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Abstract
Data replication results in a fundamental trade-off between 
operation latency and consistency. At the weak end of the 
spectrum of possible consistency models is eventual con-
sistency, which provides no limit to the staleness of data 
returned. However, anecdotally, eventual consistency is 
often “good enough” for practitioners given its latency and 
availability benefits. In this work, we explain this phenom-
enon and demonstrate that, despite their weak guarantees, 
eventually consistent systems regularly return consistent 
data while providing lower latency than their strongly con-
sistent counterparts. To quantify the behavior of eventually 
consistent stores, we introduce Probabilistically Bounded 
Staleness (PBS), a consistency model that provides expected 
bounds on data staleness with respect to both versions 
and wall clock time. We derive a closed-form solution for 
version-based staleness and model real-time staleness for 
a large class of quorum replicated, Dynamo-style stores. 
Using PBS, we measure the trade-off between latency and 
consistency for partial, non-overlapping quorum systems 
under Internet production workloads. We quantitatively 
demonstrate how and why eventually consistent systems 
frequently return consistent data within tens of millisec-
onds while offering large latency benefits.

1. INTRODUCTION
Modern distributed data stores need to be scalable, highly 
available, and fast. These systems typically replicate data 
across different machines and increasingly across data-
centers for at least two reasons: first, to provide availability 
when components fail and, second, to provide improved 
performance by serving requests from multiple replicas. 
Configuring and maintaining replicated data has signifi-
cant consequences for application and data store design.1 
Performance at scale is critical for a large class of appli-
cations and, in practice, increased latencies may corre-
spond to large amounts of lost revenue.22 For example, at 
Amazon, 100 ms of additional latency resulted in a 1% drop 
in sales,15 while 500 ms of additional latency in Google’s 
search resulted in a corresponding 20% decrease in traf-
fic.16 However, lowering latency in distributed data stores 
has a cost: contacting fewer replicas for each operation can 
adversely impact achievable semantic guarantees.

To provide predictably low latency, modern systems 
often eschew protocols guaranteeing “strong” consis-
tency of reads (e.g., the illusion of a single copy of rep-
licated data) and instead opt for “weaker” semantics, 
frequently in the form of eventual consistency.1, 5, 7, 10 This 
eventual consistency is one of the weakest properties 

provided by modern stores: it provides no guarantees on 
data staleness except that, in the absence of new writes, 
reads will “eventually” return the effect of the most recent 
write(s).26 Under this definition, a store that returns data 
that is weeks old is eventually consistent, as is a store that 
returns arbitrary data (e.g., always return value 42) as long 
as, at some point in the future, the store returns the last 
written data.4 Due to this near-absence of useful seman-
tics for end users, the decision to employ eventual consis-
tency is often controversial.12, 23, 24 In the many production 
stores providing eventual consistency today,10, 14 users 
have little to no insight into the behavior of their stores 
or the consistency of their data, especially under varying 
replication configurations. However, the proliferation of 
eventually consistent deployments suggests that appli-
cations can often tolerate occasional staleness and that 
data tends to be “fresh enough” in many cases.

In this work, we bridge this gap between theoretical 
guarantees and current practice by quantifying the degree 
to which eventual consistency is both eventual and (in)
consistent and explain why. Indeed, under worst-case 
conditions, eventual consistency results in an unbounded 
degree of data staleness. However, as we will show, the 
common case is often different. Core to our thesis is the 
observation that eventual consistency can be modeled 
as providing a probabilistic expectation of consistency 
given a particular workload and deployment environ-
ment. Accordingly, for varying degrees of certainty, 
eventually consistent stores can offer bounds on how 
far they may deviate from strongly consistent behavior. 
We present probabilistic models for such bounds called 
Probabilistically Bounded Staleness, or PBS.

To predict consistency with PBS, we need to know when 
and why eventually consistent systems return stale data 
and how to quantify the staleness of the data they return. 
In this paper, we present algorithms and models for two 
common staleness metrics in the literature: wall clock 
time21 and versions.27 PBS describes both measures, pro-
viding the probability of reading a write ∆ seconds after 

The original version of this paper is entitled 
“Probabilistically Bounded Staleness for Practical Partial 
Quorums” and was published in VLDB 2012.5 An invited 
extended version of this paper is entitled “Quantifying 
Eventual Consistency with PBS” and will appear in the 
VLDB Journal’s “Best of VLDB 2012” issue in 2014.7 
Portions of this work also appear in a SIGMOD 2013 demo 
entitled “PBS at Work: Advancing Data Management with 
Consistency Metrics.”6
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the write returns ( (∆, p)-semantics, or “how eventual is 
eventual consistency?”), of reading one of the last K ver-
sions of a data item ( (K, p)-semantics, or “how consistent 
is eventual consistency?”), and of experiencing a combi-
nation of the two ( (K, ∆, p)-semantics). PBS does not pro-
pose new mechanisms to enforce deterministic staleness 
bounds;27 instead, our goal is to provide a lens for analyz-
ing, improving, and predicting the behavior of existing, 
widely deployed systems.

In this work, we apply PBS to quorum-replicated data 
stores such as Dynamo10 and its several open-source 
descendants. Quorum systems ensure strong consistency 
across reads and writes to replicas by ensuring that read 
and write replica sets overlap. However, employing par-
tial (or  non-strict) quorums can lower latency by requiring 
fewer replicas to respond. With partial quorums, sets of 
replicas written to and read from need not overlap: given N 
replicas and read and write quorum sizes R and W, partial 
quorums imply R + W ≤ N. For partial quorums, we derive 
closed-form solutions for PBS (K, p)-regular semantics and 
use Monte Carlo methods to explore the trade-off between 
latency and (∆, p)-regular semantics.

Finally, we use PBS to study the staleness observed in 
production deployments of Dynamo-style data stores 
under normal operation (i.e., failure-free scenarios). We 
show how high variance in write latency can lead to an 
increased window of inconsistency. For example, in one 
production environment, switching from spinning disks 
to solid-state drives dramatically improved expected con-
sistency (e.g., 1.85 ms versus 45.5 ms wait time for a 99.9% 
probability of consistent reads) due to decreased write 
latency mean and variance. We also make quantitative 
observations of the latency- consistency trade-offs offered 
by partial quorums. For example, in another production 
environment, PBS calculations show an 81.1% combined 
read and write latency improvement at the 99.9th percen-
tile (230 to 43.3 ms) for a 202-ms window of inconsistency 
(99.9% probability consistent reads). This analysis helps 
demonstrate the performance benefits that lead operators 
to choose eventual consistency and motivates additional 
end-user applications ranging from consistency monitor-
ing to consistency-based service-level agreements (SLAs) 
and query planning.

2. PROBABILISTICALLY BOUNDED STALENESS
By popular definitions, eventually consistent data stores 
do not make any guarantees as to the recency of data 
that they return: “if no new updates are made to the 
object, eventually all accesses will return the last updated 
value.”26 This is a useful liveness property, guaranteeing 
that something good eventually happens, but it provides 
no safety properties: the data store can return any data in 
the interim.4 Many real-world eventually consistent stores 
do not make any guarantees beyond this definition, yet 
they are widely deployed and have seen increased popu-
larity over the past decade (Section 3.2). As we will see, 
the protocols used by most eventually consistent stores 
indeed do not enforce additional guarantees, but they may 
supply them during operation.

To quantify semantics that are not guaranteed but are 
often provided, we develop a probabilistic framework 
for reasoning about consistency, called Probabilistically 
Bounded Staleness, or PBS. There are a wide range of pos-
sible consistency models that a data store can provide, 
from linearizability to causal consistency to eventual con-
sistency; what is the likelihood that an end user will observe 
a given consistency model if it is not guaranteed? Here, we 
study variants of two classic kinds of (in)consistency in the 
form of staleness: versions and time. We develop variants 
of PBS metrics that provide quantitative expectations that a 
store will return a version that was written within the last K 
writes of the latest (where K = 1 is latest) and that a store will 
return the latest version as of ∆ seconds ago. Ultimately, 
this does not provide a guarantee, but it is still useful for 
reasoning about and introspecting the behavior of a given 
system, similar to the usage of modern SLAs for perfor-
mance (Section 6).

To begin, we first need to define a baseline for “strongly 
consistent” semantics. The Dynamo-style stores we study 
provide a choice between “strong” regular semantics and 
eventual consistency; we subsequently observe when the 
eventually consistent choices behave like their “strong” 
counterparts. According to the distributed systems 
literature:2

Definition 1. A read from a given data item obeys regular 
semantics if, in the case that the read does not overlap (in real 
time) with any writes to the same item, it returns the result the 
last completed write, or, if the read overlaps (in real time) with 
at least one write to the same data item, it returns either the 
result of the last completed write or the eventual result of one of 
the overlapping writes.

Accordingly, regular semantics provide the illusion of a 
single copy of each replicated data item, except when there 
are concurrent reads and writes, during which writes’ effects 
may become visible and subsequently “disappear.” While 
this special, overlapping case is somewhat awkward to rea-
son about (cf. definitions of linearizability13), this is a widely 
deployed data replication configuration.

Before we consider PBS applied to regular semantics, we 
first present a generalization of the semantics to account for 
multi-version staleness:2

Definition 2. A read from a given data item obeys K-regular 
semantics if, in the case that the read does not overlap (in real 
time) with a write to the same data item, it returns the result 
of one of the latest K completed writes, or, if the read overlaps 
(in real time) with a write to the same item, it returns either the 
result of one of the latest K completed writes or the eventual 
result of one of the overlapping writes.

K-regular semantics are useful for reasoning about how 
stale a given read can be and can also be used to enforce 
additional consistency properties such as monotonic reads, 
where reads do not appear to “go back in time.”5, 25

We now present our first application of PBS prin-
ciples. Given a system that does not guarantee K-regular 
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semantics, we can reason about its semantics by taking a 
probabilistic approach:

Definition 3. A system provides (K, p)-regular semantics if 
each read provides K-regular semantics with probability p.

This modification is simple and straightforward: given 
an existing semantic guarantee, we can consider a proba-
bilistic version of it, whereby reads may or may not obey 
the  property. Of course, the above is simply a definition, 
and we must still determine how to actually provide PBS 
predictions, which will be the focus of the rest of the 
paper.

In addition to considering version-based staleness, we 
can also consider staleness with respect to real time. As we 
will see, message propagation and processing delays can 
influence consistency across time, so we extend regular 
semantics to consider time as well:

Definition 4. A read obeys ∆-regular semantics if it returns 
either the result of the latest write as of up to ∆ time units ago, 
the result of a write that was started but not completed as of up 
to ∆ time units ago.

We can similarly extend this definition to a probabilistic 
context:

Definition 5. A system provides (∆, p)-regular semantics if 
each read obeys ∆-regular semantics with probability p.

Although we do not consider them in this paper, it is pos-
sible to consider both time and version staleness together, 
which we term (K, ∆, p)-semantics.5, 7

3. QUORUM SYSTEM BACKGROUND
With PBS metrics in hand, we can proceed to apply them 
to real systems, where they are most useful. In this study, 
we will consider PBS metrics in the context of quorum- 
replicated data stores, which represent a large class 
of widely deployed real-world distributed data stores. 
However, with some work, we believe that our methodol-
ogy is also applicable to other styles of replication. Here, 
we provide background on quorum systems, with a focus 
on current practice.

3.1. Quorum foundations: Theory
Quorum systems have a long tradition as a replication strat-
egy for distributed data.20 Under quorum replication, a 
data store writes a data item by sending it to a set of servers 
responsible for the replicas, called a write quorum. To serve 
reads, the data store fetches the data from a possibly differ-
ent set of replicas, called a read quorum. For reads, the data 
store compares the set of values returned by the replicas, 
and, given a total ordering of versions, can return the most 
recent value (or all values received, if desired). For each oper-
ation, the data store chooses (read or write) quorums from 
a set of sets of replicas, called a quorum system, with one 
system per data item. There are many kinds of quorum sys-
tems, but one simple configuration is to use read and write 

quorums of fixed sizes, which we will denote R and W, for a 
set of  replicas of size N. A strict quorum system has the prop-
erty that any two quorums in the quorum system overlap 
(have non-empty intersection), providing regular semantics. 
A simple example of a strict quorum system is the majority 
quorum system, in which each quorum is of size . Partial 
quorum systems, which we will study, are a natural relax-
ation of strict quorum systems: at least two quorums in a 
partial quorum system do not overlap.19

3.2. Quorum foundations: Practice
In practice, many distributed data management systems use 
quorums as a replication mechanism. Amazon’s Dynamo10 
is the progenitor of a class of eventually consistent data 
stores that include Apache Cassandra,a Basho Riak,b and 
Project Voldemort.c All of these systems use the same vari-
ant of quorum-style replication and we are not aware of any 
widely adopted data store that uses a substantially different 
quorum-based replication protocol.

Dynamo-style quorum systems employ one quorum 
system per data item, typically maintaining the mapping 
of items to quorum systems using a consistent-hashing 
scheme or a centralized membership protocol. Each server 
in the system cluster stores multiple items. As shown in 
Figure 1, clients send read and write requests to a server 
in the system cluster, which subsequently forwards the 
request to all replicas for the operation’s item. This coordi-
nating server considers an operation complete when it has 
received responses from a predetermined number of repli-
cas (typically configured per-operation). Accordingly, with-
out message loss, all replicas eventually receive all writes. 
Dynamo denotes the replication factor of an item as N, the 
number of replica responses required for a successful read 
as R, and the number of replica acknowledgments required 
for a successful write as W. Like other strict quorum sys-
tems, Dynamo provides regular semantics when R + W > N 
during failure-free operation. However, unlike traditional 

Replica Replica Replica

Coordinator

Write forwardedResponse

Client write
request

Response

Acknowledgments 
after W replicas respond

KVS

Figure 1. Diagram of control flow for client write to Dynamo-style 
quorum (N = 3, W = 2). A coordinator server handles the client 
write and sends it to all N replicas. The write call returns after the 
coordinator receives W acknowledgments.

a http://cassandra.apache.org/
b http://www.basho.com/riak/
c http://www.project-voldemort.com/
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intersecting one of k independent write quorums. Given the 
probability of a single quorum non-intersection p, the prob-
ability of non-intersection with one of the last k independent 
quorums is pk. Thus, the probability of non-intersection with 
uniform random choice in our example quorum system is 
Equation 1 exponentiated by k:

  

(2)

When N = 3, R = W = 1, this means that the probability of 
returning a version within 2 versions is ; within 3 versions, 

; 5 versions, >0.868; and 10 versions, >0.98. When N = 3, 
R = 1, W = 2 (or, equivalently, R = 2, W = 1), these probabilities 
increase: , , and k = 5 → >0.995.

This closed-form solution holds for quorums that do 
not change size over time. For expanding partial quorum 
systems, this solution is a lower bound on p for (K, p)-
regular semantics. In the full version of this paper, we 
consider more advanced formulations of this analysis, 
including an analysis of monotonic reads consistency, 
quorum load, and closed-form solutions for mixed time 
and versions.5, 7

4.2. Consistency in dynamo
We have a simple, closed-form model for (K, p)-regular 
semantics, but time-based ( (∆, p)-regular) semantics are 
dependent on the quorum replication algorithm, work-
load, and any anti-entropy processes employed by a given 
system. In this section, we develop techniques for analyz-
ing PBS (∆, p)-regular semantics in the context of Dynamo-
style data stores.

Dynamo-style quorum systems are inconsistent as 
a result of read and write message reordering, in turn a 
product of message delays. In this work, we take a white 
box approach to inconsistency and directly examine the 
protocols behind consistency. Accordingly, we develop 
a model of message latency in Dynamo operation that 
captures the effects of message delays for write requests 
(W), write acknowledgments (A), read requests (R), and 
read responses (S), and which, for convenience, we call 
WARS. In Figure 2, we illustrate WARS using a space–time 
diagram for messages between a coordinator and a sin-
gle replica for a write followed by a read ∆ seconds after 
the write completes. Accordingly, ∆ here corresponds to 
the ∆ in PBS (∆, p)-regular semantics. In brief, reads are 
stale when all of the first R responses to the read request 
arrived at their replicas before the last (completed) write 
request arrived.

For a write, the coordinator sends N messages, one to 
each replica. The message from the coordinator to replicas 
containing the write is delayed by a value drawn from distri-
bution W. The coordinator waits for W responses from the 
replicas before it can consider the write completed. Each 
response acknowledging the write is delayed by a value 
drawn from the distribution A.

quorum systems, Dynamo’s write quorum size increases 
even after the operation returns, growing via anti-entropy.4, 10 
Coordinators send all requests to all replicas but consider 
only the first R (W ) responses. As a matter of nomenclature 
(and to disambiguate against “dynamic” quorum member-
ship protocols), we will refer to these systems as expanding 
partial quorum systems.

As we discuss in extended versions of this paper,5, 7 
system operators often report using partial quorum con-
figurations in Dynamo-style stores, citing “maximum 
performance” in the “general case,” particularly for “low 
value” data or queries that need “very low latency and 
high availability.”

4. PBS AND PARTIAL QUORUMS
Given our PBS metrics and an understanding of quorum 
behavior, we can develop models for the probability of con-
sistency under partial quorums. Here, we briefly discuss 
 version-based staleness for traditional probabilistic quo-
rums and develop a more complex “white box” model of 
time-based staleness for Dyanamo-style systems.

4.1. PBS (K, p)-regular semantics
To understand static, non-expanding quorum behavior, 
we first revisit probabilistic quorum systems,19 which pro-
vide probabilistic guarantees of quorum intersection in 
partial quorum systems. As an example, consider N repli-
cas with read and write quorums of sizes R and W chosen 
uniformly at random. We can calculate the probability 
that the read quorum does not contain the last written ver-
sion. This probability is the number of quorums of size R 
composed of replicas that were not written to in the write 
quorum divided by the number of possible read quorums:

  

(1)

The probability of inconsistency is high for small values of 
N. However, by scaling the number of replicas and quorum 
sizes, one can achieve an arbitrarily high probability of con-
sistency.19 For example, with N = 3, R = W = 1, , but 
with N = 100, R = W = 30, ps = 1.88 × 10−6.2 This is reminiscent 
of the Birthday Paradox: as the number of replicas increases, 
the probability of non-intersection between any two quo-
rums decreases. Hence, the asymptotics of these systems 
are excellent—but only at asymptotic scales.

While probabilistic quorums allow us to determine the 
probability of returning the most recent value written to 
the database, they do not describe what happens when the 
most recent value is not returned. Here, we determine the 
probability of returning a value within a bounded number of 
versions ( (K, p)-regular semantics). In the following formu-
lation, we consider traditional, non-expanding write quo-
rums (no anti-entropy).

Similar to the previous example, given independent, iden-
tically distributed (IID) choice of read and write quorums, 
returning one of the last k written versions is equivalent to 
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replicas. We introduced the WARS model as a means of 
reasoning about inconsistency in Dynamo-style quo-
rum systems, but quantitative metrics such as staleness 
observed in practice depend on each of WARS’s latency 
distributions. In this section, we perform an analysis 
of Dynamo-style (∆, p)-regular semantics for both syn-
thetic and real-world distributions to better understand 
how frequently “eventually consistent” means “consis-
tent” and, more importantly, why Dynamo-style stores 
are indeed frequently consistent.

PBS (K, p)-regular analysis for partial quorums is easily 
captured in closed form (Section 4.1). It does not depend 
on write latency or any environmental variables. Indeed, in 
practice, without expanding quorums or anti-entropy, we 
observe that our derived equations hold true experimentally.

In contrast, (∆, p)-regular semantics depends on anti-
entropy, which is more complicated. In this section, we 
focus on deriving experimental expectations for PBS (∆, 
p)-regular semantics. We first validate our Monte Carlo 
analysis based on the WARS model and using message-
level traces gathered from Cassandra clusters in Berkeley. 
We next explore synthetic latency distributions and, for the 
remainder of our analysis, explore distributions from two 
Internet companies: LinkedIn and Yammer.

5.1. Monte Carlo simulation
We implemented WARS analysis in a Monte Carlo-based 
simulation. Calculating (∆, p)-regular semantics for a 
given value of ∆ is straightforward (see pseudocode in 
Bailis et al.7). To simulate the message delays between 
coordinator and each of the N replicas, denote the ith 
sample drawn from distribution D as D[i] and draw N sam-
ples from W, A, R, and S. Compute the time that the write 
request completes (wt, or the time that the coordinator gets 
its Wth acknowledgment; the Wth smallest value of {W[i] + 
A[i], i ∈ [0, N)}). Next, determine whether any of the first R 
replicas contained an up-to-date response: check whether 
any the first R samples of R, ordered by R[i] + S[i] obey wt 
+ R[i] + ∆ ≤ W[i]. Repeating this process multiple times 
provides an approximation of the behavior specified by 
the trace. Extending this formulation to analyze (K, ∆, p)-
regular semantics given a distribution of write arrival times 
will require accounting for multiple writes across time. As 
described in extended versions of this paper,5, 7 we vali-
dated this analysis on traces that we collected from a real-
world Cassandra cluster. We observed an average RMSE of 
0.28% for (∆, p)-regular semantics prediction and an aver-
age N-RMSE of 0.48% for latency predictions.

5.2. Write latency distribution effects
The WARS model of Dynamo-style systems dictates that high 
variance in latency increases staleness. Before studying real-
world workloads (Section 5.3), we quantified this behavior 
in isolation via synthetic distributions: we swept a range 
of exponentially distributed write distributions (changing  
 parameter l, which dictates the mean and tail of the distri-
bution) while fixing A = R = S.

Our results, shown in Figure 3, demonstrate this rela-
tionship. When the variance and mean of W are 0.0625 ms 

For a read, the coordinator (possibly different than the 
write’s coordinator, and possibly representing a different cli-
ent than the client that issued the write) sends N messages, 
one to each replica. The message from coordinator to rep-
lica containing the read request is delayed by a value drawn 
from distribution R. The coordinator waits for R responses 
from the replicas before returning the most recent value it 
receives. The read response from each replica is delayed by a 
value drawn from the distribution S.

The read coordinator will return stale data if the first 
R responses received reached their replicas before the rep-
licas received the latest version (delayed by W). When R + W > 
N, this is impossible. However, under partial quorums, the 
frequency of this occurrence depends on the latency dis-
tributions. If we denote the write completion time (when 
the coordinator has received W acknowledgments) as wt, 
a single replica’s response is stale if r ′ + wt + ∆ < w ′ for r ′ 
drawn from R and w ′ drawn from W. Writes have time to 
propagate to additional replicas both while the coordina-
tor waits for all required acknowledgments (A) and as rep-
licas wait for read requests (R). Read responses are further 
delayed in transit (S) back to the read coordinator, induc-
ing further possibility of reordering. Qualitatively, long-
tailed write distributions (W) and relatively faster reads 
(R,S) increase the chance of staleness due to reordering.

WARS considers the effect of message sending, delays, 
and reception, but this represents a difficult analytical for-
mulation with several non-independent order statistics. As 
we discuss in Section 5.1, we instead explore WARS using 
Monte Carlo methods, which are straightforward to under-
stand and implement. We have found that the WARS distri-
butions are easy to parameterize given traces of real-world 
system behavior (Section 5.3).

5. PBS IN ACTION
Given our PBS models for Dynamo-style stores, we now 
apply them to real-world systems. As discussed in 
Section 4.2, PBS (∆, p)-regular behavior in a given system 
depends on the propagation of reads and writes across 

WRITE
(W)

wait for R
responses

Time

stale if
READ

arrives
before
WRITE

wait for W
responses

send to N replicas
ReplicaCoordinator

ACK
(A)

READ
(R)

send to N replicas

RESPONSE
(S)

∆ seconds elapse

Figure 2. The WARS model describes staleness in Dynamo by 
modeling message latencies between a coordinator and replicas for 
a write operation followed by a read operation t seconds later. In an N 
replica system, the depicted messages are exchanged with N replicas.
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5.3. Production latency distributions
To study real-world behavior, we obtained production 
latency statistics from two Internet-scale companies. 
While message-level WARS timing traces would deliver 
more accurate predictions, we opted for a pragmatic com-
promise: as described in extended versions of this work, 
we fit WARS distributions to each of the provided statistics 
(Figure 4).5, 7

LinkedInd is an online professional social network 
with over 225 million members as of July 2013. To provide 
highly available, low latency data storage, engineers at 
LinkedIn built Voldemort. Alex Feinberg, a lead engineer 
on Voldemort, graciously provided us with latency distri-
butions for a single server under peak traffic for a user-
facing service at LinkedIn, representing 60% read and 
40% read-modify-write traffic.5, 7 Feinberg reports that, 
using spinning disks, Voldemort is “largely IO bound and 
latency is largely determined by the kind of disks we’re 
using, [the] data to memory ratio and request distribu-
tion.” With solid-state drives (SSDs), Voldemort is often 
“CPU and/or network bound” and “maximum latency is 
generally determined by [garbage collection] activity (rare, 
but happens occasionally) and is within hundreds of milli-
seconds.” We denote the LinkedIn spinning disk distribu-
tion as LNKD-DISK and SSD trace as LNKD-SSD.

Yammere provides private social networking to over 
200,000 companies as of July 2013 and uses Basho’s Riak 
for some client data. Coda Hale, an infrastructure architect, 
provided performance statistic for their production Riak 
deployment.5, 7 Hale mentioned that “reads and writes have 
radically different expected latencies, especially for Riak.” 
Riak delays writes “until the fsync returns, so while reads 
are often <1 ms, writes rarely are.” Also, although we do 
not model this explicitly, Hale also noted that the size of 
values is important, claiming “a big performance improve-
ment by adding LZF compression to values.” We denote 
the Yammer latency distribution as YMMR.

and 0.25 ms (l = 4, one-fourth the mean of A = R = S = 1 ms), 
we observe a 94% chance of consistency immediately after 
the write and 99.9% chance after 1 ms. However, when 
the variance and mean of W are 100 ms and 10 ms (l = 0.1, 
ten times the mean of A = R = S = 1 ms), we observe a 41% 
chance of consistency immediately after write and a 99.9% 
chance of consistency only after 65 ms. As the variance 
and mean increase, so does the probability of inconsis-
tency. Under distributions with fixed means and variable 
variances (uniform, normal), we observe that the mean of 
W is less important than its variance if W is strictly greater 
than A = R = S.

Decreasing the mean and variance of W improves the 
probability of consistent reads. This means that, as we will 
see, techniques that lower write latency variance result in 
more consistent reads. Instead of increasing read and 
write quorum sizes, operators could chose to lower (rela-
tive) W latencies through hardware configuration or by 
delaying reads, although this latter option is detrimental 
to performance for read-dominated workloads and may 
introduce undesirable queuing effects. Nonetheless, this 
PBS analysis illustrates the fact that stale reads can be 
avoided in a variety of ways beyond simple adjustment of 
quorum sizes.
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We experienced similar behavior with the other distri-
butions. Immediately after write completion (∆ = 0), YMMR 
had a p = 89.3% probability of consistency. However, the 
YMMR distribution only reached a p = 99.9% probability of 
consistency at ∆ = 1364 ms due to high variance and long-
tail behavior in its write distribution. This hints that, given 
multiple replicas for a data item, the durability benefits of 
synchronously flushing writes to disk may have adverse 
effects on consistency. An alternative approach that could 
improve consistency and avoid this high variance would 
rely on multi-replica (in-memory or buffer cache) replica-
tion for durability and only flush writes asynchronously.

5.5. Quorum sizing
In addition to N = 3—the most common quorum size we 
encountered in practice—we consider how varying the 
number of replicas (N) affects (∆, p)-regular semantics 
while maintaining R = W = 1. The results, depicted in Figure 
6, show that the probability of consistency immediately 
after write completion decreases as N increases. With two 
replicas, LNKD-DISK has a 57.5% probability of consistent 
reads immediately after write completion but only a 21.1% 
probability with 10 replicas. However, at high probabilities 
(p), the window of inconsistency (∆) for increased replica 
sizes is close. For LNKD-DISK, ∆ at p = 99.9% ranges from 
45.3 ms for 2 replicas to 53.7 ms for 10 replicas.

5.4. Staleness in production
The production latency distributions confirm that stale-
ness is frequently limited in eventually consistent stores. 
We measured the (∆, p)-regular semantics for each distri-
bution (Figure 5). LNKD-SSD and LNKD-DISK demonstrate 
the importance of write latency in practice. Immediately 
after write completion, LNKD-SSD had a 97.4% probability 
of consistent reads, reaching over a 99.999% probability 
of consistent reads after 5 ms. LNKD-SSD’s reads briefly 
raced with its writes immediately after write completion. 
However, within a few milliseconds after the write, the 
chance of a read arriving before the last write was nearly 
eliminated. The distribution’s read and write operation 
latencies were small (median 0.489 ms), and writes com-
pleted quickly across all replicas due to the distribution’s 
short tail (99.9th percentile 0.657 ms). In contrast, under 
LNKD-DISK, writes take much longer (median 1.50 ms) 
and have a longer tail (99.9th percentile 10.47 ms). LNKD-
DISK’s (∆, p)-regular semantics reflects this difference: 
immediately after write completion, LNKD-DISK had only 
a 43.9% probability of consistent reads and, 10 ms later, 
only a 92.5% probability. This suggests that SSDs may 
greatly improve consistency due to reduced write variance. 
Similarly, one should expect that consistency would be 
improved by using explicit memory management rather 
than unscheduled garbage collection.
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Additionally, predictions allow users to easily perform 
“what-if” analysis across arbitrary replication configura-
tions, request distributions (∆ and K), and hardware config-
urations (e.g., switching from SSDs to disks). We have found 
that prediction is computationally inexpensive and can 
be performed on a decentralized, per-replica basis. While 
prediction is flexible, it is only as good as the input traces. 
With representative input data, predictions will be accurate. 
However, with unrepresentative data (or bad models), pre-
diction accuracy will suffer.

In contrast, verification21 informs users how their data 
stores are performing with guaranteed certainty. If a user 
makes a change to their replication settings using a pre-
dictor, she may want to ensure that the change behaves as 
expected. While this verification is not well-suited to “what-
if” analysis, it is an important complement to prediction. 
Verification effectively provides a metric that results from 
integrating the (K, ∆, p)-regular semantics density func-
tion weighted by the given read request rate (measured with 
respect to time since the last write). Additionally, verifica-
tion is algorithmically complex,11 but in our experience is 
not terribly difficult to implement.

We believe that both techniques will be increasingly use-
ful as systems begin to treat consistency as a continuous, 
quantitative metric. Taken together, consistency predic-
tion and verification techniques form a powerful toolkit.

6.2. White and black box approaches
In this work, we use a white box approach to consistency 
and exploit expert knowledge of replication protocols to 
provide quantitative insight. This requires translating 
from user-centric, declarative specifications of consis-
tency anomalies into back-end protocol events (e.g., in 
the WARS model, the reordering between read and write 
responses). We could have alternatively attempted to reverse 
engineer system internals or provide an implementation-
independent predictor, but this black box analysis would 
be substantially more complex. We believe that verification 
techniques are more amenable to black box techniques 
and that the portability benefits of black box techniques 
must be weighed against their potential inaccuracy. Given 
our experiences integrating prediction into existing data 

These results imply that maintaining a large number of 
replicas for availability or better performance results in a 
potentially large impact on consistency immediately after 
writing. However, the (∆, p)-regular semantics probability 
( p) will still rise quickly (small ∆).

5.6. Latency vs. staleness
Choosing values for R and W is a trade-off between operation 
latency and consistency. To measure this trade-off, we com-
pared 99.9th percentile operation latencies with the corre-
sponding ∆ at p = 99.9% for quorum configurations where 
N = 3, typical of deployments in the field.

Partial quorums often exhibit favorable latency- 
consistency trade-offs (Table 1). For YMMR, R = W = 1 results 
in low latency reads and writes (16.4 ms) but high ∆ 
(1364 ms). However, setting R = 2 and W = 1 reduces ∆ to 
202 ms and the combined read and write latencies are 
81.1% (186.7 ms) lower than the fastest strict quorum (W = 1, 
R = 3). Allowing p = 99.9%, ∆ = 13.6 ms reduces LNKD-DISK 
read and write latencies by 16.5% (2.48 ms). For LNKD-SSD, 
across 10 M writes (“seven nines”), we did not observe stale-
ness with R = 2, W = 1. R = W = 1 reduced latency by 59.5% 
(1.94 ms) with a corresponding ∆ = 1.85 ms. In summary, 
lowering values of R and W can greatly improve operation 
latency but, even in the tail, the duration of inconsistency 
(∆) is relatively small.

We omit full results here, but we have also experimented 
with heterogeneous replica behavior and with multi-item 
guarantees such as causal consistency and transactional 
atomicity.7

6. DISCUSSION AND FUTURE WORK
In this section, we discuss PBS design decisions, describe 
our experiences integrating PBS with real-world stores and 
end-user applications, and suggest areas for future work.
6.1. Prediction and verification
In this work, we have developed techniques for consistency 
prediction, which provide an expectation of system behav-
ior given a set of input data about the system and the cur-
rent operating environment. Given a trace, one can predict 
staleness after an arbitrary amount of time or number of ver-
sions without having to actually run any additional queries. 

LNKD-SSD LNKD-DISK YMMR

Lr Lw t Lr Lw t Lr Lw t

R = 1, W = 1 0.66 0.66 1.85 0.66 10.99 45.5 5.58 10.83 1364.0

R = 1, W = 2 0.66 1.63 1.79 0.65 20.97 43.3 5.61 427.12 1352.0

R = 2, W = 1 1.63 0.65 0 1.63 10.9 13.6 32.6 10.73 202.0

R = 2, W = 2 1.62 1.64 0 1.64 20.96 0 33.18 428.11 0

R = 3, W = 1 4.14 0.65 0 4.12 10.89 0 219.27 10.79 0

R = 1, W = 3 0.65 4.09 0 0.65 112.65 0 5.63 1870.86 0

Significant latency-staleness trade-offs are in bold.

Table 1. D for (D, p = 99.9%)-regular semantics and 99.9th percentile read (Lr) and write latencies (Lw), varying R and W with N = 3.
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not capture effects of additional, commonly employed 
anti-entropy processes (e.g., read-repair, Merkle-tree 
exchange) and may be a conservative estimate of staleness. 
It does not address system behavior under failures, which 
varies from store to store, and it assumes that clients 
contact a coordinator server instead of issuing requests 
themselves (e.g., Voldemort). We believe that these limi-
tations are not fundamental and can be accounted for in 
a white box model but nonetheless remain future work. 
Finally, clients requiring staleness detection may do so 
asynchronously, enabling speculative reads and compen-
satory actions.5, 7

7. RELATED WORK
This research builds upon several related areas: quorum 
replication, consistency models, and approaches to quanti-
fying consistency.

Managing replicated data is a long-studied problem in 
distributed systems and concurrent programming. There 
is a plethora of consistency models offering different trade-
offs between semantics, performance, and availability. 
Traditional models such as serializability and linearizability 
as well as more recently proposed models such as timeline 
consistency8 and parallel snapshot isolation23 all provide 
“strong” semantics at the cost of high availability, or the abil-
ity to provide “always-on” response behavior at all replicas. 
In contrast, faced with a requirement for high availability 
and low latency, many production data stores have turned 
to weaker semantics to provide availability in the face of net-
work partitions.9, 26

Our focus in this paper is on the semantics provided 
by existing, widely deployed systems. Due to the preva-
lence of “strong” consistency and eventual consistency 
models in practice (and the explicit choice between these 
two models in Dynamo-style systems), we largely focus on 
this dichotomy. However, there are a range of alternative 
but still “weak” models. As an example, the Bayou system 
provided a range of “session guarantees,” including read-
your-writes and monotonic reads consistency.25 Similarly, 
a recent Technical Report from UT Austin claims that a 
variant of causal consistency is the strongest consistency 
model achievable in an available, one-way convergent 
(eventually consistent) system,18 a model that has recently 
attracted systems implementations.17 As we have hinted, 
probabilistic approaches are applicable to the consistency 
models beyond those we have considered here. Specific 
to staleness, prior research such as TACT27 has examined 
how to provide deterministic staleness bounds. These 
deterministically bounded staleness systems represent the 
deterministic dual of PBS.

Our techniques for analyzing modern partial quorum 
systems draw on existing, largely theoretical literature. We 
briefly surveyed quorum replication20 in Section 3. In this 
work, we specifically draw inspiration from probabilistic 
quorums19 in analyzing expanding quorum systems and 
their consistency. We believe that revisiting probabilistic 
quorum systems—including non-majority quorum sys-
tems such as tree quorums—in the context of write propa-
gation, anti-entropy, and Dynamo is a promising area for 

stores and the large-scale adoption of open-source data 
stores, we believe that white box techniques are feasible, 
even if they require modifications to existing stores.

6.3. Real-world store integration
With the help of several open-source developers, we 
have developed patches for PBS functionality within two 
NoSQL stores: Cassandra and Voldemort. For Cassandra, 
we have taken two approaches: an invasive but more accu-
rate implementation and an external but less accurate 
prediction module. For the former approach, we modi-
fied the Cassandra messaging layer to add a message cre-
ation timestamp in order to measure each of the W, A, R, S 
distributions. When tracing is enabled on a given server, 
the messaging layer logs per-operation timestamps in a 
separate PBS prediction module. The timestamps are 
stored in an in-memory circular buffer for each of the 
required message latencies. Subsequently, users can 
call the PBS predictor module via an externally acces-
sible interface, which they can use to provide advanced 
functionality like dynamic replication configuration and 
monitoring (see below). This provides relatively accurate 
predictions at the expense of having to instrument the 
messaging layer. However, as data stores like Cassandra 
have expanded their user-accessible monitoring data 
(e.g., per-query latency tracing), we have more recently 
been exploring predictions outside of the database—
the latter approach—which we have implemented for 
Voldemort. We have open-sourced implementations of 
both approaches.

6.4. PBS applications
PBS enables functionality not possible without quantita-
tive consistency metrics. With PBS, we can automatically 
configure replication parameters by optimizing opera-
tion latency given constraints on staleness and minimum 
durability. Data store operators can subsequently pro-
vide service level agreements to applications and quan-
titatively describe latency-staleness trade-offs to users. 
Operators can dynamically configure replication using 
online latency measurements. This optimization also 
allows disentanglement of replication for durability from 
replication for reasons of low latency and higher capacity. 
For example, operators can specify a minimum replica-
tion factor for durability and availability but can also auto-
matically increase N, decreasing tail latency for fixed R 
and W. We expanded upon these possibilities in a SIGMOD 
2013 demo that featured real-time predictions for a live 
Cassandra cluster and mock web service.6

6.5. WARS limitations and extensions
There are several limitations and potential extensions 
of the WARS model, which we sketch here and discuss in 
greater detail in extended versions of this work.5, 7 WARS 
only models a single write and read and is therefore a con-
servative estimate for multi-write scenarios. Moreover, in 
our current treatment, WARS treats each distribution as 
IID. This is not fundamental to the model but is a limita-
tion of our latency traces from industry. WARS also does 
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theoretical work. While we study probabilistic guarantees 
for staleness, prior work on k-quorums2, 3 have looked 
at deterministic guarantees that a partial quorum system 
will return values that are within k versions of the most 
recent write.2

Finally, recent research has focused on measuring and 
verifying the consistency of eventually consistent systems 
both theoretically and experimentally (Rahman et al. pro-
vide a brief survey21). This is useful for validating consistency 
predictions and understanding staleness violations.

8. CONCLUSION
In this paper, we introduced PBS, which models the 
expected staleness of data returned by eventually consis-
tent data stores. PBS offers an alternative to the all-or-noth-
ing consistency guarantees of many of today’s systems by 
offering SLA-style consistency predictions. By extending 
prior theory on probabilistic quorum systems, we derived 
an analytical solution for the (K, p)-regular semantics of a 
partial quorum system, representing the expected stale-
ness of a read operation in terms of versions. We also 
analyzed (∆, p)-regular semantics, or expected staleness 
of a read in terms of real time, under Dynamo-style quo-
rum replication. To do so, we developed the WARS latency 
model to explain how message reordering leads to stale-
ness under Dynamo. To examine the effect of latency on 
(∆, p)-regular semantics in practice, we used real-world 
traces from Internet companies to drive a Monte Carlo 
analysis. We find that eventually consistent Dynamo-style 
quorum configurations are often consistent after tens of 
milliseconds due in large part to their resilience to per-
server latency variance. We conclude that eventually con-
sistent partial quorum replication schemes frequently 
deliver consistent data during failure-free operation while 
offering significant latency benefits. We believe that con-
tinued study and deployment of quantitative consistency 
metrics will both enable useful end-user functionality and 
shed light on previously opaque and frequently controver-
sial replication configurations.

Interactive demonstration
An interactive demonstration of Dynamo-style PBS is avail-
able at http://pbs.cs.berkeley.edu/#demo.
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