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Abstract
Modern datacenters support a large number of applica-
tions with diverse performance requirements. These per-
formance requirements are expressed at the application
layer as high-level service-level objectives (SLOs). How-
ever, large-scale distributed storage systems are unaware
of these high-level SLOs. This lack of awareness results
in poor performance when workloads from multiple ap-
plications are consolidated onto the same storage cluster
to increase utilization. In this paper, we argue that be-
cause SLOs are expressed at a high level, a high-level
control mechanism is required. This is in contrast to ex-
isting approaches, which use block- or disk-level mecha-
nisms. These require manual translation of high-level re-
quirements into low-level parameters. We present Frost-
ing, a request scheduling layer on top of a distributed stor-
age system that allows application programmers to spec-
ify their high-level SLOs directly. Frosting improves over
the state-of-the-art by automatically translating high-level
SLOs into internal scheduling parameters and uses feed-
back control to adapt these parameters to changes in the
workload. Our preliminary results demonstrate that our
overlay approach can multiplex both latency-sensitive and
batch applications to increase utilization, while still main-
taining a 100ms 99th percentile latency SLO for latency-
sensitive clients.

1 Introduction
Modern datacenter architectures must support a variety of
both user-facing and internal applications. Each applica-
tion typically has an associated performance requirement,
expressed in terms of a service-level objective (SLO),
such as a latency or throughput target for end-to-end re-
quests. SLOs reflect the expectations of the users of that
application and violations can result in significant eco-
nomic repercussions [18].

However, today’s distributed storage systems, such as
HBase and BigTable [1, 6], are not directly aware of appli-
cations’ high-level SLOs. Current solutions require man-
ual tuning of low-level internal system parameters like
weights, slots, or disk IOPS until the desired high-level
SLO is satisfied [10]. Manually setting static parameters
is painful for application programmers, who are forced
to translate their high-level SLOs into these foreign low-
level system parameters. Moreover, static parameters fun-
damentally fail to adapt to the rapid and frequent work-
load changes in the datacenter. Critically, manual tuning
inevitably becomes unmanageable as system complexity
and the number of workloads increase.
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Figure 1: A latency-sensitive frontend application issues
get requests to a static HBase configuration. A MapRe-
duce job begins issuing scan requests to the same HBase
cluster at time t = 100 and finishes at t = 500. Frontend
latency increases by 3x due to contention for the storage
layer.

These shortcomings stymie the ability of datacenters to
multiplex different workloads onto a single, shared stor-
age layer. Because of this inability to multiplex, data-
centers often contain multiple, physically distinct storage
systems, each provisioned separately. This has significant
economic costs. First, each separate storage system must
be provisioned individually for peak load. This requires a
higher degree of overprovisioning, and contributes to un-
derutilization of the cluster [2]. Second, segregation of
data leads to data staleness. Analytics jobs typically must
wait for the freshest data to be copied into a batch sys-
tem. This lag results in delayed insights and suboptimal
results [3]. Copying also leads to duplication of data and
the associated consistency and management concerns. Fi-
nally, there is increased operational complexity, requiring
additional staff and expertise, and increasing exposure to
software bugs and configuration errors [13].

Consolidating multiple workloads onto a single storage
system avoids these problems. However, a naı̈ve approach
to consolidation does not realize these benefits, since un-
mediated resource demands lead to SLO violations. In an
initial experiment, we ran a latency-sensitive frontend ap-
plication and a MapReduce job, both simultaneously is-
suing requests against the same HBase cluster. The re-
sults of this experiment (Figure 1) show that the latency-
sensitive frontend application can suffer a 3x increase in
99th percentile latency when run alongside a batch job.
Companies like Amazon, Google, and Microsoft have
identified that degradation in the 99th percentile latency is
a major source of user dissatisfaction [12]. Thus, to con-
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trol the end-to-end 99th percentile latency while consol-
idating workloads, we focus on high-level SLOs, which
marks a shift from existing solutions based on low-level
operations.

However, there are a number of challenges to overcome
to achieve this goal.

Translating high-level SLOs. The storage system
should allow programmers to specify their high-level
SLOs directly, and automatically translate these SLOs
into the correct set of internal system parameters.

Scheduling. The lack of preemption and skew in re-
quest size differentiates storage request scheduling from
other domains. This is exacerbated by how distributed
storage systems sit atop a deep software and hardware
stack (Figure 2). Consolidating storage workloads re-
quires choosing appropriate scheduling mechanisms at the
right layers in the stack.

Dynamic SLO enforcement. Due to diurnal patterns
and load fluctuations, the storage system needs to adjust
request scheduling in response to the workload. This dy-
namism will allow the system to take advantage of slack
in the workload to run low-priority requests, while also
being able to gracefully adapt to load spikes.

To address these concerns, we present Frosting. Frost-
ing adopts a new top-down approach to enforcing SLOs.
Frosting acts as an overlay atop an existing distributed
storage system, performing scheduling on requests from
different applications to enforce SLOs. An application’s
high-level SLOs are translated into proportional share al-
locations by a feedback controller. These allocations are
used to weight the admission of a client’s requests to
the underlying storage system. The feedback controller
adapts to dynamic changes in the workload by monitoring
each client’s performance, and continually adjusting allo-
cations to maximize overall SLO compliance of the sys-
tem. Our preliminary results demonstrate that our overlay
approach can multiplex both latency-sensitive and batch
applications to increase utilization, while still maintaining
a 100ms 99th percentile latency SLO for latency-sensitive
clients. Finally, we discuss further improvements and po-
tential avenues of future work.

2 Design
Frosting is designed to overlay distributed storage sys-
tems which support get, put, and scan operations on
rows or objects. An example architecture is shown in Fig-
ure 2. Frosting is backwards-compatible with the API of
the underlying storage system. Clients with an associated
SLO tag their requests to Frosting with their client name.
Legacy untagged requests are treated as low-priority, and
are handled with a best-effort FIFO policy. High-level
SLOs are defined as a percentile latency or throughput
target for a given type of request from a client name. For
example, an application could tag all of its requests with

HBase!

Frosting! Frosting! Frosting!

HBase!HBase!

Frontend Web 
Client Requests!
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Jobs!

Interactive 
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HDFS! HDFS!HDFS!

OS!OS!OS!

disk scheduler! disk scheduler! disk scheduler!

disk! disk! disk!

Figure 2: Frosting running on a 3-node cluster. By
scheduling get, put, and scan requests, controlling
when and what order they are released to HBase, Frosting
limits queuing in lower layers of the software and hard-
ware stack.
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Figure 3: Frosting design: High-level SLOs are translated
by the feedback controller (§2.3) into parameter settings
in the request scheduler (§2.2).

the client name twitter, and specify a 99th percentile
latency SLO of 200ms for puts and a throughput SLO of
10 qps for scans.

These high-level SLOs are mapped into actual schedul-
ing decisions by the feedback controller, shown in Fig-
ure 3. Frosting monitors each client’s SLO compliance,
and use online performance measurements to build a lin-
ear performance model that predicts how a client’s per-
formance will change with changes in scheduler alloca-
tion. These performance models are used by the feed-
back controller to continually adjust each client’s alloca-
tion to maximize SLO compliance of the system. Frost-
ing’s scheduling mechanism and dynamic control scheme
are detailed in §2.2 and §2.3.

2.1 System Model

Frosting ensures predictable performance by limiting the
number of outstanding requests in the underlying software
and hardware stack. Limiting the number of outstanding
requests minimizes the degree of queuing in lower lay-
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Figure 4: A fixed number of gets were issued to the
HBase cluster, while the number of scans were slowly
increased. At a rate of 8 or fewer scans per second,
queue lengths in lower layers are short, keeping latency
low.

ers, which is important since queuing delay tends to dom-
inate total latency in this type of system [11]. In fact, as
Frosting has no way of preempting or controlling a request
once it has been issued to a lower layer, keeping the queue
lengths in lower layers short is the only way to bound la-
tency. However, limiting queue length means the system
operates below peak utilization.

Figure 4 demonstrates the effect of queueing within the
stack. We performed an experiment with two clients, the
first issuing a constant rate of latency-sensitive reads, and
the second issuing an increasing rate of large scans. As
the rate of scans increases above 8 req/s, the length of
the block I/O queue in the operating system (as measured
by iostat) increases rapidly, along with 99th percentile
read latency. To preserve latency, Frosting attempts to
keep queue lengths below this operating point.

The overlay scheduling approach we chose with Frost-
ing is simple and minimizes changes to existing code. A
coordinated scheduling approach, which performs request
scheduling at multiple layers of the stack, may be able to
achieve better latency and throughput properties. How-
ever, out initial evaluations of Frosting show that even an
overlay approach can result in meaningful improvements.
We plan to explore the strengths and weaknesses of both
approaches as future work.

2.2 Scheduling

With the feedback controller enforcing policy in the form
of user-stated SLOs, the scheduler becomes merely a
mechanism. The feedback controller adjusts the sched-
uler’s parameters to effect a corresponding change in a
client’s performance. The Frosting scheduler is thus un-
concerned with traditional scheduling goals of maximiz-
ing fairness or interactivity. Instead, its primary require-
ment is to behave predictably to changes made by the
feedback controller, with the secondary goal of simplic-

ity of API.

2.2.1 Storage request scheduling

Request scheduling for distributed storage systems is a
challenging problem which differs from the classical do-
mains of CPU and packet scheduling in two respects.

Lack of preemption. CPU schedulers use preemption
to limit the amount of CPU time spent running a thread.
A request scheduler is unable to preempt requests because
it is impossible to “unsend” or cancel a request to a lower
layer of the stack. This lack of preemption leads to greater
degrees of skew in allocation in the system, which com-
plicates allocating exact portions of system resources.

Size skew. In packet scheduling, packets are quantized
units up to an MTU in size, and require processing time
directly proportional to size. Storage requests to Frost-
ing are not chunked into MTUs, and can take unknown
amounts of processing time. A large 1000-row scan is
viewed as a single request, resulting in a long blocking
operation of unknown length. The actual processing time
depends on the type of request, composition and magni-
tude of the workload, and underlying system properties.

2.2.2 Frosting Scheduler

Scheduling in Frosting can be modeled abstractly as a set
of worker threads pulling requests from a shared queue.
Incoming requests are pushed into this queue, and popped
off by worker threads. Internal to this abstract queue,
the Frosting scheduler separates requests into additional
queues based on client name and request type. Propor-
tional share scheduling is used to decide whose request to
serve [23]. Proportional share supports fine-grained, frac-
tional allocation of resources. It is convenient for situa-
tions with a dynamic set of clients, since relative weight-
ings always remain consistent.

The Frosting prototype implements proportional share
via lottery scheduling [23]. Each time a worker thread
becomes inactive, a lottery is held among all queues with
pending requests. The lottery is biased based on the pro-
portional share assigned to each queue, such that a queue
with twice the share will have twice as many of its re-
quests dequeued.

This ignores the actual cost of handling a request, and
is most predictable when all queues have outstanding
requests. However, as shown in §3, even this simple
scheme shows benefits under the assumption of closed-
loop clients. We discuss other potential scheduler im-
provements in §5.

2.3 Dynamic Control

The feedback controller in Frosting is used to adapt to
changes in the workload. The controller actively moni-
tors each client’s normalized SLO performance, which is
expressed as the ratio between a client’s desired and actual
performance. For example, a client with an SLO of 100ms
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experiencing 200ms of actual latency has a normalized
SLO performance of 0.5. The feedback controller peri-
odically adjusts each client’s proportional share alloca-
tion to maximize overall SLO compliance of the system.
These changes are made based on an online linear perfor-
mance model of each client built from performance mea-
surements collected in prior time intervals. Since these
models are recomputed each time interval, they approxi-
mate the actual non-linear behavior of the system.

Solving for client allocations ai, ..., an for an approach-
ing time interval t can be expressed as a linear program,
originally formulated by Merchant, et al. [15]:

∀i,j,i 6=jwi(1− pi(ati))− wj(1− pj(atj)) < ε

The (1− pi(ati)) term expresses a “badness” factor for
client i in terms of normalized SLO performance, with
potential allocation ati and the client’s linear performance
model pi. This badness factor is then weighted by a wi

term that indicates the relative importance of the client.
The linear program attempts to minimize ε, the maxi-

mum difference in badness of all pairs of clients i, j. Dur-
ing overload, this has the effect of proportionally degrad-
ing each client’s performance according to their weight.

Two additional constraints are necessary. Changes in
allocation are limited to a step size σ, which prevents
the feedback controller from solving for allocation points
where the linear performance models do not apply. Total
allocation by the system must also sum to 1.

∀i|ati − at−1i | ≤ σ
at1 + ...+ atn = 1

3 Evaluation
The prototype implementation of Frosting is built on top
of HBase, a distributed column-store similar to Google’s
BigTable [1, 6]. Modifications to existing code were min-
imal. It was straightforward to replace the existing FIFO
request queue with our own abstract queue with over-
loaded enqueue and dequeue methods. The HBase RPC
protocol was also modified to include the client’s name
with each request. No modifications were necessary to
HDFS or the operating system.

We evaluate two components of Frosting. First, we
evaluate the suitability of the Frosting proportional share
scheduler as a mechanism (§2.2). We test how setting dif-
ferent proportional share values affect a latency-sensitive
client’s 99th percentile SLO when Frosting is under con-
tention from a batch workload. Next, we use the same sit-
uation to evaluate the ability of the feedback controller to
enforce policy by setting a high-level SLO for the latency-
sensitive client (§2.3). All experiments were run on a 3-
node cluster of EC2 c1.xlarge instances, with HDFS con-
figured to use the 4 local disks on each instance. A Ya-
hoo! Cloud Serving Benchmark [7] (YCSB) client was

used to issue latency-sensitive read requests to Frosting
with a uniformly random key access pattern. A MapRe-
duce word count job with 4 map tasks was used to gen-
erate batch scan requests to Frosting over the same key
range as the YCSB client.

Proportional share scheduler. To provide a baseline,
we measured YCSB latency with HBase’s default single
FIFO queue without MapReduce running concurrently.
We then ran three experiments with concurrent MapRe-
duce: the Frosting scheduler with share settings of 90:10
and 99:1 for YCSB to MapReduce, as well as HBase’s
default FIFO policy again. Each experiment was run 10
times. Figure 5(a) plots the mean and standard deviation
in 99th percentile latency for each run. Figure 5(b) shows
the average MapReduce throughput for each.

We see that the Frosting scheduler performs superiorly
to FIFO when YCSB is under contention with MapRe-
duce. Both proportional share settings show little fluctu-
ation over the duration of the experiment, and are able
to achieve better latencies than FIFO. While FIFO in-
creases to as much as twice the baseline 99th percentile
latency, the 99:1 policy remains within 10% of baseline
while increasing utilization by allowing some MapReduce
requests to run. 90:10 strikes a point in between FIFO
and 99:1, allowing more MapReduce requests to run at the
cost of increased latency. This demonstrates that propor-
tional share allocations predictably map to 99th percentile
latency values, and shows how Frosting can tradeoff be-
tween two competing clients.

Feedback control. Given that proportional share is
an appropriate mechanism, we evaluate the ability of the
feedback controller to converge on and maintain a high-
level SLO. We specified a 99th percentile read SLO of
100ms for YCSB to Frosting, with a weight of w1 = 80.
MapReduce was given a throughput SLO of 40 req/s with
a lower weight of w2 = 1. This throughput SLO allows
MapReduce to balloon to use any extra capacity in the
system as long as YCSB’s SLO is being met.

Figure 5(c) depicts how the feedback controller ad-
justs YCSB’s proportional share, and YCSB’s 99th per-
centile latency. YCSB and MapReduce initially start off
with equal share allocations. The feedback scheduler in-
creases YCSB’s allocation at the maximum step size (σ),
until YCSB meets its 99th percentile latency SLO around
t = 70. Since YCSB briefly exceeds its performance tar-
get here, share oscillates as the controller trades off be-
tween YCSB and MapReduce, before settling around a
value of 90. The inherent noisiness in 99th percentile la-
tency results in occasional variation in YCSB share and
latency, even if share allocations do not change. We plan
to explore further modifications to the feedback controller
to mitigate this effect.
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Figure 5: In two experiments, a latency-sensitive frontend workload (YCSB) and a throughput-oriented batch workload
(MapReduce) issue requests to the same HBase cluster. Left and middle: Here, the Frosting share parameters are set to
a fixed known value. We compare the latency (left) and throughput (right) to those obtained by the baseline and FIFO.
Performance of the two clients varies predictably as the share values are adjusted. Right: When a 100ms YCSB SLO
is specified, the feedback controller rapidly increases YCSB’s share until the SLO is met at t = 70. The controller
converges to approximately a 90:10 setting.

4 Related Work

Many others have looked at consolidating applications
onto shared storage resources. Soundararajan et al.
present an approach to controlling storage bandwidth
contention in a server farm by passing application-level
quality-of-service requirements across to a SAN and
down to the OS [20]. Their approach requires modifica-
tion to the kernel.

Padala et al. also focus on controlling resource con-
tention among applications, but use a hypervisor-level ap-
proach involving controlling CPU allocations to storage
clients [17]. Similarly, Soundararajan et al. present a tech-
nique for coordinated partitioning of storage and memory
bandwidth in a shared, virtual storage environment to pri-
oritize among latency-sensitive applications [21]. We dif-
fer in that we support latency SLOs while also scheduling
throughput-oriented requests to improve utilization.

Argon provides performance isolation for shared stor-
age clients also using cache partitioning, request amor-
tization, and quanta-based disk time scheduling, but fo-
cuses on providing guarantees for throughput rather than
high-percentile latency [22].

PARDA, mClock, and Maestro provide SLOs for vir-
tual machines and storage arrays [9, 10, 15]. Differen-
tiated storage attaches semantic information to storage
requests to associate specialized caching policies [16].
These systems differ from ours by operating at the block
device level and not incorporating high-level SLOs.

Many other systems have also focused on scheduling
disk I/O for differentiated quality-of-service [4, 5, 8, 14,
19]. They differ from Frosting in that they provide guaran-
tees on operations to the block device, rather than requests
to an application-level storage system.

5 Future Work
We are considering multiple avenues of future work.

Additional scheduler parameters. Proportional share
scheduling can be combined with allocation reservations
and limits to express stronger policies for certain work-
load scenarios. Another potential parameter is adjust-
ing the total number of worker threads in the system.
However, these additional parameters are more difficult
to model dynamically and fit within a linear program.

Coordinated stack scheduling. Controlling request
scheduling at each layer of the software stack, while more
complicated, should perform better than a pure overlay
scheduler like Frosting. A coordinated approach can also
better manage “multicast” effects, where a single request
to a layer spawns multiple requests to lower layers.

Storage system interfaces. Consolidating onto a
shared storage layer requires clients to use a common stor-
age API. We chose to use HBase in Frosting, but a client
might wish to also consolidate MapReduce running di-
rectly on HDFS, or MySQL directly on the block device.
Settling on a common storage abstraction is necessary to
support a broad range of clients.

Economic argument. There is an inherent tradeoff
between throughput and latency in any queuing system.
An open problem is understanding when consolidation re-
duces monetary provisioning costs and quantifying this
economically.
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