
KeystoneML: Optimizing Pipelines for Large-Scale
Advanced Analytics

Evan R. Sparks∗, Shivaram Venkataraman∗, Tomer Kaftan∗‡, Michael J. Franklin∗†, Benjamin Recht∗

{sparks,shivaram,tomerk11,franklin,brecht}@cs.berkeley.edu
∗AMPLab, Department of Computer Science, University of California, Berkeley

†Department of Computer Science, University of Chicago
‡Department of Computer Science, University of Washington

Abstract—Modern advanced analytics applications make use
of machine learning techniques and contain multiple steps of
domain-specific and general-purpose processing with high re-
source requirements. We present KeystoneML, a system that cap-
tures and optimizes the end-to-end large-scale machine learning
applications for high-throughput training in a distributed envi-
ronment with a high-level API. This approach offers increased
ease of use and higher performance over existing systems for large
scale learning. We demonstrate the effectiveness of KeystoneML
in achieving high quality statistical accuracy and scalable training
using real world datasets in several domains.

I. INTRODUCTION

Today’s advanced analytics applications increasingly use
machine learning (ML) as a core technique in areas ranging
from business intelligence to recommendation to natural lan-
guage processing [1] and speech recognition [2]. Practitioners
build complex, multi-stage pipelines involving feature extrac-
tion, dimensionality reduction, data transformations, and train-
ing supervised learning models to achieve high accuracy [3].
However, current systems provide little support for automating
the construction and optimization of these pipelines.

To assemble such pipelines, developers typically piece to-
gether domain specific libraries [4], [5] for feature extraction
and general purpose numerical optimization packages [6],
[7] for supervised learning. This is often a cumbersome and
error-prone process [8]. Further, these pipelines need to be
completely re-engineered when the training data or features
grow by an order of magnitude–often the difference between
an application that provides good statistical accuracy and one
that does not [9]. As no broader system has purview of the end-
to-end application, only narrow optimizations can be applied.

These challenges motivate the need for a system that
• Allows users to specify end-to-end ML applications in
a single system using high level logical operators.
• Scales out dynamically as data volumes and problem
complexity change.
• Automatically optimizes these applications given a li-
brary of ML operators and the user’s compute resources.

While existing efforts in the data management commu-
nity [10], [11], [7] and in the broader machine learning systems
community [6], [12], [13] have built systems to address some
of these problems, each of them misses the mark on at least
one of the points above.

1. Pipeline Specification 2. Logical Operator DAG

3. Optimized Physical DAG 4. Distributed Training

val pipe =
 Preprocess andThen
 Featurize andThen
 (Est, data, labels)

Fig. 1: KeystoneML takes a high-level ML application speci-
fication, optimizes and trains it in a distributed environment.
The trained pipeline is used to make predictions on new data.

We present KeystoneML, a framework for ML pipelines
designed to satisfy the above requirements. Fundamental to the
design of KeystoneML is the observation that model training is
only one component of an ML application. While a significant
body of recent work has focused on high performance algo-
rithms [14], [15], and scalable implementations [16], [7] for
model training, they do not capture the featurization process
or the logical intent of the workflow. KeystoneML provides
a high-level, type-safe API (Figure 1) built around logical
operators to capture end-to-end applications.

To optimize ML pipelines, database query optimization
provides a natural motivation for the core design of such a
system [17]. However, compared to relational database query
optimization, ML applications present an additional set of
concerns. First, ML operators are often iterative and may
require multiple passes over their inputs, presenting opportu-
nities for data reuse. Second, many ML operators provide only
approximate answers to their inputs [15]. Third, numerical data
properties such as sparsity and dimensionality are a necessary
source of information when selecting optimal execution plans
and conventional optimizers do not consider them. Finally, the
system should be aware of the computation-vs-communication
tradeoffs inherent in distributed processing [11], [6] and
choose appropriate distributed execution strategies.

To address these challenges we develop techniques to do
both per-operator optimization and end-to-end pipeline op-
timization for ML pipelines. We use a cost-based optimizer
that accounts for both computation and communication costs
and our cost model can easily accommodate new operators
and hardware configurations. To determine which intermediate
states are materialized in memory during iterative execution,
we formulate an optimization problem and present a greedy
algorithm that works efficiently and accurately in practice.

We measure the importance of cost-based optimization and
its associated overheads using real-world workloads from
computer vision, speech and natural language processing. We
find that end-to-end optimization can improve performance
by 7× and that physical operator optimizations combined
with end-to-end optimizations can improve performance by
up to 15× versus unoptimized execution. We show that in our
experiments, poor physical operator selection can result in up
to a 260× slowdown. Using an image classification pipeline
on over 1M images [3], we show that KeystoneML provides
linear performance scalability across various cluster sizes,
and statistical performance comparable to recent results [18],
[3]. Additionally, KeystoneML can match the performance of
a specialized phoneme classification system on a BlueGene
supercomputer while using 8× fewer resources.

In summary, we make the following contributions:
• We present KeystoneML, a system for describing ML
applications using high level logical operators. Key-
stoneML enables end-to-end optimization of ML appli-
cations at both the operator and pipeline level.
• We demonstrate the importance of physical operator
selection in the context of input characteristics of three
commonly used logical ML operators, and propose a cost
model for making this selection.
• We present and evaluate an initial set of whole-pipeline
optimizations, including a novel algorithm that automati-
cally identifies a subset of intermediate data to materialize
to speed up pipeline execution.
• We evaluate these optimizations in the context of real-
world pipelines in a diverse set of domains: phoneme
classification, image classification, and textual sentiment
analysis, and demonstrate near-linear scalability over
100s of machines with strong statistical performance.
• We compare KeystoneML with several recent systems
for large-scale learning and demonstrate superior runtime
from our optimization techniques and scale-out strategy.

KeystoneML is open source software1 and is being used in
scientific applications in solar physics [19] and genomics [20]

II. PIPELINE CONSTRUCTION AND CORE APIS

In this section we introduce the KeystoneML API that can
be used to express end-to-end ML pipelines. Each pipeline is
composed a number of operators that are chained together.
For example, Figure 2 shows the KeystoneML source code

1http://www.keystone-ml.org/

val textClassifier = Trim andThen
LowerCase andThen
Tokenizer andThen
NGramsFeaturizer(1 to 2) andThen
TermFrequency(x => 1) andThen
(CommonSparseFeatures(1e5), data) andThen
(LinearSolver(), data, labels)

val predictions = textClassifier(testData)

Fig. 2: A text classification pipeline is specified using a small
set of logical operators.

trait Transformer[A, B] extends Pipeline[A, B] {
def apply(in: Dataset[A]): Dataset[B] = in.map(apply)
def apply(in: A): B

}

trait Estimator[A, B] {
def fit(data: Dataset[A]): Transformer[A, B]

}

trait Optimizable[T, A, B] {
val options: List[(CostModel, T[A,B])]
def optimize(sample: Dataset[A], d: ResourceDesc): T[A,B]

}

class CostProfile(flops: Long, bytes: Long, network: Long)

trait CostModel {
def cost(sample: Dataset[A], workers: Int): CostProfile

}

trait Iterative {
def weight: Int

}

Fig. 3: The KeystoneML API consists of two extendable
operator types and interfaces for optimization.

for a complete text classification pipeline. We next describe
the building blocks of our API.

A. Logical ML Operators

Conventional analytics queries are typically composed using
a small number of well studied relational database operators.
This well-defined environment enables important optimiza-
tions. However, ML applications lack such an abstraction
and practitioners typically piece together imperative libraries.
Recent efforts have proposed using linear algebra operators
such as matrix multiplication [11], convex optimization rou-
tines [21] or multi-dimensional arrays as logical building
blocks [22].

In contrast, with KeystoneML we propose a design where
high-level ML operations (such as PCA, LinearSolver)
are used as building blocks. Our approach has two major ben-
efits: First, it simplifies building applications. Even complex
pipelines can be built using just a handful of operators. Second,
this higher level abstraction allows us to perform a wider range
of optimizations. Our key insight here is that there are usually
multiple well studied algorithms for a given ML operator, but
that their performance and statistical characteristics vary based
on the inputs and system configuration. We next describe the
API for operators in KeystoneML.

Pipelines are composed of operators. Transformers and
Estimators are two abstract types of operators in KeystoneML.
An operator is a function which operates on zero or more
inputs to produce some output. A logical operator satisfies

trait Pipeline[A,B] {
def andThen[C](next: Pipeline[B, C]): Pipeline[A, C]
def andThen[C](est: Estimator[B, C], data: Dataset[A]):

Pipeline[A, C]
// Combine the outputs of branches into a sequence
def gather[A, B](branches: Seq[Pipeline[A, B]]):

Pipeline[A, Seq[B]]
}

Fig. 4: Transformers and Estimators are chained using a syntax
designed to allow developers to incrementally build pipelines.

some logical contract. For example, it takes an image and
converts it to grayscale. Every logical operator must have
at least one physical operator associated with it which im-
plements its logic. Logical operators with multiple physical
implementations are candidates for optimization. They are
marked Optimizable and have a set of CostModels as-
sociated with them. Operators that are iterative with respect to
their inputs are marked Iterative. It is in general difficult
to identify a priori the exact number of iterations an iterative
ML algorithm will take to converge to a solution. However,
in our system each iterative algorithm is parameterized with a
maximum number of epochs over the dataset and we use this
as an estimate of the number of times an operator will reuse
its input. For the whole-pipeline optimization discussed in
Section IV-C the fact that an input is reused is more important
than how many times it is reused.

A Transformer is an operator that can be applied to individ-
ual data items (or to a collection of items) and produces a new
data item (or a collection of data items)–it is a deterministic
unary function without side-effects. Examples of Transformers
in KeystoneML include basic data transformations, feature
extractors and model application. The deterministic and side-
effect free properties affords the ability to reorder and optimize
the execution of the functions without changing the result.

An Estimator is applied to a distributed collection of data
items and produces a Transformer–it is a function generating
function. ML algorithms provided by the KeystoneML Stan-
dard Library are Estimators, while featurizers are Transform-
ers. For example, LinearSolver is an Estimator that takes a
data set and labels, finds the linear model which minimizes the
square loss between the training data and labels, and produces
a Transformer that can apply this model to new data.

B. Pipeline Construction

Transformers and Estimators are chained together into a
Pipeline using a consistent set of rules. The chaining meth-
ods are summarized in Figure 4. In addition to linear chaining
of nodes using andThen, KeystoneML’s API allows for
pipeline branching. When a developer calls andThen a new
Pipeline object is returned. By calling andThen multiple
times on the same pipeline, users can create multiple pipelines
that branch out. Developers concatenate the output of multiple
pipelines of using gather. Redundancy is eliminated via
common sub-expression optimization (Section IV). We find
these APIs are sufficient for a number of ML applications
(Section V), but expect to extend them over time.

Grayscaler SIFT
Extractor

Reduce
Dimensions

Fisher
Vector Normalize

Column
Sampler

Linear
Map

PCA Column
Sampler GMM Linear

Solver

Grayscale

PCA GMM

SIFT
Weighted

Linear Solver

Top 5
Classifier

Fisher Vector Normalize Top 5
Classifier

Training
Labels

Fig. 5: A pipeline DAG for image classification. Estimators
are shaded.

C. Pipeline Execution
KeystoneML is designed to run with large, distributed

datasets on commodity clusters. Our high level API and opti-
mizers can be executed using any distributed data-flow engine
and we chose Apache Spark as the first execution backend.
The execution flow of KeystoneML is shown in Figure 1.
First, developers specify pipelines using the KeystoneML APIs
described above. As calls to these APIs are made, KeystoneML
incrementally builds an operator DAG for the pipeline. An
example operator DAG for image classification is shown in
Figure 5. Once a pipeline is applied to some data, this DAG is
then optimized using a set of optimizations described below–
we call this stage optimization time. Once the application has
been optimized, the DAG is traversed depth-first and operators
are executed one at a time, with nodes up until pipeline break-
ers (i.e. Estimators) packed into the same job–this stage is
runtime. This lazy optimization procedure gives the optimizer
full information about the application in question. We now
consider the optimizations made by KeystoneML.

III. OPERATOR-LEVEL OPTIMIZATION

In this section we describe the operator-level optimization
procedure used in KeystoneML. Similar to database query
optimizers, the goal of the operator-level optimizer is to choose
the best physical implementation for every machine learning
operator in the pipeline. This is challenging to do because
operators in KeystoneML are distributed i.e. they involve
computation and communication across the cluster. Operator
performance may also depend on statistical properties like
sparsity of input data and level of accuracy desired. Finally, as
discussed in Section II, KeystoneML consists of a set of high-
level operators. The advantage of having high-level operators
is that we can perform more wide-ranging optimizations. But
this makes designing an optimizer more challenging because
unlike relational operators or linear algebra [11], the set of
operators in KeystoneML is not closed. We next discuss how
we address these challenges.
Approach: The approach we take in KeystoneML is to de-
velop a cost-based optimizer that splits the cost model into
two parts: an operator-specific part and a cluster-specific part.
The operator-specific part models the computation and com-
munication time given statistics of the input data and number
of workers and the cluster specific part is used to weigh their
relative importance. More formally, the cost estimate for each
physical operator, f can be expressed as:

c(f,As, R) = Rexeccexec(f,As, Rw)+Rcoordccoord(f,As, Rw)

Where f is the operator in question, As contains statistics
of a dataset to be used as its input, and R, the cluster resource

descriptor represents the cluster computing, memory, and net-
working resources available. The cluster resource descriptor is
collected via configuration data and microbenchmarks. Statis-
tics captured include per-node CPU throughput (in GFLOP/s),
disk and memory bandwidth (GB/s), and network speed
(GB/s), as well as information about the number of nodes
available. As is determined through a process we will discuss
in Section IV. Rw is the number of cluster nodes available.

The functions, cexec, and ccoord are developer-defined
operator-specific functions (defined as part of the operator
CostModel) that describe execution and coordination costs
in terms of the longest critical path in the execution graph
of the individual operators [23], e.g. the most FLOPS used
by a node in the cluster or the amount of data transferred
over the most loaded link. Such functions are also used in
the analysis of parallel algorithms [24] and are well known
for common linear algebra based operators. Rexec and Rcoord
are determined by the optimizer from the cluster resource
descriptor (R) and capture the relative speed of local and
network resources on the cluster.

Splitting the cost model in this fashion allows the the
optimizer to easily adapt to new hardware (e.g., GPUs or
Infiniband networks) because operator developers only need
to implement a CostModel and the system accounts for
hardware properties. These cost models are approximate and
the cost c need not be equal to the actual running time of the
operator. As in conventional query optimizers, the goal of the
cost model is to avoid bad decisions, which a roughly accurate
model will do. When two operators have nearly equivalent
cost, either should be an acceptable choice. We next illustrate
the cost functions for three central operators in KeystoneML
and show how input properties affect performance.

Linear Solvers are supervised Estimators that learn a linear
map X ∈ Rd×k between an input dataset A ∈ Rn×d to a
labels dataset B ∈ Rn×k by finding the X which minimizes
the value ||AX −B||F . In a multi-class classification setting,
n is the number of examples or data points, d the number
of features and k the number of classes. In the KeystoneML
Standard Library we have several implementations of linear
solvers, distributed and local, including

• Exact solvers [25] that compute closed form solutions
to the least squares loss and return an X to high precision.
• Block solvers that partition the features into a set of
blocks and use second-order Jacobi or Gauss-Seidel [26]
updates to converge to the right solution.
• Gradient based methods like SGD [15] or L-BFGS [27]
which perform iterative updates using the gradient and
converge to a globally optimal solution.

Table I summarizes the cost model for each method. Constants
are omitted for readability but are necessary in practice.

To illustrate these cost tradeoffs empirically, we vary the
number of features generated by the featurization stage of
two different pipelines and measure the training time and the
training loss. We compare the methods on a 16 node cluster.

Algorithm Compute Network Memory
Local QR O(nd(d+ k)) O(n(d+ k)) O(d(n+ k))

Dist. QR O(
nd(d+k)

w
) O(d(d+ k)) O(nd

w
+ d2)

L-BFGS O(insk
w

) O(idk) O(ns
w

+ dk)

Block Solve O(
ind(b+k)

w
) O(id(b+ k)) O(nb

w
+ dk)

TABLE I: Resource requirements for linear solvers. w is the
number of workers in the cluster, i the number of passes over
the dataset. For the sparse solvers s is the the average number
of non-zero features per example, and b is the block size for
the block solver. Compute and Memory requirements are per-
node, while network requirements are in terms of the data sent
over the most loaded link.

●

●

●

●

●

●

Amazon TIMIT

100

1000

10000

10

100

1000

1024 2048 4096 8192 16384 1024 2048 4096 8192 16384

Number of Features

T
im

e
(s

)
Solver ● Exact Block Solver LBFGS

Fig. 6: A poor choice of solver can mean orders of magnitude
difference in runtime. Runtime for exact solve grows quadrat-
ically in the number of features and times out with 4096
features for Amazon and 16384 features for TIMIT running
on 16 c3.4xlarge nodes.

On an Amazon Reviews dataset (see Table IV) with a text
classification pipeline, as we increase the number of features
from 1k to 16k we see in Figure 6 that L-BFGS performs 5-
20× faster than the exact solver and 26-260× faster than the
block-wise solver. Additionally the exact solver crashes for
greater than 4k features as the memory requirements are too
high. The reason for this speedup is that the features generated
in text classification problems are sparse and the L-BFGS
solver exploits the sparse inputs to calculate gradients cheaply.

The optimal solver choice does not always stay the same
as we increase the problem size or as sparsity changes. For
the TIMIT dataset, which has dense features, we see that the
exact solver is 3-9× faster than L-BFGS for smaller number of
features. However when the number of features goes beyond
8k we see that the exact solver becomes slower than the block-
wise solver which is also 2-3× faster than L-BFGS.

Principal Component Analysis (PCA) is an Estimator used
for tasks ranging from dimensionality reduction to whitening
to visualization. PCA takes an input dataset A in Rn×d, and a
value k and produces a Transformer which can apply a matrix
P in Rd×k, where P consists of the first k eigenvectors of
the covariance matrix of A. The P matrix can be found using
Singular Value Decomposition (SVD) or via an approximate
algorithm, Truncated SVD [28]. Both methods can be dis-
tributed, and their resource requirements are shown in Table II.

Algorithm Compute Network Memory

SVD O(nd2) O(nd) O(nd+ d2)
TSVD O(ndk + ink2) O(nd) O(nd+ dk)

Dist. SVD O(nd2

w
) O(d2) O(nd

w
+ d2)

Dist. TSVD O(ndk+ink2

w
) O(i(nk + dk)) O(nd

w
+ dk)

TABLE II: Resource requirements for PCA Algorithms. For
these algorithms, k is the number of principal components
requested. All other quantities are defined as in Table I.

d = 256 d = 4096

k = 1 16 64 k = 16 64 1024

n = 104

SVD 0.1 0.1 0.1 26 26 26
TSVD 0.2 0.3 0.4 3 6 34

Dist. SVD 1.7 1.7 1.7 106 106 106
Dist. TSVD 4.9 3.8 5.3 6 22 104

n = 106

SVD 11 11 11 x x x
TSVD 14 30 65 x x x

Dist. SVD 2 2 2 260 260 260
Dist. TSVD 16 59 262 75 1,326 8,310

TABLE III: Comparison of runtimes (in seconds) for approx-
imate and exact PCA operators across different dataset sizes.
A dataset has n examples and d features. k is an algorithm
input. An x indicates that the operation did not complete.

To better illustrate how the choice of a PCA implementation
affects the run time, we construct a micro-benchmark that
varies problem size along n, d, and k, and execute both local
and distributed implementations of the approximate and exact
algorithm on a 16-node cluster. In Table III, we can see that as
data volumes increase in n and d it makes sense to run PCA
in a distributed fashion, while for relatively small values of k,
it can make sense to use the approximate method.

Convolution is a critical building block of Signal, Speech,
and Image Processing pipelines. In image processing, the
Transformer takes in an Image of size n× n× d and applies
a bank of b filters (each of size k × k, where k < n) to the
Image and returns the b resulting convolved images of size
m×m, where m = n− k + 1. There are three main ways to
implement convolutions: via a matrix-vector product scheme
when convolutions are separable, using BLAS matrix-matrix
multiplication [29], or via a Fast Fourier Transform (FFT) [30].

The matrix-vector product scheme takes O(dbk(n − k +
1)2+ bk3) time. The matrix-matrix multiplication scheme has
a cost of O(dbk2(n− k+ 1)2). The FFT based scheme takes
O(6dbn2 log n+ 4dbn2), and does not depend on k.

To illustrate the tradeoffs between these methods, in Fig-
ure 7, we vary the size of the convolution filter, k, and use
representative input images and batch sizes. For small values
of k, we see that BLAS is fastest operator. However, as k
grows, the algorithm’s dependence on k2 makes this approach
inappropriate. If the filters are separable, it is faster to use the

●
●

●
●

● ● ● ● ● ● ● ●●●●

100

1000

10000

2 4 6 10 20 30

Convolution Size (k)

T
im

e
(m

s)

Strategy ● Separable BLAS FFT

Fig. 7: Time to perform 50 convolutions on a 256x256 3-
channel image. As k increases, the optimal method changes.

matrix-vector algorithm. The FFT algorithm does not depend
on k and thus performs the same regardless of k.
Cost Model Evaluation: To evaluate how well our cost-model
works, we compared the physical operator chosen by our
optimizer against the best choice from empirically measured
values for linear solvers (Figure 6) and PCA (Table III). We
found that our optimizer made the right choice 90% of the
time for linear solvers and 84% of the time for PCA. In
both cases we found that the wrong choices were made when
the running time of two operators were close to each other
and thus the approximate cost model did not severely impact
overall performance. For example, for the linear solver with
4096 dense features, the optimizer chooses the BlockSolver
but empirically the Exact solver is about 30% faster.

As seen from the three examples above, the choice of
optimal physical execution depends on hardware properties
and on properties of the input data. Thus, choices made in
support of operator-level optimization depend on upstream
processing and cheaply estimating data properties at various
points in the pipeline is an important problem. We next discuss
how operator chaining semantics can help in achieving this.

IV. WHOLE-PIPELINE OPTIMIZATION

A. Execution Subsampling

Operator optimization in KeystoneML requires the collec-
tion of statistics about input data at each pipeline stage. For
example, a text featurization operator might map a string into
a 10, 000-dimensional sparse feature vector. Without statistics
about the input (e.g. vector sparsity) after featurization, a
downstream operator will be unable to make its optimization
decision. As such, dataset statistics (As) are determined by
first estimating the size of the initial input dataset (in records),
and optimizing the first operator in the pipeline with statistics
derived from a sample of the input data. The optimized
operator is then executed on the sample, and subsequent
operators are optimized. This procedure continues until all
nodes have been optimized. Along the way, we form a pipeline
profile, which includes not just the information needed to form
As at each step, but also information about operator execution
time and memory consumption of each operator’s execution
on the sample. We use the pipeline profile to inform the

Automatic Materialization optimization described below. We
also evaluate the overheads from profiling in Section V-C.

B. Common Sub-expression Elimination

One of the whole-pipeline rewrites done by KeystoneML is
a form of common sub-expression elimination. It is common
for training data or the output of featurization stages to be used
in several pipeline stages. KeystoneML identifies and merges
such common sub-expressions to enable computation reuse.

C. Automatic Materialization

Cache management and automatic selection of materialized
views are important optimizations used by database manage-
ment systems [31] and they have been studied in the context
of analytical query systems [32], and feature selection [33].
For ML workloads, materialization of intermediate data is
very important for performance because the iterative nature of
these workloads means that recomputation costs are multiplied
across iterations. By capturing the iterative nature of the
pipelines in the DAG, our optimizer is capable of identifying
opportunities for reuse, eliminating redundant computation.
We next describe a formulation for the materialization problem
in iterative pipelines and propose an algorithm to automatically
select a good set of intermediate objects to materialize in order
to speed up ML pipeline execution.

Given the depth-first execution model and the deterministic
and side-effect free nature of KeystoneML operators, a natural
strategy is materialization of operator outputs that are visited
multiple times during the execution. This optimization works
well in the absence of memory constraints.

In many applications we have built with KeystoneML,
intermediate output can grow to multiple terabytes in size, even
for modestly sized inputs. On current hardware, this output is
too big to fit in memory, even with hundreds of GB of memory
per machine. Commonly used caching policies such as LRU
can result in suboptimal run times because the decision to
cache a large object (e.g. intermediate features) may evict a
smaller object that is needed later in the pipeline and may be
expensive to recompute (e.g. image features).

Our goal is an algorithm that automatically selects the items
to materialize in the presence of memory constraints, given
that we know how often the objects will be accessed, that we
can estimate their size, and that we can estimate the runtime
associated with materializing them.

We formulate the problem as follows: Given a memory
budget, we want to find the set of outputs to include in the
cache set that minimizes total execution time.

Let v be our node of interest in a pipeline G, t(v) is the
time taken to do the computation that is local to node v per
iteration, C(v) is the number of times a node will by called by
its direct successors during execution, and wv is the number of
times a node iterates over its inputs. T (n), the total execution
time of the pipeline up to and including node v is:

T (v) =

wv(t(v) +
∑

c∈χ(v)
T (c))

C(v)κv

1 Algorithm GreedyOptimizer
input : G, t, size, memSize
output: cache

2 cache ← ∅;
3 memLeft ← memSize;
4 next ← pickNext (G, cache, size, memLeft, t);
5 while nextNode 6= ∅ do
6 cache ← cache ∪ next;
7 memLeft ← memLeft - size(next);
8 next ← pickNext (G, cache, size, memLeft, t);
9 end

10 return cache;
1 Procedure pickNext()

input : G, cache, size, memLeft, t
output: next

2 minTime ← ∞;
3 next ← ∅;
4 for v ∈ nodes(G) do
5 runtime ← estRuntime (G, cache ∪ v, t);
6 if runtime < minTime & size(v) < memLeft then
7 next ← v;
8 minTime ← runtime;
9 end

10 end
11 return next;

Algorithm 1: The caching algorithm in KeystoneML builds
a cache set by finding the node that will maximize time saved
subject to memory constraints. estRuntime is a procedure
that computes T (v) for a given DAG, cache set, and node.

where κv ∈ {0, 1} is a binary indicator variable signifying
whether a node is cached or not, and χ(v) represents the direct
predecessors of v in the DAG.

Where C(v) is defined as follows:

C(v) =

∑

p∈π(v)
wpC(p)

κp , |π(v)| > 0

1, otherwise

where π(v) represents the direct successors of v in the DAG.
Because of the DAG structure of the pipeline graph, we are
guaranteed to not have any cycles in this graph, thus both T (v)
and C(v) are well-defined.

We can state the problem of minimizing pipeline execution
time formally as an optimization problem as follows:

min
κ
T (sink(G))

s.t.
∑
v∈V

size(v)κv ≤ memSize

Where sink(G) is the pipeline terminus, size(v) the size
of v’s output, and memSize the memory constraint.

This problem can also be thought of as problem of finding
an optimal cache schedule. It is tempting to reach for classical
results [34], [35] in the optimal paging literature to identify an
optimal or near-optimal schedule for this problem. However,
neither of these results matches our problem setting fully.
In particular, Belady’s algorithm is only optimal when each
item has a fixed cost to bring into cache (as is common
in reads from a two-level memory hierarchy), while in our

problem these costs are variable and depend heavily on the
computation time to materialize them. e.g. recomputing may
be two orders of magnitude faster than reading from disk but
an order of magnitude slower than reading from memory, and
each operator has a different computational profile. Second,
algorithms for the weighted paging problem don’t take into
account weights that are dependent on the current cache state.

However, it is possible to rewrite the optimization problem
above as a mixed-integer linear program (ILP), but in our
experiments the cost of solving these problems was prohibitive
for practical use at optimization time. Instead, we implement
the greedy Algorithm 1. Given an unoptimized pipeline DAG,
the algorithm chooses to cache the node which will lead to the
largest savings in terms of execution time but whose output
fits in available memory. This process proceeds iteratively
until either no benefit to additional caching is possible or all
available memory has been used.

V. EVALUATION

To evaluate the effectiveness of KeystoneML, we explore
its ability to efficiently support large scale ML applications
in three domains. We also compare KeystoneML with other
systems for large scale ML and show how our high-level oper-
ators and optimizations can improve performance. Following
that we break down the end-to-end benefits of the previously
discussed optimizations. Finally, we assess the system’s ability
to scale and show that KeystoneML scales well by enabling
the development of scalable, composable components.

Implementation: We implement KeystoneML on top of
Apache Spark, a cluster computing engine that has been shown
to have good scalability and performance for many iterative
ML algorithms [7]. In KeystoneML we added an additional
cache-management layer that is aware of the multiple Spark
jobs that comprise a pipeline, and implemented ML operators
in the KeystoneML Standard Library that are absent from
Spark MLlib. Porting KeystoneML to work with other dis-
tributed computing systems would require that the presence
of a distributed collections API that supports the MapReduce
paradigm as well as predictable communication via broadcast,
all-to-one reduce operations, and aggregation trees. These
primitives also exist in systems like Apache Tez, DryadLINQ,
FlumeJava, Apache Flink and we plan to study the complexity
of porting KeystoneML to these runtimes in the future.

Experiments are run on Amazon EC2 r3.4xlarge in-
stances. Each machine has 8 physical cores, 122 GB of
memory, and a 320 GB SSD, and was running Apache Spark
1.3.1, Scala 2.10, and HDFS from the CDH4 distribution of
Hadoop. We have also run KeystoneML on Apache Spark
1.5, 1.6 and not encountered any performance regressions.
We use OpenBLAS for numerical operations. We compare
KeystoneML with the distributed version of Vowpal Wabbit
(VW) [6], [36] (v8.0) and SystemML [11] (v0.9) running
on the same Spark version. If not otherwise specified, we
run on a 16-node cluster. Comparisons among KeystoneML,
SystemML, VW, and TensorFlow were performed on identical
EC2 instance types.

A. End-to-End ML Applications

To demonstrate the flexibility and generality of the Key-
stoneML API, we implemented end-to-end machine learning
pipelines in several domains including text classification, im-
age classification and speech recognition. We next describe
these pipelines and compare statistical accuracy and perfor-
mance results obtained using KeystoneML to previously pub-
lished results. We took every effort to recreate these pipelines
as they were described by their authors, and made sure that
our pipelines achieved comparable or better statistical results
than those reported by each benchmark’s respective authors.

The operators used to implement these applications are
outlined in Table V, and the datasets used to train them are
described in Table IV. In each case, the datasets significantly
increase in size as part of the featurization process, so at model
fitting time the size is substantially larger than the raw data,
as shown in the last two columns of the table. The Solve
Size is the size of the dataset that is input to a Linear Solver.
This may be too large for available cluster memory, as is the
case for TIMIT. Accuracy results on each dataset achieved
with KeystoneML as well as those achieved with the original
authors code or (where code was unavailable) as reported in
their respective works, are reported in Table VI.

Text Analytics: KeystoneML makes it simple for devel-
opers to scale their text pipelines to large datasets. Combined
with libraries like CoreNLP [37], KeystoneML allows for scal-
able implementations of many text classification pipelines such
as the one shown in Figure 2. We evaluated a text classification
pipeline based on [1] on the Amazon Reviews dataset of 65m
product reviews [38] with 100k sparse features. We find that
KeystoneML matches the statistical performance of a Vowpal
Wabbit [6] pipeline when run on identical resources with the
same solver, finishing in 440s.

Kernel SVM for Speech Recognition: Kernel SVMs can be
used in many classification scenarios as they can approximate
any function. Often their performance has been shown to be
much better than simpler generalized linear models [39]. Ker-
nel evaluations can be efficiently approximated using random
feature transformations [40], [41] and pipelines are a natural
way to specify such transformations. Statistical operators like
FFTs and cosine transformations and APIs to merge features
help us succinctly describe the pipeline in KeystoneML. We
evaluated a kernel SVM solver on the TIMIT dataset with
528k features. Using KeystoneML this pipeline runs in 138
minutes on 64 machines. By contrast, a 256 node IBM Blue
Gene machine with 16 cores per machine takes around 120
minutes [41]. In this case, while KeystoneML may be 11%
slower, it is using only 1

8 the number of cores to solve this
computationally demanding problem.

Image Classification: Image classification systems are
useful in many settings. As images carry local information
(i.e. information specific to where in the image a feature
appears), locality sensitive techniques, e.g. convolutions or
spatially-pooled fisher vectors [3], can be used to generate
training features. KeystoneML makes it easy to use modular,

Dataset Train Size Num Train Test Size Num Test Classes Type Solve Features Solve Size
(GB) (GB) (GB)

Amazon 13.97 65000000 3.88 18091702 2 text 100000 (0.1% sparse) 89.1
TIMIT 7.5 2251569 0.39 115934 147 440-dim vector 528000 (dense) 8857

ImageNet 74 1281167 3.3 50000 1000 10k pixels image 262144 (dense) 2502
VOC 0.428 5000 0.420 5000 20 260k pixels image 40960 (dense) 1.52

CIFAR-10 0.500 500000 0.001 10000 10 1024 pixels image 135168 (dense) 62.9
Youtube8m 22.07 5786881 6.3 1652167 4800 1024-dim vector 1024 (dense) 44.15

TABLE IV: Dataset Characteristics. While raw input sizes may be modest, intermediate state may grow by orders of magnitude
before being input to a solver.

Task Type Operators Used
Amazon Text LowerCase, Tokenize
Reviews NGrams, TermFrequency

Classification LogisticRegression
TIMIT Speech RandomFeatures, Pipeline.gather

Kernel SVM LinearSolver
ImageNet Image GrayScale, SIFT, LCS, PCA, GMM

Classification FisherVector, LinearSolver
VOC Image GrayScale, SIFT, PCA, GMM

Classification FisherVector, LinearSolver
CIFAR-10 Image Windower, PatchExtractor

Classification ZCAWhitener, Convolver, LinearSolver
SymmetricRectifier, Pooler

TABLE V: Operators used in constructing pipelines for
datasets in Table IV.

efficient implementations of image processing operators like
SIFT [42] and Fisher Vectors [3], [18]. Many of the same
operators we consider here are necessary components of
“deep-learning” pipelines [43] which typically train neural
networks via stochastic gradient descent and back-propagation.

Using the VOC dataset, we implement the pipeline de-
scribed in [18]. This pipeline executes end-to-end on 32
nodes using KeystoneML in just 7 minutes. Using the authors
original source code the same workload takes 1 hour and 27
minutes to execute on a single 16-core machine with 256 GB
of RAM–KeystoneML achieves a 12.4× speedup with 16×
the cores. We evaluated a Fisher Vector based pipeline on
ImageNet with 256k features. The KeystoneML pipeline runs
in 4.5 hours on 100 machines. The original pipeline takes four
days [44] to run using a highly specialized codebase on a 16-
core machine, a 21× speedup on 50× the cores.

In summary, using KeystoneML we achieve one to two
orders of magnitude improvement in end-to-end throughput
versus a single node, and equivalent or better performance
over cluster systems running similar workloads. These im-
provements mean much quicker ML application development
which leads to higher developer productivity. Next we compare
KeystoneML to other large scale learning systems.

B. KeystoneML vs. Other Systems

We compare runtimes for the KeystoneML solver with both
a specialized system, Vowpal Wabbit [6], built to estimate
linear models, and SystemML [11], a general purpose ML

2We report accuracy on 64k features for ImageNet, while time is reported
on 256k features due to lack of consistent reporting by the original authors.
The workloads are otherwise similar.

Dataset KeystoneML Reported
Accuracy Time (m) Accuracy Time (m)

Amazon [1] 91.6% 3.3 - -
TIMIT [2] 66.06% 138 66.33% 120

ImageNet [3]2 67.43% 270 66.58% 5760
VOC 2007 [18] 57.2% 7 59.2% 87
CIFAR-10 [45] 84.0% 28.7 84.0% 50.0

TABLE VI: Time to Accuracy with KeystoneML obtained on
ML pipelines described in the relevant publication.

Amazon Binary TIMIT

10
30

100
300

1000

1024 2048 4096 8192 16384 1024 2048 4096 8192 16384
Features

T
im

e
(s

)

System KeystoneML Vowpal Wabbit SystemML

Fig. 8: KeystoneML’s optimizing linear solver outperforms
both a specialized and optimizing ML system for two problems
across feature sizes. Times are on log scale.

system, which optimizes the implementation of linear algebra
operators used in specific algorithms (e.g., Conjugate Gradient
Method), but does not choose among logically equivalent
algorithms. We compare solver performance across different
feature sizes for two binary classification problems: Amazon
and a binary version of TIMIT. The systems were run with
identical inputs and objective functions, and we report end-to-
end solve time. For this comparison, we solve binary problems
because SystemML does not include a multiclass linear solver.

The results are shown in Figure 8. The optimized solver in
KeystoneML outperforms both Vowpal Wabbit and SystemML
because it selects an appropriate algorithm to solve the logical
problem, as opposed to relying on a one-size fits all operator.
At 1024 features for the Binary TIMIT problem, KeystoneML
chooses to run an exact solve, while from 2048 to 32768
features it chooses a Dense L-BFGS implementation. At 65536
features (not pictured), KeystoneML finishes in 17 minutes,
while SystemML takes 1 hour and 40 minutes to converge to
worse training loss over 10 iterations, a speedup of 5.5×.

The reasons for these performance differences are twofold:
first, since KeystoneML raises the level of abstraction to the
logical level, the system can automatically select, for example,

Machines 1 2 4 8 16 32
TensorFlow (strong) 184 90 57 67 122 292
TensorFlow (weak) 184 135 135 114 xxx xxx
KeystoneML 235 125 69 43 32 29

TABLE VII: Time, in minutes, to 84% accuracy on the CIFAR-
10 dataset with KeystoneML and TensorFlow configured for
both strong and weak scaling. In large weak scaling regimes
TensorFlow failed to converge to a good model.

a sparse solver for sparse data or an exact algorithm when
the number of features is low, or a block solver when the
features are high. In the middle, particularly for KeystoneML
vs. SystemML on the Binary TIMIT dataset, the algorithms are
similar in terms of complexity and access patterns. In this case
KeystoneML is faster because feature extraction is pipelined
with the solver, while SystemML requires a conversion process
for data to be fed into a format suitable for the solver. If we
only consider the solve step of the pipeline, KeystoneML is
roughly 1.5× faster than SystemML for this problem.

TensorFlow is an open source ML system developed by
Google [13]. Developed concurrently to KeystoneML, Tensor-
Flow also represents pipelines as graph of dataflow operators.
However, the design goals of the two systems are fundamen-
tally different. KeystoneML is designed to support horizontally
scalable workloads to offer good scale out performance for
conventional machine learning applications consisting of fea-
turization and model estimation, while TensorFlow is designed
to support neural network models trained via mini-batch SGD
with back-propagation. We compare against TensorFlow v0.8
and adapt a multi-GPU example [45] to a distributed setting
in a procedure similar to [46].

To illustrate the differences, we compare the systems’ time
to achieve a set accuracy on the CIFAR-10 dataset. While
the learning tasks are identical (i.e., make good predictions
on a test dataset, given a training dataset), the workloads are
not identical. Specifically, TensorFlow implements a model
similar to the one presented in [43], while in KeystoneML we
implement a version of the model similar to [47]. TensorFlow
was run with default parameters and we experimented with
strong scaling (fixed 128 image batch size) and weak scaling
(batch size of 128×Machines).

For this workload, TensorFlow achieves its best performance
on 4-node cluster with 32 total CPU cores, running in 57
minutes. Meanwhile, KeystoneML surpasses its performance
at 8 nodes and continues to improve in total runtime out to
32 nodes, achieving a minimum runtime of 29 minutes, or a
1.97× speedup. These results are summarized in Table VII.
We ran TensorFlow on CPUs for the sake of comparability.
Prior benchmarks [45] have shown that the speed of a single
multi-core CPU is comparable to a single GPU; thus the same
pipeline finishes in 50 minutes on a 4 GPU machine.

TensorFlow’s lack of scalability on this task is fundamental
to the chosen model and the algorithm being used to fit it. Min-
imizing a non-convex loss function via minibatch Stochastic
Gradient Descent (SGD) requires coordination of the model

KeystoneML

Pipe Only

None

KeystoneML

Pipe Only

None

KeystoneML

Pipe Only

None

A
m

azon
T

im
it

V
O

C

0 2000 4000 6000

Duration (s)

O
pt

im
iz

at
io

n
Le

ve
l

Stage Optimize Featurize Solve Eval

Fig. 9: Impact of optimization levels on three applications,
broken down by stage.

parameters after a small number of examples are seen. In this
case, the coordination requirements surpass the savings from
parallelism at a small number of nodes. While TensorFlow
has better scalability on some model architectures [48], it
is not scalable for other architectures. By contrast, by using
a communication-avoiding solver we are able to scale out
KeystoneML’s performance on this task significantly further.

Finally, a recent benchmark dataset from YouTube [49]
describes learning pipelines involving featurization with a
neural network [48] followed by a logistic regression model
or SVM. The authors claim that “models train to convergence
in less than a day on a single machine using the publicly-
available TensorFlow framework.” We performed a best-effort
replication of this pipeline using KeystoneML. We are un-
able to replicate the author’s claimed accuracy–our pipeline
achieves 21% mAP while they report 28% mAP. KeystoneML
trains a linear classifier on this dataset in 3 minutes, and a
converged logistic regression model with worse accuracy in 90
minutes (31 batch gradient evaluations) on a 32-node cluster.
The ability to choose an appropriate solver and readily scale
out are the key enablers of KeystoneML’s performance.

We now study the impact of KeystoneML’s optimizations.

C. Optimization Levels

The end-to-end results reported earlier in this section are
achieved by taking advantage of the complete set of optimiza-
tions available in KeystoneML. To understand how important
the per-operator and whole-pipeline optimizations described
in Sections III and IV are we compare three different levels
of optimization: a default unoptimized configuration (None),
a configuration where only whole-pipeline optimizations are
used (Pipe Only) and a configuration with operator-level
and whole-pipeline optimizations (KeystoneML).

Results comparing these levels, with a breakdown of stage-
level timings on the VOC, Amazon and TIMIT pipelines
are shown in Figure 9. For the Amazon pipeline the whole-
pipeline optimizations improve performance by 7×, but the
operator optimizations do not help further, because the Ama-
zon pipeline uses CoreNLP featurizers which do not have
statistical optimizations associated with them, and the default

Fig. 10: The KeystoneML caching strategy outperforms a rule-
based and LRU caching strategy at many levels of memory
constraints and responds well to memory pressure.

L-BFGS solver turns out to be optimal. The performance gains
come from caching intermediate features just before the L-
BFGS solve. For the TIMIT pipeline, run with 16k features,
we see that the end-to-end optimizations only give a 1.3×
speedup but that selecting the appropriate solver results in a
8× speedup over the baseline. Finally in the VOC pipeline
the whole pipeline optimization gives around 3× speedup.
Operator-level optimization chooses good PCA, GMM and
solver operators resulting in a 12× improvement over the
baseline, or 15× if we amortize the optimization costs across
many runs of a similar pipeline. Optimization overheads are
insignificant except for the VOC pipeline. This dataset has
relatively few examples, so the sampling strategy takes more
time relative to the other datasets.

D. Automatic Materialization Strategies

As discussed in Section IV, one key optimization enabled
by KeystoneML’s ability to capture the complete application
DAG to dynamically determine where to materialize reused
intermediate objects, particularly in the presence of memory
constraints. In Figure 10 we demonstrate the effectiveness of
the greedy caching algorithm proposed in Section IV. Since
the algorithm needs local profiles of each node’s performance,
we measured each node’s running time on two samples of 512
and 1024 examples. We then extrapolate the node’s memory
usage and runtime to full scale. We found that memory
estimates from this process are highly accurate and runtime
estimates were within 15% of actual runtimes. If estimates
are inaccurate, we fall back to an LRU replacement policy for
the cache set determined by this procedure. This process is
imperfect, but is adequate at identifying relative running times
and is sufficient for our purpose of resource management.

We compare this strategy with two alternatives–the first is
a simple rule-based approach which only caches the results of
Estimators. This is a sensible rule to follow, as the result of an
Estimator (a Transformer or model) is computationally expen-
sive to acquire and typically holds a small memory footprint.
However, this is not sufficient for most practical pipelines
because if a pipeline contains more than one Estimator, often
the input to the first Estimator will be used downstream, thus
presenting an opportunity for reuse. The second approach is
the standard Least Recently Used (LRU) policy.

From Figure 10 we notice several important trends. First,
the KeystoneML strategy is nearly always better than either of
the other strategies. In the unconstrained case, the algorithm
is going to remember all reused items as late in their journey
through the pipeline as possible. In the constrained case, it
will do as least as well as remembering the (small) estimators
which are by definition reused later in the pipeline. Addition-
ally, the strategy degrades effectively, mixing between the best
performance of the limited-memory rule-based strategy and the
LRU based “cache everything” strategy which works well in
unconstrained settings. As we increased the memory available
to caching per-node, the LRU strategy performed worse for the
Amazon pipeline. Upon further investigation, this is because
LRU does not take into account the cost of materializing
an object and so computationally expensive objects may be
evicted by larger objects at larger cache sizes.

To give a concrete example of the optimizer in ac-
tion, consider the VOC pipeline shown in Figure 5 in
Section II. When memory is not constrained, the outputs
from the SIFT, ReduceDimensions, Normalize and
TrainingLabels are cached. When memory is restricted,
only the output from Normalize and TrainingLabels
are cached. These results show the importance of both per-
operator and whole-pipeline optimizations.

E. Scalability

As discussed in previous sections, KeystoneML’s API de-
sign encourages the construction of scalable operators. How-
ever, some estimators like linear solvers need coordination [25]
among workers to compute correct results. In Figure 11 we
demonstrate the scaling properties from 8 to 128 nodes of
the text, image, and Kernel SVM pipelines on the Amazon,
ImageNet (with 16k features) and TIMIT datasets (with 65k
features) respectively. The ImageNet pipeline exhibits near-
perfect horizontal scalability up to 128 nodes, while the
Amazon and TIMIT pipeline scale well up to 64 nodes.

To understand why the Amazon and TIMIT pipeline do not
scale linearly to 128 nodes, we further analyze the breakdown
of time take by each stage. We see that each pipeline is
dominated by a different part of its computation. The TIMIT
pipeline is dominated by its solve stage, while featurization
dominates the Amazon and ImageNet pipelines. Scaling linear
solvers is known to require coordination [25], which leads di-
rectly to sub-linear scalability of the whole pipeline. Similarly,
in the Amazon pipeline, one of the featurization steps uses an
aggregation tree which does not scale linearly.

Amazon TIMIT ImageNet

0

5

10

15

0

20

40

60

0

100

200

300

400

500

8 16 32 64 128 8 16 32 64 128 8 16 32 64 128
Cluster Size (# of nodes)

T
im

e
(m

in
ut

es
)

Stage
Loading Train Data Featurization Model Solve

Loading Test Data Model Eval

Fig. 11: Time breakdown of workloads by stage. The red line
indicates ideal strong scaling performance over 8 nodes.

VI. RELATED WORK

ML Frameworks: ML researchers have traditionally used
MATLAB or R packages to develop ML routines. The im-
portance of feature engineering has led to tools like scikit-
learn [12] and KNIME [50] adding support for featurization
for small datasets. Further, existing libraries for large scale
ML [51] like Vowpal Wabbit [6], GraphLab [52], MLlib [7],
RIOT [53], DimmWitted [14] focus on efficient implemen-
tations of learning algorithms like regression, classification
and linear algebra routines. In KeystoneML, we focus on
pipelines that include featurization and show how to optimize
performance with end-to-end information. Work in Parameter
Servers [54] has studied how to share model updates. In
KeystoneML we implement a high-level API for linear solvers
and can leverage parameter servers in our architecture.

Closely related to KeystoneML is SystemML [11] which
also uses an optimization based approach to determine the
physical execution strategy of ML algorithms. However, Sys-
temML places less emphasis on support for UDFs and fea-
turization, while instead focusing on linear algebra operators
which have well specified semantics. To handle featurization
we develop an extensible API in KeystoneML which allows for
cost profiling of arbitrary nodes and uses these cost estimates
to make node-level and whole-pipeline optimizations. Other
work [33], [29] has looked at optimizing caching strategies and
operator selection in the regime of feature selection and feature
generation workloads. KeystoneML considers similar prob-
lems in the context of distributed ML operators and end-to-end
learning pipelines. Developed concurrently to KeystoneML is
TensorFlow [13]. While designed to support different learning
workloads the optimizations that are a part of KeystoneML
can also be applied to systems like TensorFlow.

Projects such as Bismarck [21], MADLib [10], and
GLADE [55] have proposed techniques to integrate ML algo-
rithms inside database engines. In KeystoneML, we develop
a high level API and show how we can achieve similar
benefits of modularity and end-to-end optimization while also
being scalable. These systems do not present cross-operator
optimizations and do not consider tradeoffs at the operator
level that we consider in KeystoneML. Finally, Spark ML [56]
represents an early design of a similar high-level API for

machine learning. We present a type safe API and optimization
framework for such a system. The version we present in
this paper differs in its use of type-safe operations, support
for complex data flows, internal DAG representation and
optimizations discussed in Sections III and IV.
Query Optimization, Modular Design, Caching: There
are several similarities between the optimizations made by
KeystoneML and traditional relational query optimizers. Even
the earliest relational query optimizers used multiple physical
implementations of equivalent logical operators, and like many
relational optimizers, the KeystoneML optimizer is cost-based.
However, KeystoneML supports a much richer set of data
types than a traditional relational query system, and our
operators lack some relational algebra semantics, such as
commutativity, limiting the system’s ability to perform certain
optimizations. Further, KeystoneML switches among operators
that provide exact answers vs approximate ones to save time
due to the workload setting. Data characteristics such as
sparsity are not traditionally considered by optimizers.

The caching strategy employed by KeystoneML can be
viewed as a form of view selection for materialized view
maintenance over queries with expensive user-defined func-
tions [31], we focus on materialization for intra-query opti-
mization, as opposed to inter-query optimization [57], [32],
[58], [59]. While much of the related work focuses on the
challenging problem of view maintenance in the presence of
updates, KeystoneML the immutable properties of this state.

VII. FUTURE WORK AND CONCLUSION

KeystoneML represents a significant first step towards
easy-to-use, robust, and efficient end-to-end ML at massive
scale. We plan to investigate pipeline optimizations like node
reordering to reduce data transfers and also look at how
hyperparameter tuning [60] can be integrated into the system.
The existing KeystoneML operator APIs are synchronous and
our existing pipelines are acyclic. In the future we plan
to study how algorithms like asynchronous SGD [54] or
back-propagation can be integrated with the robustness and
scalability that KeystoneML provides.

We have presented the design of KeystoneML, a system that
enables the development end-to-end ML pipelines. By captur-
ing the end-to-end application, KeystoneML can automatically
optimize execution at both the operator and whole-pipeline
levels, enabling solutions that automatically adapt to changes
in data, hardware, and other environmental characteristics.
Acknowledgements: We would like to thank Xiangrui Meng,
Joseph Bradley for their help in design discussions and Henry
Milner, Daniel Brucker, Gylfi Gudmundsson, Zongheng Yang,
Vaishaal Shankar for contributions to the KeystoneML source
code. We would also like to thank Florent Perronnin, Jorge
Sanchez, Thomas Mensink for their help in developing an
image classification pipeline and Vikas Sindhwani for pro-
viding us with the TIMIT dataset. Peter Alvaro, Peter Bailis,
Joseph Gonzalez, Eric Jonas, Sanjay Krishnan, Nick Lanham,
Kay Ousterhout, Aurojit Panda, Ameet Talwarkar, Stephen Tu,
Eugene Wu provided feedback on earlier drafts. This research

is supported in part by NSF CISE Expeditions Award CCF-
1139158, DOE Award SN10040 DE-SC0012463, and DARPA
XData Award FA8750-12-2-0331, and gifts from Amazon Web
Services, Google, IBM, SAP, The Thomas and Stacey Siebel
Foundation, Adatao, Adobe, Apple, Inc., Blue Goji, Bosch,
Cisco, Cray, Cloudera, EMC2, Ericsson, Facebook, Guavus,
HP, Huawei, Informatica, Intel, Microsoft, NetApp, Pivotal,
Samsung, Schlumberger, Splunk, Virdata and VMware.

REFERENCES

[1] C. Manning and D. Klein, “Optimization, maxent models, and condi-
tional estimation without magic,” in HLT-NAACL, Tutorial Vol 5, 2003.

[2] P.-S. Huang, H. Avron, T. N. Sainath et al., “Kernel methods match
deep neural networks on timit,” in ICASSP. IEEE, 2014, pp. 205–209.

[3] J. Sánchez, F. Perronnin, T. Mensink, and J. Verbeek, “Image classifica-
tion with the fisher vector: Theory and practice,” International journal
of computer vision, vol. 105, no. 3, pp. 222–245, 2013.

[4] D. Povey, A. Ghoshal, G. Boulianne, L. Burget et al., “The Kaldi speech
recognition toolkit,” 2011.

[5] G. Bradski and A. Kaehler, Learning OpenCV: Computer vision with
the OpenCV library. O’Reilly Media, Inc., 2008.

[6] J. Langford, L. Li, and A. Strehl, “Vowpal wabbit online learning
project,” 2007.

[7] X. Meng, J. K. Bradley, B. Yavuz, E. R. Sparks et al., “MLlib: Machine
Learning in Apache Spark,” CoRR, vol. abs/1505.06807, 2015.

[8] D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips, D. Ebner,
V. Chaudhary, and M. Young, “Machine learning: The high interest
credit card of technical debt,” in SE4ML: Software Engineering for
Machine Learning (NIPS 2014 Workshop), 2014.

[9] A. Halevy, P. Norvig, and F. Pereira, “The unreasonable effectiveness
of data,” Intelligent Systems, IEEE, vol. 24, no. 2, pp. 8–12, 2009.

[10] J. M. Hellerstein, C. Ré, F. Schoppmann, D. Z. Wang et al., “The
MADlib analytics library: or MAD skills, the SQL,” PVLDB, vol. 5,
no. 12, pp. 1700–1711, 2012.

[11] A. Ghoting, R. Krishnamurthy, E. Pednault, B. Reinwald et al., “Sys-
temML: Declarative machine learning on MapReduce,” in ICDE, 2011.

[12] F. Pedregosa, G. Varoquaux, A. Gramfort et al., “Scikit-learn: Machine
learning in Python,” JMLR, vol. 12, pp. 2825–2830, 2011.

[13] M. Abadi, A. Agarwal, P. Barham, E. Brevdo et al., “TensorFlow: Large-
scale machine learning on heterogeneous systems,” 2015, software
available from tensorflow.org. [Online]. Available: http://tensorflow.org/

[14] C. Zhang and C. Ré, “Dimmwitted: A study of main-memory statistical
analytics,” PVLDB, vol. 7, no. 12, pp. 1283–1294, 2014.

[15] B. Recht, C. Re, S. Wright, and F. Niu, “Hogwild!: A lock-free approach
to parallelizing stochastic gradient descent,” in NIPS, 2011, pp. 693–701.

[16] A. Crotty, A. Galakatos, and T. Kraska, “Tupleware: Distributed machine
learning on small clusters,” IEEE Data Eng. Bull, vol. 37, no. 3, 2014.

[17] T. Kraska, A. Talwalkar, J. C. Duchi, R. Griffith et al., “MLbase: A
Distributed Machine-learning System,” CIDR, 2013.

[18] K. Chatfield, V. Lempitsky, A. Vedaldi, and A. Zisserman, “The devil
is in the details: an evaluation of recent feature encoding methods,” in
British Machine Vision Conference, 2011.

[19] E. Jonas, V. Shankar, M. Bobra, and B. Recht, “Flare prediction using
photospheric and coronal image data,” AGU Fall Meeting, 2016.

[20] “ENCODE-DREAM in-vivo Transcription Factor Binding Site Predic-
tion Challenge,” https://www.synapse.org/#!Synapse:syn6131484, 2016.

[21] X. Feng, A. Kumar, B. Recht, and C. Ré, “Towards a unified architecture
for in-rdbms analytics,” in SIGMOD, 2012.

[22] M. Stonebraker, J. Becla, D. J. DeWitt, K.-T. Lim, D. Maier, O. Ratzes-
berger, and S. B. Zdonik, “Requirements for science data bases and
scidb.” in CIDR, vol. 7, 2009, pp. 173–184.

[23] S. Williams, A. Waterman, and D. Patterson, “Roofline: An Insightful
Visual Performance Model for Multicore Architectures,” CACM, 2009.

[24] G. M. Ballard, “Avoiding communication in dense linear algebra,” Ph.D.
dissertation, University of California, Berkeley, 2013.

[25] J. Demmel, L. Grigori, M. Hoemmen, and J. Langou, “Communication-
optimal parallel and sequential QR and LU factorizations,” SIAM Jour-
nal on Scientific Computing, vol. 34, no. 1, pp. A206–A239, 2012.

[26] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and distributed computation:
numerical methods. Prentice-Hall, Inc., 1989.

[27] W. Chen, Z. Wang, and J. Zhou, “Large-scale l-bfgs using mapreduce,”
in NIPS, 2014, pp. 1332–1340.

[28] N. Halko, P. G. Martinsson, and J. A. Tropp, “Finding Structure with
Randomness: Probabilistic Algorithms for Constructing Approximate
Matrix Decompositions,” SIAM Review, 2011.

[29] F. Abuzaid, S. Hadjis, C. Zhang, and C. Ré, “Caffe con Troll: Shallow
Ideas to Speed Up Deep Learning.” CoRR abs/1504.04343, 2015.

[30] M. Mathieu, M. Henaff, and Y. LeCun, “Fast Training of Convolutional
Networks through FFTs,” ICLR, 2014.

[31] R. Chirkova and J. Yang, “Materialized Views,” Foundations and Trends
in Databases, 2012.

[32] D. C. Zilio, C. Zuzarte, G. M. Lohman, H. Pirahesh et al., “Recommend-
ing Materialized Views and Indexes with IBM DB2 Design Advisor,”
in ICAC 2004, May 2004.

[33] C. Zhang, A. Kumar, and C. Ré, “Materialization optimizations for
feature selection workloads,” in SIGMOD, 2014.

[34] L. A. Belady, “A study of replacement algorithms for a virtual-storage
computer,” IBM Systems journal, vol. 5, no. 2, pp. 78–101, 1966.

[35] P. Raghavan and M. Snir, “Memory versus randomization in on-line
algorithms,” in ICALP. Springer, 1989, pp. 687–703.

[36] A. Agarwal, O. Chapelle, and J. Langford, “A reliable effective terascale
linear learning system.” Journal of Machine Learning Research, vol. 15,
no. 1, pp. 1111–1133, 2014.

[37] C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel et al., “The Stanford
CoreNLP natural language processing toolkit,” in ACL, 2014.

[38] J. McAuley, R. Pandey, and J. Leskovec, “Inferring networks of substi-
tutable and complementary products,” in KDD, 2015, pp. 785–794.

[39] C.-W. Hsu, C.-C. Chang, C.-J. Lin et al., “A practical guide to support
vector classification,” https://goo.gl/m68USr, 2003.

[40] A. Rahimi and B. Recht, “Random features for large-scale kernel
machines,” in NIPS, 2007, pp. 1177–1184.

[41] V. Sindhwani and H. Avron, “High-performance kernel machines
with implicit distributed optimization and randomization,” CoRR, vol.
abs/1409.0940, 2014.

[42] D. G. Lowe, “Object recognition from local scale-invariant features,” in
ICCV, vol. 2. IEEE, 1999, pp. 1150–1157.

[43] A. Krizhevsky and G. Hinton, “Convolutional Deep Belief Networks on
CIFAR-10,” Unpublished manuscript, 2010.

[44] J. Sanchez, F. Perronnin, and T. Mensink, “Improved fisher vector
for large scale image classification,” http://image-net.org/challenges/
LSVRC/2010/ILSVRC2010 XRCE.pdf.

[45] “TensorFlow CIFAR-10 Performance as reported in TensorFlow Source
Code,” https://git.io/v2b4J.

[46] J. Chen, R. Monga, S. Bengio, and R. Jozefowicz, “Revisiting distributed
synchronous sgd,” arXiv preprint arxiv:1604.00981, 2016.

[47] A. Coates and A. Y. Ng, “Learning Feature Representations with K-
Means,” in Neural Networks: Tricks of the Trade, 2012.

[48] C. Szegedy, V. Vanhoucke et al., “Rethinking the inception architecture
for computer vision,” arXiv preprint arXiv:1512.00567, 2015.

[49] S. Abu-El-Haija, N. Kothari et al., “YouTube-8M: A Large-Scale Video
Classification Benchmark,” arXiv preprint arXiv: 1609.08675, 2016.

[50] M. R. Berthold, N. Cebron, F. Dill, T. R. Gabriel et al., “KNIME: The
Konstanz information miner,” in Data analysis, machine learning and
applications. Springer, 2008, pp. 319–326.

[51] Z. Cai, Z. J. Gao, S. Luo, L. L. Perez et al., “A comparison of
platforms for implementing and running very large scale machine
learning algorithms,” in SIGMOD 2014, 2014, pp. 1371–1382.

[52] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin et al., “Distributed
graphlab: a framework for machine learning and data mining in the
cloud,” PVLDB, vol. 5, no. 8, pp. 716–727, 2012.

[53] Y. Zhang, H. Herodotou, and J. Yang, “RIOT: I/O-Efficient Numerical
Computing without SQL,” in CIDR, 2009.

[54] M. Li, D. G. Andersen, J. W. Park, A. J. Smola et al., “Scaling
Distributed Machine Learning with the Parameter Server.” OSDI, 2014.

[55] C. Qin and F. Rusu, “Scalable I/O-bound Parallel Incremental Gradient
Descent for Big Data Analytics in GLADE,” in DanaC, 2013.

[56] X. Meng, J. Bradley, E. Sparks, and S. Venkataraman, “ML Pipelines:
A New High-Level API for MLlib,” https://goo.gl/pluhq0, 2015.

[57] S. Chaudhuri and V. R. Narasayya, “AutoAdmin ’What-if’ Index Anal-
ysis Utility.” SIGMOD, 1998.

[58] I. Elghandour and A. Aboulnaga, “ReStore: reusing results of MapRe-
duce jobs,” in PVLDB, 2012.

[59] L. Perez and C. Jermaine, “History-aware query optimization with
materialized intermediate views,” in ICDE, March 2014, pp. 520–531.

[60] E. R. Sparks, A. Talwalkar, D. Haas, M. J. Franklin et al., “Automating
model search for large scale machine learning,” in SoCC ’15, 2015.

