analysis
platform beneath the operating system. For example, in in-
cident response, the machine may be controlled by malicious
software and the operating system cannot be trusted. The
observation capabilities afforded by Forenscope offer addi-
tional visibility in these scenarios.

3.1 Taint and Blurriness

Taint and blurriness are concepts related to the use of
forensic tools. Taint is a measurement of change in the
system induced by the use of a forensic tool and it may
be present both in memory and on disk. In this section,
we only consider the in-memory portion because BitBlocker
(Section 3.6) eliminates disk taint by blocking writes. Blurri-
ness refers to the inconsistency of a memory snapshot taken
while a system is running.



Table 1: Comparison of Forenscope with existing forensic tools
Evidence Registers Memory Network Processes Disk Encryption
RFC 3227 Reqs Nanosecs Seconds Minutes Minutes Hours Hours
Encase X va X X v X
Helix X va VP v v X
FTK X va v v v v
Scalpel X X X X v X
Memoryze X va VP v X X
Sleuth kit X X X X v X
Forenscope v v v v v v

# Subject to forensic blurriness

> Connection is recorded but not persisted

Table 2: Definitions

Quantity Description

Snapshot S;
Natural drift 4§,
Snapshot S,

Contents of memory at time ¢

Change in the system state over time v
Contents of captured memory snapshot
with v being the time taken to capture
the snapshot

f is defined as the memory taint caused
by the forensic introspection agent

Taint f

To quantify the relationship between taint and blurriness,
let S; be the contents of memory at any given instant of
time t. The state of a system changes over a period of time
due to the natural course of running processes and we define
this as the natural drift of the system, . When a traditional
live forensic tool attempts to take a snapshot of the system,
there is a difference between what is captured, S, and the
true snapshot S;, where v represents the time taken to cap-
ture the snapshot. There are two reasons for this difference:
the first being d, the natural drift over the time period when
the snapshot was being acquired (v) and the second due to
the footprint f of the forensic tool. We define the former
as the blurriness of the snapshot and the latter quantity to
be the taint caused by the forensic tool. Table 2 captures
these definitions in a concise form. In general, there are
two ways to obtain a snapshot of the machine’s state: ac-
tive techniques and passive techniques. Active techniques
involve the use of an agent on the machine which may leave
a footprint. Passive techniques operate outside the domain
of the machine and do not affect its operation, one such
example is VM introspection. When a passive acquisition
tool is used, the relationship S, = S; + 6, indicates that the
approximate snapshot differs from the true snapshot due to
the blurripess dv». In contrast, when an active forensic tool
is used, S, = S; + f + 0., where f represents taint and
0, represents blurriness. Collectively, these quantities are
a measure of the error in the snapshot acquisition process.
Taint can result from the direct action of forensic tools or in-
direct effects induced in the system through the use of these
tools. We call the former first-order taint, f’, and the lat-
ter second-order taint, f”. First-order taint can result from
loading a forensic tool into memory and second-order taint
can result from processes such as file buffering due to the
effects of a forensic tool writing a file.

3.2 Memory Remanence

Modern memory chips are composed of capacitors which
store binary values using charge states. Over time, these ca-
pacitors leak charge and must be refreshed periodically. To
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save power, these chips are designed to retain their values
as long as possible, especially in mobile devices such as lap-
tops and cell phones. Contrary to common belief, the act of
rebooting or shutting down a computer often does not com-
pletely clear the contents of memory. Link and May [21]
were the first to show that current memory technology ex-
hibited remanence properties back in 1979. More recently,
Gutmann [18] elaborated on the properties of DRAM mem-
ory remanence. Halderman et al. [19] recently showed that
these chips can retain their contents for tens of seconds at
room temperature and the contents can persist for several
minutes when the RAM chips are cooled to slow the natu-
ral rate of bit decay. Forenscope utilizes memory remanence
properties to preserve the full system state to allow recovery
to a point where introspection can be performed. We refer
the reader to [11,19] for a more detailed analysis of memory
remanence.

3.3 Activation

Forenscope currently supports two methods of activation.
The first is based on a watchdog timer reset and the second is
through a forced reboot. For incident response, a watchdog
timer may be used to activate Forenscope periodically to au-
dit the machine’s state and check for the presence of stealth
malware. Watchdog timers are used in embedded systems to
detect erroneous conditions such as machine lockups. These
timers contain a count down clock which must be refreshed
periodically. If the system crashes, the watchdog software
will fail to refresh the clock. Once the clock counts down to
zero, the watchdog timer will issue a warm hardware reset
signal to the machine causing it to reboot in the hopes that
the operating system will recover from the erroneous condi-
tion upon a fresh start. On our test machine, the built-in
watchdog timer is programmable via a serial port interface
and the contents of DRAM memory are not cleared after a
reboot initiated by the watchdog timer reset signal.

On the other hand, a forensic investigator may encounter
a machine that is locked by a screensaver or login screen and
in this situation, Forenscope can be activated by forcing a
reboot. Some operating systems such as Linux and Win-
dows can be configured to reboot or produce a crash dump
by pressing a hotkey. These key sequences are often used for

Normal Boot
Bootloader 0S boot os

Forenscope 3 {}Resuscitation

Boot ' | )
e %Forenscope% ﬁ Golden State + % Revived 05}"% BitBlocker

Figure 1: Forenscope vs normal boot paths



debugging and are enabled by default in many Linux distri-
butions. In Linux, the alt-sysrg-b hotkey sequence forces an
immediate reboot. If these debug keys are disabled, then a
reset may be forced by activating the hardware reset switch.
Forenscope supports multiple modes of operation for versa-
tility. After the machine has been rebooted forcefully, the
Forenscope kernel is selected from the boot loader menu in-
stead of the incumbent operating system.

3.4 Forenscope framework

Instead of booting afresh, Forenscope alters the boot con-
trol flow to perform its analysis. Figure 1 illustrates this
process. After the machine restarts, it boots off a CD or
USB stick with the Forenscope media. The machine then
enters the golden state monitor mode which suspends execu-
tion and provides a clean external view of the machine state.
To explain how the monitor works, we first describe the op-
erating states of the x86 architecture. When a traditional
PC boots, the processor starts in real mode and executes
the BIOS. The BIOS then loads the bootloader which in
turn loads the operating system. During the boot sequence,
the operating system first enables protected mode to ac-
cess memory above the 1 MB mark and then sets up page
tables to enable virtual memory to bootstrap the OS. Foren-
scope interposes on this boot sequence and first establishes
a bootstrap environment residing in the lower 640 KB rung
of legacy conventional memory and then it reconstructs the
state of the running machine. Forenscope has full control
of the machine and its view is untainted by any configura-
tion settings from the incumbent operating system because
it uses a trustworthy private set of page tables; thus rootkits
and malware which have infected the machine cannot inter-
fere with operations in this state. Next, Forenscope obtains
forensically-accurate memory dumps of the system and runs
various kinds of analyses. For integrity, Forenscope does not
rely on any services from the underlying operating system.
Instead, it makes direct calls to the system’s BIOS to read
and write to the disk. Therefore, Forenscope is resistant to
malware that impedes the correct operation of hardware de-
vices. The initial forensic analysis modules are executed in
this state and then Forenscope restores the operation of the
incumbent operating system.

3.5 Reviving the Operating system

To revive the incumbent operating system, Forenscope
needs to restore the hardware and software state of the sys-
tem to “undo” the effects of the reboot. Hardware devices are
reset by the BIOS as part of the boot process. Some of these
devices must be reconfigured before the incumbent operat-
ing system is restored because they were used by Forenscope
or the BIOS during initialization. To do so, Forenscope first
re-initializes core devices such as the hard drive and inter-
rupt controller and then assumes full control of these devices
for operation in its clean environment. Before resuming the
operating system, Forenscope scans the PCI bus and gathers
a list of hardware devices. Each hardware device is matched
against an internal database and if an entry is found, Foren-
scope calls its own reinitialization function for the particu-
lar hardware device. If no reinitialization function is found,
Forenscope looks up the device class and calls the operat-
ing system’s generic recovery function for that device class.
Many devices such as network cards and disk drives have fa-
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cilities for handling errant conditions on buggy hardware.
These devices typically have a timeout recovery function
which can revive the hardware device in the event that it
stops responding. We have found that calling these recov-
ery functions is usually sufficient to recover most hardware
devices. In Linux, 86 out of the 121 (71%) PCI network
drivers implement this interface and all IDE device drivers
support a complete device reset. For instance, the IBM uses
an Intel Pro/100 card and the SEL-1102 uses a built-in AMD
PCnet/32 chip. On both these machines Forenscope relies
on calling the tx_timeout function to revive the network.
We use a two-stage process to restore the operating sys-
tem environment. The first stage reconstructs the processor
state where the values of registers are extracted and altered
to roll back the effects of the restart and the second stage
runs forensic analysis modules. Our algorithm scans the ac-
tive kernel stack and symbol information from the kernel for
call chain information. Forenscope uses this information to
reconstruct the processor’s state. In the alt-sysrq-b case,
the interrupt handler calls the keyboard handler which in
turn invokes the emergency sysrq-handler. The processor’s
register state is saved on the stack and restored by using
state recovery algorithms from [11,13]. If the alt-sysrq-b
hotkey is disabled, Forenscope supports an alternate method
of activation based on pressing a physical reset switch. In
this case, Forenscope assumes that the system is under light
load and that the processor spends most of its time in the
kernel’s idle loop. In this loop, most kernels repeatedly call
the x86 HLT instruction to put the processor to sleep. Since
the register values at this point are predictable, Forenscope
restores the instruction pointer, EIP, to point to the idle
loop itself and other registers accordingly. Once the state
has been reconstructed, Forenscope reloads the processor
with this information and enables virtual memory.

3.6 Modules

We have developed a number of modules to aid in forensic
analysis. These modules, shown in Figure 2, run in groups
where stage 1 modules run in the golden state to collect pris-
tine information while stage 2 modules rely on OS services
to provide a shell and block disk writes. Finally, stage 3
resumes the original operating environment.

Scribe: Scribe collects basic investigation information such
as the time, date, list of PCI devices, processor serial num-
ber and other hardware features. These details are stored
as evidence to identify the source of a snapshot.

Cloner: Cloner is a memory dump forensic tool that is able
to capture a high-fidelity image of volatile memory contents
to an external capture device. Existing techniques for creat-
ing physical memory dumps are limited by their reliance on
system resources which are vulnerable to deception. Cloner
works around forensic blurriness issues and rootkit cloaking
by running in stage 1 before control is returned to the origi-
nal host OS. In the golden state, the system uses protected
mode to access memory directly through Forenscope’s safe
memory space. Using this technique, Cloner accesses mem-
ory directly without relying on services from the incumbent
operating system or its page tables. To dump the contents of
memory, Cloner writes to disk directly using BIOS services
instead of using an OS disk driver. This channel avoids a po-
tentially booby-trapped or corrupted operating system disk
driver and ensures that the written data has better forensic
integrity. Most BIOS firmware supports read/write access
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to USB flash drives and hard disks. Another reason to use
the BIOS for dumping is that it minimizes the memory foot-
print of Forenscope and reduces dependencies on drivers for
various USB and SATA chipsets. Once cloner captures a
clean memory dump, the investigator can run other mod-
ules tools that may alter the contents of memory without
worry of tainting the evidence.

Informant: Informant checks for suspicious signs in the
system that may indicate tampering by identifying the pres-
ence of alterations caused by malware. In order to extract
clean copies of the program code and static structures such
as the system call table, Forenscope must have access to a
copy of the vmlinux kernel file which is scanned to locate
global kernel variables and the location of various functions.
Most Linux distributions provide this information. Read-
only program code and data structures are checked against
this information to ensure that they have not been altered or
misconfigured. Such alterations have the potential to hinder
the investigation process and Informant helps to assess the
integrity of a machine before further analysis is attempted.
After Informant verifies the system, it also records other use-
ful information such as the contents of the kernel dmesg log,
running processes, open files and open network sockets. This
information can help expedite the investigation process.

Neutralizer: Neutralizer inoculates against anti-forensic
software by detecting and repairing alterations in binary
code and key system data structures such as the system
call table. These structures can be repaired by restoring
them with clean copies extracted from the original sources.
Since many rootkits rely on alteration techniques, Neutral-
izer can recover from the effects of common forms of cor-
ruption. Presently, Neutralizer is unable to recover from
corruption or alteration of dynamic data structures. Neu-
tralizer also suppresses certain security services such as the
screensaver, keyboard lock and potential malware or anti-
forensic tools by terminating them. To terminate processes,
neutralizer sends a SIGKILL signal instead of a SIGTERM sig-
nal so that there is no opportunity to ignore the signal. Cus-
tomized signals can be sent to each target process. For some
system services that respawn, terminating them is ineffec-
tive, so forcefully changing the process state to zombie (Z)
or uninterruptible disk sleep (D) is desired instead of killing
the application directly. An alternative would be to send the
SIGSEGV signal to certain applications to mimic the effects
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Table 3: Correctness assessment

Application Results

Idle system System is correctly recovered over 100 times.

SSH SSH recovers, protocol handles lost packets.
PPTP VPN VPN recovers, queued messages are delivered.
AES pipe File encryption continues.

Netcat File transfers correctly without checksum errors.
DM-crypt Mounted filesystem remains accessible.

of a crash. Neutralizer selects processes to kill based on the
analysis mode. For incident response on server machines, a
white list approach is used to terminate processes that do
not belong to the set of core services. This policy prevents
running unauthorized applications that may cause harm to
the system. For investigation, Neutralizer takes a black list
approach and Kkills off known malicious processes.
ForenShell: ForenShell is a special superuser bash shell
that allows interactive exploration of a system by using stan-
dard tools. When coupled with BitBlocker(below), Foren-
Shell provides a safe environment to perform customized live
analyses. In this mode, Forenshell becomes non-persistent
and it does not taint the contents of storage devices. Once
ForenShell is started, traditional tools such as Tripwire or
Encase may be run directly for further analysis. To provide
an audit log of the investigator’s activities, ForenShell pro-
vides a built-in keylogger that writes directly to the evidence
collection medium without tainting the disk. Forenscope
launches the superuser shell on a virtual console by directly
spawning it from a privileged kernel thread. ForenShell runs
as the last analysis module after Informant and Neutralizer
have been executed. At this point, the system has already
been scanned for malware and anti-forensic software. If Neu-
tralizer is unable to clean an infection, it displays a message
informing the investigator that the output of ForenShell may
be unreliable due to possible system corruption.
BitBlocker: BitBlocker is a configurable software-based
write blocker that inhibits writing to a given set of storage
devices to avoid tainting the contents of persistent media.
Since actions performed by ForenShell during exploration
can inadvertently leave undesired tracks, BitBlocker helps
to provide a safe non-persistent analysis environment that
emulates disk writes without physically altering the contents
of the media. Because BitBlocker modifies the contents of
memory, it executes after Cloner has captured a clean copy
of memory.

Simply re-mounting a disk in read-only mode to prevent
writing may cause some applications to fail because they
may need to create temporary files and expect open files to
remain writable. Typically, when an application creates or
writes files, the changes are not immediately flushed to disk
and they are held in the disk’s buffer cache until the system
can flush the changes. The buffer cache manages interme-
diate disk operations and services subsequent read requests
with pending writes from the disk buffer when possible. Bit-
Blocker mimics the expected file semantics of the original
system by reconfiguring the kernel’s disk buffer cache layer
to hold all writes instead of flushing them to disk. This
approach works on any type of file system because it oper-
ates directly on the disk buffer which is one layer below the
file system. BitBlocker’s design is similar to that of some
Linux-based RAM disk systems [5] which cleverly use the
disk buffer as a storage system by configuring the storage
device with a null backing store instead of using a physical
disk. Each time a disk write is issued, barring a sync opera-
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Figure 4: BitBlocker memory usage

tion, the operating system’s disk buffer subsystem holds the
request in the buffer until a certain write threshold or time-
out is reached. In Linux, a system daemon called pdfiush
handles flushing buffered writes to disk. To prevent flush-
ing to the disk, BitBlocker reconfigures the write threshold
of the disk to inhibit buffer flushing, disables pdfiush and
hooks the sync, sync_file_range, fsync, bdflush and umount
system calls with a write monitor wrapper. Figure 3 shows
the architectural diagram of the Linux filesystem layer and
where BitBlocker intercepts disk write operations. Although
BitBlocker inserts hooks into the operating system, it does
not interfere with the operations of Informant and Neutral-
izer because those modules are run before BitBlocker and
they operate on a clean copy of memory. The hooks and
techniques used by BitBlocker are common to Linux 2.6.x
kernels and they are robust to changes in the kernel version.
Similar techniques are possible for other operating systems.

4. RESULTS AND EVALUATION

We evaluate Forenscope as a forensic tool by measuring

five characteristics: correctness, performance, downtime, fi-
delity and effectiveness against malware.
Hardware and Software Setup: To demonstrate func-
tionality, we tested and evaluated the performance of Foren-
scope on two machines: a Schweitzer 1102 industrial com-
puter and an IBM Intellistation M Pro. The SEL-1102 used
in our experiments is a rugged computer designed for power
system substation use and it is equipped with 512 MB of
DRAM and a 4 GB compact flash card mounted in the first
drive slot as the system disk. The SEL-1102 can operate in
temperatures ranging from -40 to +75 degrees Celsius. The
IBM Intellistation M Pro is a standard desktop workstation
equipped with 1 GB of DRAM. For some tests, we opted
to use a QEMU-based virtual machine system to precisely
measure timing and taint. Forenscope and the modules that
we developed were tested on the Linux 2.6 kernel. Although
Forenscope was originally built to target Linux, we plan to
expand this work to other systems.

Correctness: To show that Forenscope is robust, we
tested it against a collection of applications listed in Ta-
ble 3. In each case, after rebooting the machine forcefully,
Forenscope recovered the operating state, took control and
ran successfully without breaking the semantics of the appli-
cation. As a basic sanity test, Forenscope was able to revive
an idle system with no load. We chose a mix of applications
to show that a wide range of hardware, software and net-
work applications are compatible. Running SSH, PPTP and
Netcat showed that network connections persist. Further
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testing using DM-crypt and AES pipe showed that security
programs continue to operate properly. A more thorough
evaluation of the correctness can be found in [11]. To evalu-
ate the correctness of BitBlocker, we ran it on the IBM and
on a QEMU system emulator. Using the emulator allowed
us to verify integrity by checksumming the contents of the
virtual disk. Our test cases include using the dd utility to fill
up the disk, then issuing a sync command and unmounting
the disk. Other cases tested include copying large files and
compiling programs consisting of hundreds of files. In each
case, BitBlocker worked correctly and no writes were issued
to the physical disk. After the test completed, we confirmed
that the contents of the disk were unchanged by comparing
hashes of the contents against the original contents.
Performance: In terms of performance, BitBlocker made
disk operations appear to be faster because no data is flushed
to the physical disk from the disk buffer. A write of a 128
MB file took 32.78 s without BitBlocker and 3.71 s with
BitBlocker. The number of dirty disk buffers consumed in-
creases proportionately with the size of the files written.
Since BitBlocker inhibits flushing to disk, running out of file
buffers can create a condition where the filesystem fills up
and reports a write error. To measure these effects on the
system, we collected buffer cache usage information once a
second in several key applications: creating a compressed
archive with tar-bzip2, downloading a file using wget and
compiling the software package busybor. Figure 4 shows
the utilization of dirty file buffers over time for the tar-gzip
case. Wget and busybox compilation have similar results. In
the graphs, we report statistics from /proc/meminfo such as
cached, dirty and free. According to the documentation
for /proc, cached in Linux represents the amount of data in
the page cache which includes cached data from read-only
files as well as write buffers. Dirty represents items that
need to be committed to the disk and free represents free
memory. From our observations, dirty is generally very
low in the normal case because the kernel commits write
buffers periodically. However, in BitBlocker, dirty grows
steadily because the data cannot be committed back to the
disk. To estimate the amount of memory required to run
BitBlocker, our experiments show that in many scenarios,
even 128 MB of free memory is sufficient for BitBlocker to
operate. Our experiments show that BitBlocker is robust
even when the system runs low in memory. At 200 seconds,
the physical memory of the machine fills up and the tar-bz2
process stops because the disk is ”full.” The system does not
crash and other apps continue to run as long as they do not
write to the disk. On a typical system with 2 GB of memory,
BitBlocker should be able to maintain disk writeability for
a much longer period of time.



Table 4: Taint measurement (pages)

Description (32,768) Conventional Extended
Memory Memory

Forenscope 41 (0.125%) 0(0%)

dd 0 (0%) 7100 (21.66%)

dd to FS mounted with 0 (0%) 7027 (21.44%)

sync flag

dd with O_DIRECT 0 (0%) 480 (1.46%)

Downtime: As discussed earlier, one important metric for
evaluating a forensic tool is the amount of downtime in-
curred during use. To show that Forenscope minimally dis-
rupts the operation of critical systems, we measured the
amount of time required to activate the system. Foren-
scope, without Cloner, executed in 15.1 s using the reboot
method on the SEL-1102 and in 9.8 s on the IBM Intellista-
tion while the watchdog method took 15.2 s to execute on
the SEL-1102. The majority of the downtime is due to the
BIOS bootup sequence and this downtime can be reduced on
some machines. Many network protocols and systems can
handle this brief interruption gracefully without causing sig-
nificant problems. We tested this functionality by verifying
that VPN, SSH and web browser sessions continue to work
without timing out despite the interruption. Many of these
protocols have a timeout tolerance that is sufficiently long to
avoid disconnections while Forenscope is operating and TCP
is designed to retransmit lost packets during this short inter-
ruption. To measure the disruption to network applications
caused by running Forenscope continuously over a period
of time, we ran a test within a virtualized environment to
mimic the brief reboot cycle used by the analysis process.
The test measures the instantaneous speed of an HT'TP file
transfer between a server and a client machine. While the file
transfer is in session, we periodically interrupt the transfer
by forcibly restarting the machine and subsequently reviving
it using Forenscope. Each time the system is interrupted,
the server process is suspended while the machine reboots.
The process is then resumed once Forenscope is done run-
ning. As a baseline, we created a control experiment where
the server process is periodically suspended and resumed by
a shell script acting as a governor to limit the rate at which
the server operates. This script sends the SIGSTOP signal to
suspend the server process, waits a few seconds to emulate
the time required for the bootup process and then sends a
SIGCONT signal to resume operation. In each experiment, a
curl client fetches a 1 MB file from a thttpd server at a
rate of 10 KB/s. We chose these parameters to illustrate
how a streaming application or low-bandwidth application
such as a logger may behave. During this download process,
the server was rebooted once every 20 seconds and we mea-
sured the instantaneous bandwidth with a bootup delay of
5 and 10 seconds to observe the effects of various bootup
times. We observed that the bandwidth drops to zero while
the system boots and the download resumes promptly after
the reboot. No TCP connections were broken during the ex-
periment and the checksum of the downloaded file matched
that of the original file on the server. A graph of the in-
stantaneous bandwidth vs time is plotted in Figure 5. We
compared the results of our test against the control experi-
ment and observed that the behavior was very similar. Thus
we believe that running Forenscope can be considered as safe
as suspending and resuming the process. During the exper-
iment we noticed that the bandwidth spiked immediately
after the machine recovered and attribute this behavior to
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the internal 2-second periodic timer used by thttpd to adjust
the rate limiting throttle table.

Taint and Blurriness: We evaluated the taint in a snap-
shot saved by Forenscope using a snapshot captured by dd
as the baseline. In an experimental setup running with 128
MB of memory, we collected an accurate snapshot S; of the
physical memory using QEMU and compared that with a
snapshot ,§U obtained from each forensic tool. The number
of altered pages for each of the configurations is presented
in Table 4. We observe that since Forenscope is loaded in
conventional memory, the only pages which differ are found
in the lower 640 KB of memory. Our experiments show that
Forenscope is far better than dd because we observed no dif-
ference in the extended memory between the snapshot taken
by Forenscope and the baseline snapshot. It should be noted
that as the machine is suspended in the golden state when
running Forenscope, there is no blurriness associated with
the snapshot taken by Forenscope. For dd, we measured
the taint when using a file system mounted with and with-
out the sync option. The number of pages affected remains
almost the same in both cases and we observed that the
majority of second-order taint was due to the operating sys-
tem filling the page-cache buffer while writing the snapshot.
To evaluate how much taint was induced due to buffering,
we ran experiments in which dd was configured to write di-
rectly to disk, skipping any page-cache buffers by using the
0_DIRECT flag. The results show that the taint was much
lower than the earlier experiment, but still greater than the
taint caused by using Forenscope. In order to estimate the
amount of blurriness caused when tools like dd are used, we
measured the natural drift over time of some typical config-
urations. We collected and compared memory dumps from
Ubuntu 8.04 and Windows Vista with 512 MB of memory in
a virtual machine environment hosted in QEMU. In each case,
we snapshot the physical memory of the virtual machine and
calculate the number of pages that differ from the initial im-
age over a period of time. The snapshots were sampled using
a tilted time frame to capture the steady state behavior of
the system in an attempt to measure J,. The samples were
taken at 10 second intervals for the first five minutes and
at 1 minute intervals for the next two hours. From Figure
6, we observe that the drift remains nearly constant after a
short period of time for our experimental setup and for the
idle Ubuntu and Vista systems, the drift stabilizes within a
few minutes. The drift for a system running Mozilla Firefox
was found to be nearly constant within 10 minutes. Running
tar and gzip for compressing a large folder or dd to dump
the contents of memory into a file resulted in most of the
memory being changed within a minute due to second-order
taint. To summarize, our tests demonstrated that there is
no taint introduced in the extended memory by using Foren-
scope and that Forenscope can be used for forensic analysis
where taint needs to be minimized.

Effectiveness against anti-forensics tools: Although
forensics techniques can collect significant amounts of in-
formation, investigators must be careful to ensure the ve-
racity and fidelity of the evidence collected because anti-
forensic techniques can hide or intentionally obfuscate in-
formation gathered. In particular, rootkits can be used
by hackers to hide the presence of malicious software such
as bots running in the system. Malware tools such as the
FU rootkit [16] directly manipulate kernel objects and cor-
rupt process lists in ways that many tools cannot detect.



Table 5: Sizes of Forenscope and modules

Component Lines of Code Compiled Size
(bytes)
Forenscope (C) 1690 15,420
Forenscope (Assembly) 171 327
Forenscope (Hardware) 280 1,441
Neutralizer & Forenshell 34 8,573
Other Modules 861 22,457
Total 3,036 48,218
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Figure 6: Comparison of Memory Blurriness

Malware researchers have also demonstrated techniques to
evade traditional memory analysis through the use of low-
level rootkits [28] which cloak themselves by deceiving OS-
based memory acquisition channels on Linux and Windows.
Hardware [12] and software [20] virtualization-based rootkits
may be tricky to detect or remove by the legitimate oper-
ating system or application software because they operate
one layer below standard anti-malware facilities. We de-
scribe and evaluate how Forenscope reacts to several pub-
licly available rootkits. The set of rootkits was chosen to
cover a gamut of representative threats, but the list is not
meant to be exhaustive due to space constraints.

DR: The DR rootkit uses processor-level hardware de-

bug facilities to intercept system calls rather than modifying
the actual system call table itself. DR reprograms a hard-
ware breakpoint which is reached every time a system call
is made [15]. The breakpoint then intercepts the call and
runs its own handler before passing control to the legitimate
system call handler. Since Forenscope does not restore the
state of debug registers, DR is effectively neutralized across
the reboot, and as a result, hidden processes are revealed.
Informant detects DR in several ways: DR is present in the
module list, DR symbols are exported to the kernel and DR
debug strings are present in memory. If an attacker modifies
DR to make it more stealthy by removing these indicators,
we contend that it is still hard to deceive Forenscope, since
the debug registers are cleared as part of the reboot pro-
cess. Although Forenscope doesn’t restore the contents of
the debug registers faithfully, this doesn’t pose a problem
for most normal applications because only debuggers typi-
cally use this functionality.
Phalanz B6: Phalanx hijacks the system call table by di-
rectly writing to memory via the /dev/mem memory device.
It works by scanning the internal symbol table of the kernel
and redirecting control flow to its own internal functions.
Informant detects Phalanx while checking the system call
table and common kernel pointers. Neutralizer restores the
correct pointers to inoculate Phalanx.
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Adore: Adore 8 is a classic rootkit which hijacks kernel point-
ers to deceive tools such as ps and netstat. It works by over-
writing pointers in the /proc filesystem to redirect control
flow to its own functions rather than modifying the syscall
table directly. Informant detects that the pointers used by
Adore do not belong to the original read-only program code
segment of the kernel and Neutralizer restores the correct
pointers. Restoration of the original pointers is simple and
safe because the overwritten VFS function operations tables
point to static functions such as proc_readdir, while Adore
has custom handlers located in untrusted writable kernel
module address space.

Mood-NT: Mood-NT is a versatile multi-mode rootkit that
can hook the system call table, use debug registers and mod-
ify kernel pointers. Because of its versatility, the attacker
can customize it for different purposes. Like the rootkits de-
scribed previously, Forenscope detects Mood-NT in various
modes. Our experiments indicate that Mood-NT hooks 44
system calls and Forenscope detects all of these alterations.
Furthermore, each hook points out of the kernel’s read-only
program code address space and into the untrusted memory
area occupied by the rootkit.

Size: Forenscope is written in a mixture of C and x86 as-
sembly code. Table 5 shows that Forenscope is a very small
program. It consumes less than 48 KB in code and 125 KB
in running memory footprint. The lines of code reported
in the table are from the output of the sloccount [29] pro-
gram. We break down the size of each component into core C
and assembly code, hardware-specific restoration code and
module code. To minimize its size, Forenscope reuses ex-
isting kernel code to reinitialize the disk and network; the
size of this kernel code is device-specific and therefore ex-
cluded from the table, since these components are not part
of Forenscope. The small compiled size of Forenscope and
its modules implies that a minimal amount of host memory
is overwritten when Forenscope is loaded onto the system.
Furthermore, the diminutive size of the code base makes it
more suitable for auditing and verification.

S. DISCUSSION

While evaluating Forenscope, we observed different be-
havior of rootkits on virtual machines and physical hard-
ware. Our observations confirm the results of Garfinkel et
al [17] that virtual machines cannot emulate intricate hard-
ware nuances faithfully and as a result some malware fails to
activate on a virtual machine. For example, malware such
as the Storm worm and Conficker [30] intentionally avoid
activation when they sense the presence of virtualization to
thwart the analysis process. Hence analyzing a system for
rootkits using a virtual machine may not only cause some
rootkits to slip under the radar but also alert them to de-
tection attempts. Since Forenscope continues to run the
system without exposing any of the issues raised by running
virtualization systems, we argue that the system is unlikely
to tip off an attacker to the presence of forensic software.
Legally, the jury is still out on the use of live forensic tools
because of the issues of taint and blurriness. While some
recent cases [2] suggest that courts are starting to recognize
the value of the contents of volatile memory, the validity
of the evidence is still being contested. A recent manual
on collecting evidence in criminal investigations released by

Shttp://stealth.openwall.net



Table 6: Effectiveness against rootkit threats

Rootkit Description Sanitization action

DR Uses debug registers to hook system calls Rebooting clears debug registers
Phalanx b6  Uses /dev/kmem to hook syscalls Restore clean syscall table
Mood-NT Multi-module RK using /dev/kmem/ Clear debug regs, restore pointers
Adore Kernel module hooks /proc VFS layer Restore original VFS pointers

the Department of Justice [6], instructs that no limitations
should be placed on the forensic techniques that may be used
to search and also states that use of forensic software, no
matter how “sophisticated,” does not affect constitutional
requirements. Although we do not make strict claims of le-
gal validity in the courts, we are encouraged by the above
guidelines to collect as much volatile information as possi-
ble. We objectively compare our tool against the state of
the art and find that it does collect more forms of evidence
with better fidelity than existing tools.
Countermeasures: Although Forenscope provides deep
forensic analysis of a system in a wide variety of scenar-
ios, there are countermeasures that attackers and criminals
can use to counter the use of Forenscope. From an incident
response perspective, we assume that the machine is con-
trolled by the owner and that the attacker does not have
physical access to it. This means that only software-based
anti-forensic techniques are feasible, although some of these
techniques may involve changing hardware settings through
software. Most of the hardware and software state involved
in these anti-forensic techniques are cleared upon reboot or
rendered harmless in Forenscope’s clean environment. In in-
vestigation, the adversary may elect to use a BIOS password,
employ a secure bootloader, disable booting from external
devices or change BIOS settings to clear memory at boot
time. These mitigation techniques may work, but if the
investigator is sophisticated enough, he can try techniques
suggested by Halderman et al [19] to cool the memory chips
and relocate them to another machine which is configured
to preserve the contents of DRAM at boot time. One other
avenue for working around a password-protected BIOS is to
engage the bootloader itself. We found that some bootload-
ers such as GRUB allow booting to external devices even
if the functionality is disabled in the BIOS. The only mit-
igation against this channel is use password protection on
GRUB itself, which we believe is not frequently used.
Limitations: The only safe harbor for malware to evade
Forenscope is in conventional memory itself because the act
of rebooting pollutes the contents of the lower 640 KB of
memory considerably thus potentially erasing evidence. How-
ever, we contend that although this technique is possible, it
is highly unlikely for three reasons: first, for such malware
to persist and alter the control flow, the kernel must map in
this memory area in the virtual address space. This requires
a change in the system page tables which is easily detectable
by Forenscope since most modern operating systems do not
map the conventional memory space into their virtual mem-
ory space. Secondly, such malware would have to inject a
payload into conventional memory and if the payload is cor-
rupted by the reboot process, the system will crash. Finally,
such malware won’t survive computer hibernation because
conventional memory is not saved in the process. Even if
Forenscope is unable to restore the system due to extenu-
ating circumstances, we still have an intact memory dump
and disk image to analyze. Although Forenscope has been
designed with investigation in mind, we have not designed it
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to be completely transparent. For instance, malware might
detect the presence of Forenscope by checking BitBlocker
write latencies or scanning conventional memory.

6. RELATED WORK

Forenscope uses many technologies to achieve a high fi-
delity forensic analysis environment through introspection,
data structure analysis and integrity checking. Many of
the introspective techniques used by Forenscope were in-
spired by similar functionality in debuggers and simulators.
VMware’s VMsafe protects guest virtual machines from mal-
ware by using introspection. A virtual machine infrastruc-
ture running VMsafe has a security monitor which period-
ically checks key structures in the guest operating system
for alteration or corruption. Projects such as Xenaccess [22]
take the idea further and provide a way to list running pro-
cesses, open files and other items of interest from a running
virtual machine in a Xen environment. Although Xenaccess
and Forenscope provide similar features, Xenaccess depends
on the Xen VMM, but the investigator cannot rely on its
presence or integrity. On some older critical infrastructure
machines, legacy software requirements make it impractical
to change the software configuration. Forenscope does not
have such requirements. Forenscope’s techniques to recover
operating system state from structures such as the process
list have been explored in the context of analyzing mem-
ory dumps using data structure organization derived from
reverse-engineered sources [14,27]. Attestation shows that a
machine is running with an approved software and hardware
configuration by performing an integrity check. Forenscope
builds upon work from the VM introspection community to
allow forensic analysis of machines that are not prepared a
priori for such introspection. It provides a transparent anal-
ysis platform that does not alter the host environment and
Forenscope supports services such as BitBlocker that allow
an investigator to explore a machine without inducing taint.

The techniques used by Forenscope for recovering run-
ning systems are well grounded in the systems community
and have been studied previously in different scenarios. The
original Intel 286 design allowed entry into protected mode
from real mode, but omitted a mechanism to switch back.
Microsoft and IBM used an elegant hack involving memory
remanence to force re-entry into real mode by causing a re-
boot to service BIOS calls. This technique was described by
Bill Gates as "turning the car off and on again at 60 mph”
[24]. Some telecommunications operating systems such as
Chorus [25] are designed for quick recovery after a watch-
dog reset and simply recover existing data from the running
operating system rather than starting afresh. David [13]
showed that it is possible to recover from resets triggered by
the watchdog timer on cell phones. BootJacker [11] showed
that it is possible for attackers to recover and compromise a
running operating system by using a carefully crafted forced
reboot. Forenscope applies these techniques in the context
of forensic analysis and our work presents the merits and
limitations of using such techniques to build a forensic tool.



Devices such as the Trusted Platform Module and Intel
trusted execution technology (TXT) provide boot time and
run-time attestation respectively. Although TPM may be
available for some machines, the protection afforded by a
TPM may not be adequate for machines which are meant
to run continuously for months. These machines perform an
integrity check when they boot up, but their lengthy uptime
results in a long time of check to time of use (TOCTTOU)
that extends the duration for breaches to remain undetected.
Hardware solutions such as Copilot [23] are available to
check system integrity. In contrast, Forenscope performs
an integrity assessment at the time of use; which allows the
investigator to collect evidence with better fidelity.

7. CONCLUDING REMARKS

Forenscope explores live forensic techniques and the is-
sues of evidence preservation, non-intrusiveness and fidelity
that concern such approaches. Measured against existing
tools, our experiments show that Forenscope can achieve
better compliance within the guidelines prescribed by the
community. Forenscope shows that volatile state can be
preserved and the techniques embodied in Forenscope are
broadly applicable. We encourage further development of
tools based on our high-fidelity analysis framework and be-
lieve that it can enable the advancement of analysis tools
such as KOP [9]. Extensive evaluation of our techniques has
shown that they are safe, practical and effective by mini-
mally tainting the system, while causing no disruption to
critical systems. We believe that these techniques can be
used in cases where traditional tools are unable to meet the
needs of modern investigations. To continue the develop-
ment of this tool, we plan to work closely with partners to
better evaluate use of this tool in real-world scenarios such
as incident response in a variety of contexts.
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