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Abstract Data store replication results in a fundamental
trade-off between operation latency and data consistency. At
the weak end of the consistency spectrum is eventual con-
sistency providing no limit to the staleness of data returned.
However, anecdotally, eventual consistency is often “good
enough” for practitioners given its latency and availability
benefits. In this work, we explain why eventually consis-
tent systems are regularly acceptable in practice, analyzing
both the staleness of data they return and the latency benefits
they offer. We introduce Probabilistically Bounded Staleness
(PBS), a consistency model which provides expected bounds
on data staleness with respect to both versions and wall clock
time. We derive a closed-form solution for versioned stale-
ness as well as model real-time staleness under Internet-scale
production workloads for a large class of quorum-replicated,
Dynamo-style stores. Using PBS, we measure the latency–
consistency trade-off for partial, non-overlapping quorum
systems, including limited multi-object operations. We quan-
titatively demonstrate how and why eventually consistent
systems frequently return consistent data within tens of mil-
liseconds while offering significant latency benefits.
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All good ideas arrive by chance.—Max Ernst

1 Introduction

Modern distributed data stores need to be scalable, highly
available, and fast. These systems typically replicate data
across different machines and often across data centers
for two reasons: first, to provide high availability when
components fail and, second, to provide improved perfor-
mance by serving requests from multiple replicas. In order
to provide predictably low read and write latency, systems
often eschew protocols guaranteeing “strong” consistency
of reads and instead opt for eventually consistent proto-
cols [3,22,27,30,45,46,63]. However, eventually consistent
systems make no guarantees on the staleness of data items
returned except that the system will “eventually” return the
most recent version in the absence of new writes [74].

This latency–consistency trade-off inherent in distrib-
uted data stores has significant consequences for application
design [3]. Low latency is critical for a large class of appli-
cations [67]. For example, at Amazon, 100 ms of additional
latency resulted in a 1 % drop in sales [52], while 500 ms
of additional latency in Google’s search resulted in a corre-
sponding 20 % decrease in traffic [53]. At scale, increased
latencies correspond to large amounts of lost revenue. How-
ever, lowering latency has a consistency cost: contacting
fewer replicas for each request typically weakens the guar-
antees on returned data. Programs can often tolerate weak
consistency by employing careful design patterns such as
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compensation (e.g., memories, guesses, and apologies) [40]
and by using associative and commutative operations (e.g.,
timelines, logs, and notifications) [11]. However, potentially
unbounded staleness (as in eventual consistency) poses sig-
nificant challenges and is undesirable in practice.

1.1 Probabilistically Bounded Staleness

Distributed data store design allows a spectrum of consis-
tency models, each requiring varying degrees of coordina-
tion. Modern stores frequently offer a choice between two
modes of operation: “strong” consistency—often in the form
of linearizability [24,42], serializability [64], or regular reg-
ister semantics [50]—and “weak” consistency, most often
(but not necessarily [57,72]) in the form of eventual consis-
tency. Despite eventual consistency’s weak guarantees, data
store operators frequently choose this option [1,22,30,45,63,
77]—a controversial decision [39,54,68,69]. Given their per-
formance benefits, which are especially important as laten-
cies grow [3,30,39,40], eventually consistent store configu-
rations are often considered acceptable. The proliferation of
eventually consistent deployments suggests that applications
can often tolerate occasional staleness and that data tend to
be “fresh enough” in many cases.

While common practice suggests that eventual consis-
tency is often a viable solution for data store operators, to
date, this observation has been largely anecdotal. In this
work, we quantify the degree to which eventual consistency
is both eventual and consistent and explain why. Under worst-
case conditions, eventual consistency results in an unbounded
degree of data staleness, but, as we will show, the average case
is often different. Eventually consistent data stores cannot
promise strong consistency but, for varying degrees of cer-
tainty, can offer staleness bounds with respect to time (“how
eventual”) and versions (“how consistent”).

There is little prior work describing how to make these
consistency and staleness predictions under practical condi-
tions. The current state of the art requires that users make
rough guesses or perform online profiling to determine the
consistency provided by their data stores [19,35,75]. Users
have little to no guidance on how to choose an appropriate
replication configuration or how to predict the behavior of
eventual consistency in production environments.

To predict consistency, we need to know when and why
eventually consistent systems return stale data and how to
quantify the staleness of the data they return. In this paper, we
present algorithms and models for predicting the staleness,
called Probabilistically Bounded Staleness (PBS). There are
two common metrics for measuring staleness in the literature:
wall clock time [35,73,78,79] and versions [35,48,81]. PBS
describes both measures, providing the probability of reading
a write ∆ seconds after it returns ((∆, p)-semantics, or “how
eventual is eventual consistency?”), of reading one of the

last K versions of a data item ((K , p)-semantics, or “how
consistent is eventual consistency?”), and of experiencing a
combination of the two ((K ,∆, p)-semantics). PBS does not
propose new mechanisms to enforce deterministic staleness
bounds [48,62,78,79,81]; instead, our goal is to provide a
lens for analyzing, improving, and predicting the behavior
of existing, widely deployed systems.

1.2 Practical partial quorums

In this work, we use PBS to examine the latency–consistency
trade-off in the context of quorum-replicated data stores such
as Dynamo [27] and its open source descendants Apache
Cassandra [49], Basho Riak [13], and Project Voldemort [31].
Quorum systems ensure strong consistency across reads and
writes to replicas by ensuring that read and write replica sets
overlap. However, employing partial (or non-strict) quorums
can lower latency by requiring fewer replicas to respond.
With partial quorums, sets of replicas written to and read
from need not overlap: given N replicas and read and write
quorum sizes R and W, partial quorums imply R + W ≤ N .

We expand prior work on probabilistic quorums [58,60]
to account for multi-version staleness and messaging proto-
cols as used in today’s systems. We derive closed-form solu-
tions for PBS (K , p)-regular semantics and use Monte Carlo
methods to explore the trade-off between latency and (∆, p)-
regular semantics. Using production latency distributions, we
present a detailed study of Dynamo-style PBS (∆, p)-regular
semantics. We show how long-tailed one-way write latency
distributions affect the time required for a high probability
of consistent reads. For example, in one production envi-
ronment, switching from spinning disks to solid-state drives
dramatically improved consistency (e.g., 1.85 vs. 45.5 ms
wait time for a 99.9 % probability of consistent reads) due
to decreased write latency mean and variance. We also make
quantitative observations of the latency–consistency trade-
offs offered by partial quorums. For example, in another
production environment, we observe an 81.1 % combined
read and write latency improvement at the 99.9th percentile
(230–43.3 ms) for a 202-ms window of inconsistency (99.9 %
probability consistent reads). This analysis demonstrates the
performance benefits that lead operators to choose eventual
consistency.

We make the following contributions in this paper:

• We develop the theory of PBS for partial quorums. PBS
can describe the probability of staleness across versions
((K , p)-semantics) and time ((∆, p)-semantics) as well
as the probability of session-based consistency.

• We provide a closed-form analysis of (K , p)-regular
semantics for quorum systems and demonstrate how the
probability of receiving data k versions old is exponen-
tially reduced by k. As a corollary, (K , p)-regular seman-

123



Quantifying eventual consistency 281

tics tolerance also exponentially lowers quorum system
load.

• We describe the WARS model for (∆, p)-regular seman-
tics in Dynamo-style partial quorum systems and show
how message reordering leads to staleness. We evaluate
the (∆, p)-regular semantics of Dynamo-style systems
using a combination of synthetic and production latency
models.

• We present theoretical and empirical analysis for the like-
lihood of two kinds of multi-key operations: transactional
atomicity and causal consistency. We evaluate the prob-
ability of causal consistency using real-world workloads
and also describe our experiences in integrating the PBS
predictor in production data stores.

This paper is an invited, extended version of “Probabilis-
tically Bounded Staleness for Practical Partial Quorums,”
which appeared in VLDB 2012 [15] and extends this prior
work in several ways. We have added analysis of multi-key
guarantees including causality and atomicity (Sect. 7) and
have extended our discussion of PBS design and implemen-
tation, including consistency prediction versus verification,
white-box versus black-box modeling, and our experiences
with real-world stores (Sect. 8). We have completely revised
our definitions of PBS metrics (Sect. 2) so they are more
comparable with related work and have fixed several errata
from the prior published version of this work. While this
resulting article is substantially longer than our initial paper,
we believe it provides a more comprehensive treatment of
the material.

The remainder of this paper is organized as follows: in
Sect. 2, we define PBS metrics for general distributed stor-
age systems. In Sect. 3, we provide background on quorum
systems in theory and practice, which we will study with
PBS in Sect. 4. In Sect. 5, we develop PBS metrics for a
specific class of quorum systems, patterned on Amazon’s
Dynamo, which we use in Sect. 6 to quantitatively analyze
the behavior of data stores deployed in production. In Sect. 7,
we discuss two kinds of multi-key guarantees: transactional
atomicity and causal consistency. We present a discussion on
PBS design and implementation in Sect. 8, including the dif-
ferences between white-box and black-box PBS techniques,
prediction versus verification, and our experiences integrat-
ing PBS in production data stores. In Sect. 9, we describe
related work, and, in Sect. 10, we conclude.

2 Probabilistically Bounded Staleness

In this work, we develop quantitative metrics for describ-
ing the behavior of eventually consistent systems. To do
so, we first introduce several general-purpose metrics that
will guide the remainder of our work, which applies them to

quorum-replicated stores in real-world deployments. Metrics
presented in this section are applicable to any data store.

Quantifying eventual consistency is difficult because
eventual consistency is a particularly weak guarantee. Accord-
ing to the popular definition by Werner Vogels, a system is
eventually consistent if it “guarantees that if no new updates
are made to the object, eventually all accesses will return
the last updated value” [74]. Under this definition, even-
tual consistency is purely a liveness guarantee—something
good eventually happens—but it does not provide any safety
properties—anything can happen in the meantime [10].
There is no specification of how long it takes until the last
value is returned or what happens when we attempt to read
a data item and the latest value is not returned. If a system
makes guarantees about these properties, then it will pro-
vide a stronger consistency model than Vogel’s basic eventual
consistency above.1 In this work, we consider the problem
of quantifying the consistency of a system that does not pro-
vide additional guarantees beyond basic eventual consistency
(i.e., replica convergence).

This lack of safety guarantees does not preclude us from
making quantitative statements about the behavior of even-
tually consistent stores. In this work, we take a probabilistic
approach to consistency that allows us to reason about the
expected consistency of an eventually consistent store. In
our probabilistic metrics, we draw on two safety guarantees
from the literature: time- and version-based staleness. While
these properties have been studied in deterministic contexts,
we extend their semantics to account for probabilistic behav-
ior.2 Collectively, we term these metrics PBS.

As a side note, we must be careful in describing a store
as providing a particular semantics with a given probabil-
ity. For example, if a store provides a given semantics with
50 % probability, does this mean that half of the read opera-
tions will obey the semantics or that only half of the store
deployments will obey the semantics? Both are admissi-
ble, but the former is likely preferable. Even considering
read-based probabilistic semantics, distribution of violations
across operations may vary: a system providing 500 “consis-
tent” reads followed by 500 “inconsistent” reads is, according
to our tentative definition, equivalent to a system that alter-
nates between the two response types. In this work, we do

1 Many systems providing consistency semantics such as serializabil-
ity, linearizability, and convergent causal consistency provide eventual
consistency (often along with additional safety and liveness properties
which result in stronger models than “basic” eventual consistency).
2 In prior versions of this work [15], we used different terminology;
here, we leverage definitions from the existing literature. We believe
these metrics will both provide greater clarity and allow for cleaner
integration with other metrics. For readers familiar with our prior ter-
minology, k-staleness has become (K , p)-regular semantics, t-visibility
has become (∆, p)-regular semantics, and ⟨k, t⟩-staleness has become
(∆, K , p)-regular semantics.
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not distinguish between the two cases but, in practice, cou-
pling these probabilistic guarantees with windowed seman-
tics (e.g., “over S seconds,” “over W successive writes”) will
disallow the above undesirable behavior.

2.1 System model

We consider a standard model for a data storage system. The
system contains a collection of data items which clients write
to and read from. Each write creates a new version of a data
item, and reads return a previously written version (or set of
versions) of the requested item. The semantics of the data
store determine which versions of a given data item can be
returned in response to reads. This model is consistent with
the original work from which its deterministic counterparts
are derived below.

2.2 PBS versioned staleness

To begin, we consider version-based staleness. Aiyer et al. [8]
expanded Lamport’s atomic (linearizable—not transaction-
ally atomic), regular, and safe distributed register seman-
tics [50] to account for multi-versioned distributed regis-
ters. We reproduce their definition of K -atomic semantics
below, adapting their definition to a read-centric (as opposed
to system-centric) consistency model:

Definition 1 A read obeys K -atomic semantics if there
exists an order of the operations that is consistent with real-
time order and one of the versions returned by the read is
equal to one of the versions written by the last K preceding
writes in the order (assuming there are K initial writes with
the same initial value) [8].

K -atomic semantics provide safety guarantees on reads,
which are substantially more complex than only providing
basic eventual consistency (in fact, this difficulty was the
subject of the work from Aiyer et al. [8,9]). However, we
can adapt K -atomic semantics to a probabilistic context:

Definition 2 A system provides (K , p)-atomic semantics if
reads obey K -atomic semantics with probability p.

Note that PBS (K , p)-atomic semantics effectively have
two variables: probability and versions. In practice, when
we consider data store behavior, we often wish to explore the
Pareto frontier between them, or, in the context of predictions
or SLAs, treat one as dependent and the other as independent.

We can also consider K -regular semantics (also from
Aiyer et al.), which weaken atomic semantics to relax con-
straints on in-flight writes. Under regular semantics, if a read
to an item does not overlap with a write, it must return the
effects of the prior write. If the read overlaps with a write
(that is, a write [or set of writes] starts, then a read is issued
and completes before the write[s] complete), then the read

can return the value of any of the in-flight writes or the prior
version of the write [50]. As illustrated in Fig. 2a, K -regular
semantics allow a write to return either in-flight writes or any
of the last K completed writes:

Definition 3 A read obeys K -regular semantics if, in the
case that the read that does not overlap with a write, it returns
the result of one of the latest K completed writes, or, if the
read overlaps with a write, it returns either the result of one
of the latest K completed writes or the eventual result of one
of the overlapping writes [8].

Definition 4 A system provides (K , p)-regular semantics if
reads obey K -regular semantics with probability p.

We omit a similar translation for safe semantics.
Using version-based (K , p) semantics, we can predict

whether a client will ever read older data than it has previ-
ously read, a well-known session guarantee called monotonic
reads consistency [72]. This is particularly useful when
clients do not need to see the most recent version of a data
item but still require a notion of “forward progress” through
versions.

Definition 5 A system obeys p-monotonic reads consis-
tency if, with probability p, at least one value in any read
quorum returned to a client is the same version or a newer
version than the last version that the client previously read.

To guarantee that a client sees monotonically increasing
versions, it can continue to contact the same replica [74]
(provided the “sticky” replica does not fail). However, this
is insufficient for strict monotonic reads, where the client
reads strictly newer data if it exists in the system. We can
adapt Definition 5 to accommodate strict monotonic reads
by requiring that the data store returns a more recent data
version if it exists.

2.3 PBS time staleness

Consistency is also often expressed in terms of wall clock
time [73,78,79]. Recent work by Golab et al. considered the
problem of verifying time-based staleness in a theoretical
context [35]. We adopt their terminology for deterministic
atomicity and refer the interested reader to their analysis for
a full case-by-case analysis of (deterministic) atomicity vio-
lations:

Definition 6 A read obeys ∆-atomic semantics if it returns
the latest write or the value of the latest write as of up to ∆

time units ago [35].

We can similarly adapt the definition of ∆-atomic seman-
tics to a probabilistic context:

Definition 7 A system provides (∆, p)-atomic semantics if
reads obey ∆-atomic semantics with probability p.

123



Quantifying eventual consistency 283

We can adapt the definition of (∆, p)-atomic semantics
to a ∆-regular register and, subsequently, a PBS ∆-regular
register:

Definition 8 A read obeys ∆-regular semantics if, in the
case that it does not overlap with a write, it returns either
the latest write or the value of the latest write as of up to
∆ time units ago, or, if the read overlaps with a write, it
returns either the latest write, the value of the latest write as
of up to ∆ time units ago, or the eventual result of one of the
overlapping writes.

Definition 9 A system provides (∆, p)-regular semantics if
reads obey ∆-regular semantics with probability p.

We again omit a translation for safe semantics.

2.4 PBS time and versions

We can combine the previous models to combine both ver-
sioned and real-time staleness metrics. We can describe the
conjunction of both time- and version-based consistency
properties; as an example, consider (K ,∆)-atomicity and
(K ,∆, p)-atomicity:

Definition 10 A read obeys (K ,∆)-atomic semantics if
there exists an order of the operations that is consistent with
real-time order and one of the versions returned by the read
is equal to one of the versions written by the last K preceding
writes in the order as of up to ∆ time units ago (assuming
there are K initial writes with the same initial value).

Definition 11 A system provides (K ,∆, p)-regular seman-
tics if reads obey (K ,∆)-regular semantics with probability
p.

Note that (K ,∆, p)-atomic semantics encapsulate the
prior definitions of consistency. (K , p)-atomic semantics
are equivalent to (K ,∆ = 0, p)-atomic semantics, while
(∆, p)-atomic semantics are equivalent to (K = 1,∆, p)-
atomic semantics.

As above, we can repeat this exercise for regular and safe
semantics.

2.5 Using PBS metrics

PBS metrics are independent of the underlying data store
implementation. Intuitively, if we have information about the
relevant underlying behavior and current operating condi-
tions of an eventually consistent store (e.g., replication pro-
tocols, network latency), then we can quantify their effects on
the store’s semantics. For certain architectures, like master–
slave systems, this is relatively straightforward (e.g., the tran-
sit time from master to slave—often already measured—is

easily correlated with staleness). For others, like the quo-
rum systems we will study, this is more complicated. With-
out this white-box information, we can still perform rough
black-box modeling or monitoring. We discuss these alterna-
tives in Sect. 8.1 and several prior approaches for consistency
enforcement (i.e., not prediction) in Sect. 9.

3 Quorum system background

While PBS metrics provide a foundation for quantifying
eventually consistent system behavior, they are more useful
when applied to a given data store. In this work, we consider
PBS metrics in the context of quorum-replicated data stores,
which represent a large class of widely deployed real-world
distributed data stores.

In this section, we provide background on quorum systems
both in the theoretical academic literature and in practice. We
begin by introducing prior work on traditional and probabilis-
tic quorum systems. We next discuss Dynamo-style quorums,
currently the most widely deployed protocol for data stores
employing quorum replication. Finally, we survey reports of
practitioner usage of partial quorums for three Dynamo-style
data stores.

3.1 Quorum foundations: theory

Systems designers have long proposed quorum systems as a
replication strategy for distributed data [34]. Under quorum
replication, a data store writes a data item by sending it to a
set of replicas, called a write quorum. To serve reads, the data
store fetches the data from a possibly different set of replicas,
called a read quorum. For reads, the data store compares
the set of values returned by the replicas, and, given a total
ordering of versions, can return the most recent value (or all
values received, if desired). For each operation, the data store
chooses read and write quorums from a set of sets of replicas,
known as a quorum system, with one system per data item.
There are many kinds of quorum systems, but one simple
configuration is to use read and write quorums of fixed sizes,
which we will denote R and W , for a set of nodes of size N .
To reiterate, a quorum-replicated data store uses one quorum
system per data item. Across data items, quorum systems
need not be identical. Finally, the minimum sized quorum
defines the system’s fault tolerance, or availability.

Informally, a strict quorum system is a quorum system
with the property that any two quorums in the quorum system
overlap (have non-empty intersection). Reading and writ-
ing to R and W replicas in a strict quorum provides reg-
ular semantics. A simple example of a strict quorum sys-
tem is the majority quorum system, in which each quorum
is of size ⌈ N+1

2 ⌉. The theory literature describes alterna-
tive quorum system designs providing varying asymptotic
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properties of capacity, scalability, and fault tolerance, from
tree-quorums [5] to grid-quorums [61] and highly available
hybrids [6]. Jiménez-Peris et al. [44] provide an overview
of traditional, strict quorum systems. Importantly, note that
using overlapping read and write sets does not guarantee
linearizability. Instead, overlapping read and write quorums
provides regular semantics [50], and, accordingly, we will
focus on regular semantics in this work.

Partial quorum systems are natural extensions of strict
quorum systems: at least two quorums in a partial quorum
system do not overlap. There are two relevant variants of par-
tial quorum systems described in the literature: probabilistic
quorum systems and k-quorums.

Probabilistic quorum systems provide probabilistic guar-
antees of quorum intersection. By scaling the number of repli-
cas, one can achieve an arbitrarily high probability of consis-
tency [58]. Intuitively, this is a consequence of the Birthday
Paradox: as the number of replicas increases, the probabil-
ity of non-intersection between any two quorums decreases.
Probabilistic quorums are typically used to predict the prob-
ability of strong consistency but not (multi-version) bounded
staleness. Merideth and Reiter provide an overview of these
systems [60].

As an example of a probabilistic quorum system, consider
N replicas with randomly chosen read and write quorums of
sizes R and W . We can calculate the probability that the
read quorum does not contain the last written version. This
probability is the number of quorums of size R composed of
nodes that were not written to in the write quorum divided
by the number of possible read quorums:

ps =
(N−W

R

)
(N

R

) (1)

The probability of inconsistency is high except for large N .
With N = 100, R = W = 30, ps = 1.88 × 10−6 [8]. How-
ever, with N = 3, R = W = 1, ps = 0.6. The asymptotics
of these systems are excellent—but only asymptotically.

k-quorum systems provide deterministic guarantees that
a partial quorum system will return values that are within
k versions of the most recent write [8]. In a single writer
scenario, sending each write to ⌈ N

k ⌉ replicas with round-
robin write scheduling ensures that any replica is no more
than k versions out-of-date. However, with multiple writers,
we lose the global ordering properties that the single writer
was able to control, and the best-known algorithm for the
pathological case results in a lower bound of (2N − 1)(k −
1) + N versions staleness [9].

This prior work makes two important assumptions. First,
it typically models quorum sizes as fixed, where the set of
nodes with a version does not grow over time. Prior work
examined “dynamic systems,” considering quorum member-
ship churn [4], network-aware quorum placement [32,36],

Replica Replica Replica

Coordinator

Write forwardedResponse

Client write
request

Response

Ack after W
replicas respond

KVS

Fig. 1 Diagram of control flow for client write to Dynamo-style quo-
rum (N = 3, W = 2). A coordinator node handles the client write and
sends it to all N replicas. The write call returns after the coordinator
receives W acknowledgments

and network partitions [41] but not write propagation. Sec-
ond, it frequently assumes Byzantine failure. We revisit these
assumptions in the next section.

3.2 Quorum foundations: practice

In practice, many distributed data management systems use
quorums as a replication mechanism. Amazon’s Dynamo [27]
is the progenitor of a class of eventually consistent key-value
stores that include Apache Cassandra [49], Basho Riak [13],
and LinkedIn’s Project Voldemort [31]. All of these systems
use the same variant of quorum-style replication and we are
not aware of any widely adopted data store using a vastly
different quorum replication protocol. However, with some
work, we believe that other styles of replication can adopt
our methodology. We describe key-value stores here, but any
replicated data store can use quorums, including traditional
RDBMS systems.

Dynamo-style quorum systems employ one quorum sys-
tem per key, typically maintaining the mapping of keys to
quorum systems using a consistent-hashing scheme or a cen-
tralized membership protocol. Each node in the system clus-
ter stores multiple keys. As shown in Fig. 1, clients send read
and write requests to a node in the system cluster, which
forwards the request to all nodes assigned to that key as
replicas. This coordinating node considers an operation com-
plete when it has received responses from a pre-determined
number of replicas (typically set per-operation). Accord-
ingly, without message loss, all replicas eventually receive all
writes. This means that the write and read quorums chosen
for a request depend on which nodes respond to the request
first. Dynamo denotes the replication factor of a key as N , the
number of replica responses required for a successful read as
R, and the number of replica acknowledgments required for
a successful write as W . Under normal operation, Dynamo-
style systems guarantee regular semantics when R+W > N .
While there is ongoing work on providing atomic (lineariz-
able) semantics in these stores [21], we are not aware of any
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stores that currently provide atomic semantics. Accordingly,
to analyze the likelihood that eventually consistent config-
urations behave like strongly consistent configurations, we
focus on regular semantics.

There are significant differences between quorum theory
and data systems used in practice. First, replication factors for
data stores are low, typically between one and three [22,30,
37]. Second (in the absence of failure), in Dynamo-style par-
tial quorums, the write quorum size increases even after the
operation returns, growing via anti-entropy [28]. Coordina-
tors send all requests to all replicas but consider only the first
R (W ) responses. As a matter of nomenclature (and to disam-
biguate against “dynamic” quorum membership protocols),
we will refer to these systems as expanding partial quorum
systems. (We discuss additional anti-entropy in Sect. 5.2.)
Third, as in much of the applied literature, practitioners focus
on fail-stop instead of Byzantine failure modes [20]. Follow-
ing standard practice, we do not consider Byzantine failure.

3.3 Typical quorum configurations

For improved latency, operators often set R + W ≤ N . Here,
we survey quorum configurations according to practitioner
accounts. Operators frequently use partial quorum configura-
tions, citing performance benefits and high availability. Most
of these accounts did not discuss the possibility or occurrence
of staleness resulting from partial quorum configurations.

Cassandra defaults to N = 3, R = W = 1 [22]. The
Apache Cassandra 1.0 documentation claims that “a major-
ity of users do writes at consistency level [W = 1],” while
the Cassandra Query Language defaults to R = W = 1
as well [1]. Production Cassandra users report using R =
W = 1 in the “general case” because it provides “maximum
performance” [77], which appears to be a commonly held
belief [45,63]. Cassandra has a “minor” patch [2] for session
guarantees [72] that is not currently used [29]; according to
our discussions with developers, this is due to lack of interest.

Riak defaults to N = 3, R = W = 2 [17,18]. Users
suggest using R = W = 1, N = 2 for “low value” data
(and strict quorum variants for “web,” “mission critical,” and
“financial” data) [46,55].

Finally, Voldemort does not provide sample configura-
tions, but Voldemort’s authors (and operators) at LinkedIn
[30] often choose N = c, R = W = ⌈c/2⌉ for odd c. For
applications requiring “very low latency and high availabil-
ity,” LinkedIn deploys Voldemort with N = 3, R = W = 1.
For other applications, LinkedIn deploys Voldemort with
N = 2, R = W = 1, providing “some consistency,” par-
ticularly when three-way replication is not required. Unlike
Dynamo, Voldemort sends read requests to R of N replicas
(not N of N ) [31]; this decreases load per replica and network
traffic at the expense of read latency and potential availabil-
ity. Provided staleness probabilities are independent across

requests, this does not affect staleness: even when sending
reads to N replicas, coordinators only wait for R responses.

4 PBS and quorums

In this section, we use PBS metrics introduced in Sect. 2
to analyze the consistency of modern quorum systems. We
discuss (K , p)-regular semantics first because they are self-
contained, with a simple closed-form solution. In compar-
ison, analyzing (∆, p)-regular semantics is more difficult,
involving additional variables. Accordingly, this section pro-
ceeds in order of increasing difficulty, and much of the
remainder of this paper addresses the complexities of (∆, p)-
regular semantics.

Practical concerns guide the following theoretical contri-
butions. We begin by considering a model without quorum
expansion or other anti-entropy. For the purposes of a running
example, as in Eq. 1, we assume that W (R) of N replicas are
randomly selected for each write (read) operation. Similarly,
we consider fixed W, R and N across multiple operations.
Next, we expand our model to consider write propagation
in expanding partial quorums. In this section, we discuss
anti-entropy in general; however, we model Dynamo-style
quorums in Sect. 5. We discuss further refinements to these
assumptions in Sect. 8.

4.1 PBS (K , p)-regular semantics

Probabilistic quorums allow us to determine the probability
of returning the most recent value written to the database, but
do not describe what happens when the most recent value is
not returned. Here, we determine the probability of returning
a value within a bounded number of versions. In the following
formulation, we consider traditional, non-expanding write
quorums (no anti-entropy). Reads may return versions whose
writes that are not yet committed (in-flight) (see Fig. 2a).

The probability of returning a version of a key within the
last k versions committed is equivalent to intersecting one
of k independent write quorums. Given the probability of
a single quorum non-intersection p, the probability of non-
intersection with one of the last k independent quorums is pk .
In our running example, the probability of non-intersection
is Eq. 1 exponentiated by k:

p =
((N−W

R

)
(N

R

)

)k

(2)

When N = 3, R = W = 1, this means that the probabil-
ity of returning a version within 2 versions is 0.5, within 3
versions, 0.703, 5 versions, >0.868, and 10 versions, >0.98.
When N = 3, R = 1, W = 2 (or, equivalently, R = 2, W =
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Fig. 2 Valid versions returned by read operations under PBS (K , p)-
regular semantics (a) and PBS monotonic reads (b). Each timeline
represents the linear, real-time order of versions according to write
completion time. In Dynamo-style systems, the correct version(s) to
return typically corresponds to the highest-timestamped write(s). In
(K , p)-regular semantics, the read operation will return a version no
later than k versions older than the last committed value when it started.
In monotonic reads consistency, acceptable staleness depends on the
number of versions committed since the client’s last read

1), these probabilities increase: k = 1 → 0.6, k = 2 → 0.8,
and k = 5 →> 0.995.

This closed-form solution holds for quorums that do not
change size over time. For expanding partial quorum systems,
this solution is a bound on p for (K , p)-regular semantics.

4.2 p-Monotonic reads consistency

p-Monotonic reads consistency is a special case of PBS
(K , p)-regular semantics (see Fig. 2b), where k is determined
by a client’s rate of reads from a data item (γcr ) and the global,
system-wide rate of writes to the same data item (γgw). If we
know these rates, the number of versions written between
client reads is γgw

γcr
, as shown in Fig. 2b. We can calculate the

probability of monotonic reads as a special case of (K , p)-
regular semantics where k = 1 + γgw

γcr
. Again extending our

running example, from Eq. 2:

p =
((N−W

R

)
(N

R

)

)1+γgw/γcr

(3)

For strict monotonic reads, where we cannot read the version
we have previously read (assuming there are newer versions
in the database), we exponentiate with k = γgw

γcr
.

In practice, we may not know these exact rates, but, by
measuring their distribution, we can calculate an expected
value. By performing appropriate admission control, opera-
tors can control these rates to achieve monotonic reads con-
sistency with high probability.

4.3 Load improvements with version staleness

The load of a quorum system is defined as the frequency of
accessing the busiest quorum member [61, Definition 3.2].
Intuitively, the busiest quorum member limits the number of

requests that a given quorum system can sustain, called its
capacity [61, Corollary 3.9].

Prior work determined that probabilistic quorum systems
did not offer significant benefits to load (providing a constant
factor improvement compared to strict quorum systems) [58].
Here, we show that quorums tolerating PBS (K , p)-regular
semantics have asymptotically lower load than traditional
probabilistic quorum systems (and, transitively, than strict
quorum systems).

The probabilistic quorum literature defines an ε-
intersecting quorum system as a quorum system that pro-
vides a 1 − ε probability of returning consistent data [58,
Definition 3.1]. A ε-intersecting quorum system has load of
at least 1−√

ε√
N

[58, Corollary 3.12].
In considering k versions of staleness, we consider the

intersection of k ε-intersecting quorum systems. For a given
probability p of inconsistency, if we are willing to tolerate
k versions of staleness, we need only require that ε = k

√
p.

This implies that our PBS (K , p)-regular semantics system

construction has load of at least 1−p
1

2k√
N

, an improved lower
bound compared to traditional probabilistic quorum systems.
PBS monotonic reads consistency results in a lower bound

on load of 1−p
1

2C√
N

, where C = 1 + γgw

γcr
.

These results are intuitive: if we are willing to tolerate mul-
tiple versions of staleness, we need to contact fewer replicas.
Staleness tolerance lowers the load of a quorum system, sub-
sequently increasing its capacity.

4.4 PBS (∆, p)-regular semantics

Until now, we have considered only quorums that do not
grow over time. However, as we discussed in Sect. 3.2, real-
world quorum systems expand by asynchronously propa-
gating writes to quorum system members over time. This
process is commonly known as anti-entropy [28]. In this sec-
tion, we will restrict our discussion to generic anti-entropy
techniques. However, we explicitly model the Dynamo-style
anti-entropy mechanisms in Sect. 5.

PBS (∆, p)-regular semantics models the probability of
inconsistency for expanding quorums. This ∆ captures the
expected length of the “window of inconsistency.” Recall that
we consider in-flight writes—which are more recent than the
last committed version—as non-stale.

In our analysis, we consider the worst case for ∆: we ana-
lyze (∆, p)-regular semantics as if the last write happened
exactly ∆ seconds ago. This is for two reasons. First, this
captures a notion of “visibility,” or how long it takes a write
to appear to readers. This formulation is interesting because
it considers the period of maximum vulnerability to inconsis-
tency. For example, (∆, p)-regular semantics are likely guar-
anteed (high p) when the last write completed, say, seconds
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or minutes (or longer) ago but are much lower immediately
after the write completes. Second, this formulation allows us
our analysis to be independent of read and write rates. If the
last write happened ∆∗ seconds ago, choosing any ∆ < ∆∗

will be a conservative estimate. With multiple overlapping
writes, the probability of consistency similarly increases.

We denote the probability density function describing the
probability that exactly Wr replicas have received a particular
version v,∆ seconds after v commits as Pw(Wr ,∆).

By definition, for expanding quorums, ∀c ∈ [0, W ],
Pw(c, 0) = 1; at commit time, W replicas will have received
the value with certainty. We can model the probability of
PBS (∆, p)-regular semantics for given ∆ by summing the
conditional probabilities of each possible Wr :

p =
∑

c∈[W,N ]

(N−c
R

)
(N

R

) · [Pw(c,∆) − Pw(c + 1,∆)] (4)

However, the above equation assumes reads occur instan-
taneously and writes commit immediately after W replicas
have the version (i.e., there is no delay acknowledging the
write to the coordinating node). In the real world, coordina-
tors wait for write acknowledgments and read requests take
time to arrive at remote replicas, increasing ∆. Accordingly,
Eq. 4 is a conservative upper bound on p.

In practice, Pw depends on the anti-entropy mechanisms
in use and the expected latency of operations, but we can
approximate it (Sect. 5) or measure it online. For this reason,
the load of a (∆, p) quorum system depends on write prop-
agation and is difficult to analytically determine for general-
purpose expanding quorums. Additionally, one can model
both transient and permanent failures by increasing the tail
probabilities of Pw (Sect. 6.9).

4.5 PBS (K ,∆, p)-regular semantics

We can extend our prior analyses of (K , p)-regular and
(∆, p)-regular semantics to consider (K ,∆, p)-regular
semantics:

p =

⎛

⎝
∑

c∈[W,N ]

(N−c
R

)
(N

R

) · [Pw(c,∆) − Pw(c + 1,∆)]

⎞

⎠
K

(5)

In this equation, in addition to (again) assuming instanta-
neous reads, we also assume the pathological case where the
last k writes all occurred at the same time. If we can determine
the time since commit for the last k writes, we can improve
this bound by considering each quorum’s p separately (indi-
vidual ∆). However, predicting (and enforcing) write arrival
rates is challenging and may introduce inaccuracy, so this
equation is a conservative lower bound on p.

In practice, we believe it is easier to reason about stale-
ness of versions or staleness of time but not both together.

WRITE
(W)

wait for R
responses

Time

stale if
READ 
arrives
 before
WRITE 

wait for W
responses

send to N replicas
ReplicaCoordinator

ACK
(A)

READ
(R)

send to N replicas

RESPONSE
(S)

 seconds elapse

Fig. 3 The WARS model for in Dynamo describes the message laten-
cies between a coordinator and a single replica for a write followed by
a read t seconds after commit. In an N replica system, this messaging
occurs N times

Accordingly, having derived a closed-form model for (K , p)-
regular semantics, in the remainder of this paper, we focus
mainly on deriving more specific models for (∆, p)-regular
semantics. A conservative rule-of-thumb going forward is
to exponentiate the probability of inconsistency in (∆, p)-
regular semantics by k when up to k versions of staleness are
tolerable.

5 Dynamo-style (∆, p)-regular semantics

We have a closed-form model for (K , p)-regular seman-
tics, but (∆, p)-regular semantics are dependent on both the
quorum replication algorithm and the anti-entropy processes
employed by a given system. In this section, we discuss PBS
(∆, p)-regular semantics in the context of Dynamo-style data
stores and describe how to asynchronously detect staleness.

5.1 Inconsistency in Dynamo: WARS model

Dynamo-style quorum systems are inconsistent as a result
of read and write message reordering, in turn a product of
message delays. To illustrate this phenomenon, we introduce
a model of message latency in Dynamo operation that, for
convenience, we call WARS.

In Fig. 3, we illustrate WARS using a space–time diagram
for messages between a coordinator and a single replica for a
write followed by a read∆ seconds after the write commits. ∆
here corresponds to the ∆ in PBS (∆, p)-regular semantics.
In brief, reads are stale when all of the first R responses
to the read request arrived at their replicas before the last
(committed) write request.

For a write, the coordinator sends N messages, one to each
replica. The message from the coordinator to replica contain-
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ing the write is delayed by a value drawn from distribution
W. The coordinator waits for W responses from the replicas
before it can consider the version committed. Each response
acknowledging the write is delayed by a value drawn from
the distribution A.

For a read, the coordinator (possibly different than the
write’s coordinator, and possibly representing a different
client than the client that issued the write) sends N messages,
one to each replica. The message from coordinator to replica
containing the read request is delayed by a value drawn from
distribution R. The coordinator waits for R responses from
the replicas before returning the most recent value it receives.
The read response from each replica is delayed by a value
drawn from the distribution S.

The read coordinator will return stale data if the first R
responses received reached their replicas before the replicas
received the latest version (delayed byW). When R+W > N ,
this is impossible. However, under partial quorums, the fre-
quency of this occurrence depends on the latency distribu-
tions. If we denote the commit time (when the coordinator
has received W acknowledgments) as wt , a single replica’s
response is stale if r ′ + wt + ∆ < w′ for r ′ drawn from
R and w′ drawn from W. Writes have time to propagate to
additional replicas both while the coordinator waits for all
required acknowledgments (A) and as replicas wait for read
requests (R). Read responses are further delayed in transit
(S) back to the read coordinator, inducing further possibility
of reordering. Qualitatively, longer write tails (W) and faster
reads increase the chance of staleness due to reordering.

WARS considers the effect of message sending, delays,
and reception, but this represents a daunting analytical for-
mulation. The commit time is an order statistic of W and N
dependent on both W and A. Furthermore, the probability that
the i th returned read message observes reordering is another
order statistic of R and N dependent on W,A,R, and S. More-
over, across responses, the probabilities are dependent. These
dependencies make calculating the probability of staleness
rather difficult. Dynamo is straightforward to reason about
and program but is difficult to analyze in a simple closed
form. As we discuss in Sect. 6.1, we instead explore WARS
using Monte Carlo methods, which are straightforward to
understand and implement.

5.2 WARS scope

5.2.1 Proxying operations

Depending on which coordinator a client contacts, coordina-
tors may serve reads and writes locally. In this case, subject
to local query processing delays, a read or write to R or W
nodes behaves like a read or write to R − 1 or W − 1 nodes.
Although we do not do so, one could adopt WARS to handle
local reads and writes. The decision to proxy requests (and,

if not, which replicas serve which requests) is data store and
deployment specific. Dynamo forwards write requests to a
designated coordinator solely for the purpose of establish-
ing a version ordering [27, Section 6.4] (easily achievable
through other mechanisms [43]). Dynamo’s authors observed
a latency improvement by proxying all operations and having
clients act as coordinators—Voldemort adopts this architec-
ture [70].

5.2.2 Client-side delays

End-users will likely incur additional time between their
reads and writes due to latency required to contact the ser-
vice. Individuals making requests to Web services through
their browsers will likely space sequential requests by tens
or hundreds of milliseconds due to client-to-server latency.
Although we do not consider this delay here, it is important
to remember for practical scenarios because delays between
reads and writes (∆) for individual clients may be large.

5.2.3 Additional anti-entropy

As we discussed in Sect. 3.2, anti-entropy decreases the prob-
ability of staleness by propagating writes between replicas.
Dynamo-style systems also support additional anti-entropy
processes [59]. Read repair is a commonly used anti-entropy
process: when a read coordinator receives multiple versions
of a data item from different replicas in response to a read
request, it will attempt to (asynchronously) update the out-
of-date replicas with the most recent version [27, Section 5].
Read repair acts like an additional write for every read, except
old values are re-written. Additionally, Dynamo used Merkle
trees to summarize and exchange data contents between repli-
cas [27, Section 4.7]. However, not all Dynamo-style data
stores actively employ similar gossip-based anti-entropy. For
example, Cassandra uses Merkle tree anti-entropy only when
manually requested (e.g., nodetool repair), instead
relying primarily on quorum expansion and read repair [23].

These processes are rate dependent: read repair’s effi-
ciency depends on the rate of reads, and Merkle tree
exchange’s efficiency (and, more generally, most anti-
entropy efficiency) depends on the rate of exchange. A
conservative assumption for read repair and Merkle tree
exchange is that they never occur. For example, assuming a
particular read repair rate implies a given rate of reads from
each key in the system.

In contrast, WARS captures expanding quorum behavior
independent of read rate and with conservative write rate
assumptions. WARS considers a single read and a single
write. Aside from load considerations, concurrent reads do
not affect staleness. If multiple writes overlap (that is, have
overlapping periods where they are in-flight but are not com-
mitted), the probability of inconsistency decreases. This is

123



Quantifying eventual consistency 289

because overlapping writes result in an increased chance
that a client reads as-yet-uncommitted data. As a result, with
WARS, data may be fresher than predicted.

5.3 Asynchronous staleness detection

Even if a system provides a low probability of inconsis-
tency, applications may need notification when data returned
is inconsistent or staler than expected. Here, as a side note, we
discuss how the Dynamo protocol is naturally equipped for
staleness detection. We focus on PBS (∆, p)-regular seman-
tics in the following discussion, but it is easily extended to
other PBS semantics.

Knowing whether a response is stale at read time requires
strong consistency. Intuitively, by checking all possible val-
ues in the domain against a hypothetical staleness detector,
we could determine the (strongly) consistent value to return.
While we cannot do so synchronously, we can determine
staleness asynchronously. Asynchronous staleness detection
allows speculative execution [76] if a program contains
appropriate compensation logic.

We first consider a staleness detector providing false pos-
itives. Recall that, in a Dynamo-style system, we wait for R
of N replies before returning a value. The remaining N − R
replicas will still reply to the read coordinator. Instead of
dropping these messages, the coordinator can compare them
to the version it returned. If there is a mismatch, then either
i.) the coordinator returned stale data, i i.) there are in-flight
writes in the system, or i i i.) additional versions committed
after the read. The latter two cases, relating to data commit-
ted after the response initiation, lead to false positives. In
these cases, the read did not return “stale” data even though
there were newer but uncommitted versions in the system.
Notifying clients about newer but uncommitted versions of
a data item is not necessarily bad but may be unnecessary.
This detector does not require modifications to the Dynamo
protocol and is similar to the read-repair process.

To eliminate these uncommitted-but-newer false positives
(cases two and three), we need to determine the total, system-
wide commit ordering of writes. Recall that replicas are
unaware of the commit time for each version. The timestamps
stored by replicas are not updated after commit, and com-
mits occur after W replicas respond. Thankfully, establishing
a total ordering among distributed agents is a well-known
problem that a Dynamo-style system can solve by using a
centralized service [43] or using distributed consensus [51].
This requires modifications but is feasible.

6 Evaluating Dynamo (∆, p)-regular semantics

As discussed in Sect. 4.4, PBS (∆, p)-regular semantics
depends on the propagation of reads and writes throughout

a system. We introduced the WARS model as a means of
reasoning about inconsistency in Dynamo-style quorum sys-
tems, but quantitative metrics such as staleness observed in
practice depend on each of WARS’s latency distributions. In
this section, we perform an analysis of Dynamo-style (∆, p)-
regular semantics to better understand how frequently “even-
tually consistent” means “consistent” and, more importantly,
why.

PBS (K , p)-regular semantics is easily captured in closed
form (Sect. 4.1). It does not depend on write latency or any
environmental variables. Indeed, in practice, without expand-
ing quorums or anti-entropy, we observe that our derived
equations hold true experimentally.

(∆, p)-regular semantics depends on anti-entropy, which
is more complicated. In this section, we focus on deriving
experimental expectations for PBS (∆, p)-regular seman-
tics. While we could improve the staleness results by consid-
ering additional anti-entropy processes (Sect. 5.2), we make
the minimum of assumptions required by the WARS model.
Conservative analysis decreases the number of experimental
variables (supported by empirical observations from practi-
tioners) and increases the applicability of our results.

6.1 Monte Carlo simulation

In light of the complicated analytical formulation discussed
in Sect. 5.1, we implemented WARS analysis in a Monte Carlo
based simulation. Calculating (∆, p)-regular semantics for a
given value of ∆ is straightforward (Algorithm 1). To simu-
late the message delays between coordinator and each of the
N replicas, denote the i th sample drawn from distribution D
as D[i] and draw N samples from W, A, R, and S (lines 4–14).
Compute the time of the write request completes (wt , or the
time that the coordinator gets its W th acknowledgment; the
W th smallest value of {W[i] + A[i], i ∈ [0, N )}, calculated
in lines 9 and 15). Next, determine whether any of the first
R replicas contained an up-to-date response: check whether
any the first R samples of R, ordered byR[i]+S[i] (lines 16–
22) obey wt +R[i]+∆ ≤ W[i] (lines 23–28). Repeating this
process multiple times (lines 3–29) provides a approximation
of the behavior specified by the trace (line 30). Extending this
formulation to analyze (K ,∆, p)-regular semantics given a
distribution of write arrival times will require accounting for
multiple writes across time.

6.2 Experimental validation

To validate WARS, our simulation implementation, and our
subsequent analyses, we compared our predicted (∆, p)-
regular semantics and latency with the consistency we
observed in a commercially supported, open source Dynamo-
style data store. We modified Cassandra to profile WARS
latencies, disabled read repair (as it is external to WARS),
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Algorithm 1 Calculating p under (∆, p)-regular semantics
using WARS model.
1: given: N , R, W , ∆, WARS model, i terations

2: consistent_trials = 0
3: for i = 1 → i terations do

(generate WARS latencies for each replica
to find write and read latencies)

4: Ws = {}; As = {}; Rs = {}; Ss = {};
5: write_latencies = {}; read_latencies = {};
6: for replica = 0 → N do
7: Ws[replica] = WARS.nextW();
8: As[replica] = WARS.nextA();
9: write_latencies[replica] = Ws[replica] + As[replica];
10:
11: Rs[replica] = WARS.nextR();
12: Ss[replica] = WARS.nextS();
13: read_latencies[replica] = Rs[replica] + Ss[replica];
14: end for

(the Wth fastest reply determines write
finish)

15: write_finish = find_nth_smallest_element(write_latencies, W);
(the Rth fastest reply determines read

finish)
16: read_finish = find_nth_smallest_element(read_latencies, R);

(find the first R replicas that replied)
17: reply_replicas = {};
18: for replica = 0 → N do
19: if read_latencies[replica] ≤ read_finish then
20: reply_replicas.append(replica)
21: end if
22: end for

(determine if any responses were
consistent)

23: for replica ∈ reply_replicas do
24: if write_finish + Rs[replica] + ∆ ≥ Ws[replica] then
25: consistent_trials += 1;
26: break;
27: end if
28: end for
29: end for

30: return consistent_trials/iterations;

and, for reads, only considered the first R responses (often,
more than R messages would arrive by the processing stage,
decreasing staleness). We ran Cassandra on three servers with
2.2 GHz AMD Opteron 2214 dual-core SMT processors and
4 GB of 667 MHz DDR2 memory, serving in-memory data.
To measure staleness, we inserted increasing versions of a
key while concurrently issuing read requests and performed
post-hoc log analysis to determine observed consistency.

Our WARS predictions matched our empirical observa-
tions of Cassandra’s behavior. We injected a combination
of exponentially distributed latencies into Cassandra; this
was necessary to observe non-negligible inconsistency in
our test cluster and approximates the long-tailed behav-
ior of the production latency distributions we explore later
(Sect. 6.4). In general, these exponential distributions had
substantially higher variance than those we saw in practice
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Fig. 4 (∆, p)-regular semantics with exponential latency distributions
for W and A=R=S. Mean latency is 1/λ. N = 3, R = W = 1

(which fit well with Pareto bodies and exponential tails).
We injected each combination of exponentially distributed
W = λ ∈ {0.05, 0.1, 0.2} (means 20, 10, and 5 ms) and
A = R = S = λ ∈ {0.1, 0.2, 0.5} (means 10, 5, and 2 ms)
across 50,000 writes. After empirically measuring the WARS
distributions, consistency, and latency for each partial quo-
rum configuration, we predicted the (∆, p)-regular seman-
tics and latency. Our average (∆, p)-regular semantics pre-
diction RMSE was 0.28 % (std. dev. 0.05 %, max. 0.53 %) for
each t ∈ {1, . . . , 199}ms. Our predicted latency (for each
of the {1.0, . . . , 99.9th} percentiles for each configuration)
had an average N-RMSE of 0.48 % (std. dev. 0.18 %, max.
0.90 %). This validates our Monte Carlo based implementa-
tion for IID distributions.

6.3 Write latency distribution effects

As discussed in Sect. 5.1, the WARS model of Dynamo-
style systems dictates that high one-way write variance (W)
increases staleness. To quantify these effects, we swept a
range of exponentially distributed write distributions (chang-
ing parameter λ, which dictates the mean and tail of the dis-
tribution) while fixing A=R=S.

Our results, shown in Fig. 4, confirm this relationship.
When the variance of W is 0.0625 ms (λ = 4, mean .25 ms,
one-fourth the mean of A=R=S), we observe a 94 % chance
of consistency immediately after the write and 99.9 % chance
after 1 ms. However, when the variance of W is 100 ms
(λ = .1, mean 10 ms, ten times the mean of A=R=S), we
observe a 41 % chance of consistency immediately after write
and a 99.9 % chance of consistency only after 65 ms. As the
variance and mean increase, so does the probability of incon-
sistency. Under distributions with fixed means and variable
variances (uniform, normal), we observe that the mean of W
is less important than its variance if W is strictly greater than
A=R=S.
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Table 1 LinkedIn Voldemort
single-node production latencies Percentile Latency (ms)

15,000 RPM SAS Disk

Average 4.85

95 15

99 25

Commodity SSD

Average 0.58

95 1

99 2

Decreasing the mean and variance of W improves the prob-
ability of consistent reads. This means that, as we will see,
techniques that lower one-way write latency result in higher
chance of consistent reads. Instead of increasing read and
write quorum sizes, operators could chose to lower (relative)
W latencies through hardware configuration or by delaying
reads. This latter option is potentially detrimental to per-
formance for read-dominated workloads and may introduce
undesirable queuing effects.

6.4 Production latency distributions

To study WARS in greater detail, we obtained production
latency statistics from two Internet-scale companies.

LinkedIn3 is an online professional social network with
over 225 million members as of July 2013. To provide highly
available, low latency data storage, engineers at LinkedIn
built Voldemort. Alex Feinberg, a lead engineer on Volde-
mort, graciously provided us with latency distributions for
a single node under peak traffic for a user-facing service
at LinkedIn, representing 60 % read and 40 % read-modify-
write traffic [30] (Table 1). Feinberg reports that, using spin-
ning disks, Voldemort is “largely IO bound and latency is
largely determined by the kind of disks we’re using, [the] data
to memory ratio and request distribution.” With solid-state
drives (SSDs), Voldemort is “CPU and/or network bound
(depending on value size).” As an aside, Feinberg also noted
that “maximum latency is generally determined by [garbage
collection] activity (rare, but happens occasionally) and is
within hundreds of milliseconds.”

Yammer4 provides private social networking to over
200,000 companies as of July 2013 and uses Basho’s Riak
for some client data [13]. Coda Hale, an infrastructure archi-
tect, and Ryan Kennedy, also of Yammer, previously pre-
sented in-depth performance and configuration details for
their Riak deployment in March 2011 [38]. Hale provided us

3 LinkedIn. www.linkedin.com.
4 Yammer. www.yammer.com.

Table 2 Yammer Riak N = 3, R = 2, W = 2 production latencies

Percentile Read latency (ms) Write latency (ms)

Min 1.55 1.68

50 3.75 5.73

75 4.17 6.50

95 5.2 8.48

98 6.045 10.36

99 6.59 131.73

99.9 32.89 435.83

Max 2,979.85 4,465.28

Mean 9.23 8.62

Standard deviation 83.93 26.10

Mean rate 718.18 gets/s 45.65 puts/s

with more detailed performance statistics for their applica-
tion [37] (Table 2). Hale mentioned that “reads and writes
have radically different expected latencies, especially for
Riak.” Riak delays writes “until the fsync returns, so while
reads are often <1 ms, writes rarely are.” Also, although we
do not model this explicitly, Hale also noted that the size of
values is important, claiming “a big performance improve-
ment by adding LZF compression to values.”

6.5 Latency model fitting

While the provided production latency distributions are
invaluable, they are under-specified for WARS. First, the
data are summary statistics, but WARS requires distribu-
tions. More importantly, the provided latencies are round-
trip times, while WARS requires the constituent one-way
latencies for both reads and writes. As our validation
demonstrated, these latency distributions are easily col-
lected, but, because they are not currently collected in
production, we must fill in the gaps. Accordingly, to fit
W, A, R, and S for each configuration, we made a series
of assumptions. Without additional data on the latency
required to read multiple replicas, we assume that each
latency distribution is independently, identically distributed
(IID). We fit each configuration using a mixture model with
two distributions, one for the body and the other for the
tail.

LinkedIn provided two latency distributions, whose fits we
denote LNKD-SSD and LNKD-DISK for the SSD and spin-
ning disk data. As previously discussed, when running on
SSDs, Voldemort is network and CPU bound. Accordingly,
for LNKD-SSD, we assumed that read and write operations
took equivalent amounts of time and, to allocate the remain-
ing time, we focused on the network-bound case and assumed
that one-way messages were symmetric (W=A=R=S). Fein-
berg reported that Voldemort performs at least one read
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Table 3 Distribution fits for production latency distributions from
LinkedIn (LNKD-*) and Yammer (YMMR)

LNKD-SSD W = A = R = S :
91.22 %: Pareto, xm = .235,α = 10

8.78 %: Exponential, λ = 1.66

N-RMSE: .55 %

LNKD-DISK W:

38 %: Pareto, xm = 1.05,α = 1.51

62 %: Exponential, λ = .183

N-RMSE: .26 %

A = R = S : LNKD-SSD

YMMR W:

93.9 %: Pareto, xm = 3,α = 3.35

6.1 %: Exponential, λ = .0028

N-RMSE: 1.84 %

A = R = S :
98.2 %: Pareto, xm = 1.5,α = 3.8

1.8 %: Exponential, λ = .0217

N-RMSE: .06 %

before every write (average of 1 seek, between 1 and 3 seeks),
and writes to the BerkeleyDB Java Edition back-end flush
to durable storage either every 30 s or 20 MB—whichever
comes first [30]. Accordingly, for LNKD-DISK, we used the
same A=R=S as LNKD-SSD but fit W separately.

Yammer provided distributions for a single configuration,
denoted YMMR, but separated read and write latencies. Under
our IID assumptions, we fit single-node latency distributions
to the provided data, again assuming symmetric A, R, and S.
The data again fit a Pareto distribution with a long exponen-
tial tail. At the 98th percentile, the write distribution takes a
sharp turn. Fitting the data closely resulted in a long tail, with
99.99+th percentile writes requiring tens of seconds—much
higher than Yammer specified. Accordingly, we fit the 98th
percentile knee conservatively; without the 98th percentile,
the write fit N-RMSE is .104 %.

We also considered a wide-area network replication sce-
nario, denoted WAN. Reads and writes originate in a random
data center, and, accordingly, one replica command com-
pletes quickly and the coordinator routes the others remotely.
We delay remote messages by 75 ms and apply LNKD-DISK
delays once the command reaches a remote data center,
reflecting multi-continent WAN delay [26].

We show the parameters for each distribution in Table 3
and plot each fitted distribution in Fig. 5. Note that for
R, W of one, LNKD-DISK is not equivalent to WAN. In
LNKD-DISK, we only have to wait for one of N local reads
(writes) to return, whereas, in WAN, there is only one local
read (write) and the network delays all other read (write)
requests by at least 150 ms.

6.6 Production (∆, p)-regular semantics

We measured the (∆, p)-regular semantics for each distrib-
ution (Fig. 6). As we observed under synthetic distributions
in Sect. 6.3, the (∆, p)-regular semantics depended on both
the relative mean and variance of W.
LNKD-SSD and LNKD-DISK demonstrate the impor-

tance of write latency in practice. Immediately after write
commit, LNKD-SSD had a 97.4 % probability of consistent
reads, reaching over a 99.999 % probability of consistent
reads after 5 ms. LNKD-SSD’s reads briefly raced with its
writes immediately after commit. However, within a few mil-
liseconds after the write, the chance of a read arriving before
the last write was nearly eliminated. The distribution’s read
and write operation latencies were small (median .489 ms),
and writes completed quickly across all replicas due to the
distribution’s short tail (99.9th percentile .657 ms). In con-
trast, under LNKD-DISK, writes take much longer (median
1.50 ms) and have a longer tail (99.9th percentile 10.47 ms).
LNKD-DISK’s (∆, p)-regular semantics reflects this differ-
ence: immediately after write commit, LNKD-DISK had
only a 43.9 % probability of consistent reads and, 10 ms
later, only a 92.5 % probability. This suggests that SSDs may
greatly improve consistency due to reduced write variance.

We experienced similar effects with the other distribu-
tions. Immediately after commit, YMMR had a 89.3 % chance
of consistency. However, YMMR’s long tail hampered its
(∆, p)-regular semantics and only reached a 99.9 % prob-
ability of consistency 1,364 ms after commit. As expected,
WAN observed poor chances of consistency until after the
75 ms passed (33 % chance immediately after commit); the
client had to wait longer to observe the most recent write
unless it originated from the reading client’s data.

6.7 Quorum sizing

In addition to N = 3, we consider how varying the number
of replicas (N) affects (∆, p)-regular semantics while main-
taining R = W = 1. The results, depicted in Fig. 7, show that
the probability of consistency immediately after write com-
mit decreases as N increases. With 2 replicas, LNKD-DISK
has a 57.5 % probability of consistent reads immediately after
commit but only a 21.1 % probability with 10 replicas. How-
ever, at high probabilities (p), the wait time required for
increased replica sizes is close. For LNKD-DISK, the (∆, p)-
regular semantics at 99.9 % probability of consistency ranges
from 45.3 ms for 2 replicas to 53.7 ms for 10 replicas.

These results imply that maintaining a large number of
replicas for availability or better performance results in a
potentially large impact on consistency immediately after
writing. However, the (∆, p)-regular semantics probability
(p) will still rise quickly (low ∆).
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Fig. 5 Read and write operation latency for production fits for N = 3. For reads, LNKD-SSD is equivalent to LNKD-DISK. Higher values of R
and W result in latency
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Fig. 7 (∆, p)-regular semantics for production operating latencies for variable N when R = W = 1. ∆ for 99.9 % probability of consistency is
similar across N

6.8 Latency versus staleness

Choosing a value for R and W is a trade-off between
operation latency and (∆, p)-regular semantics. To measure
the obtainable latency gains, we compared (∆, p)-regular
semantics required for a 99.9 % probability of consistent
reads to the 99.9th percentile read and write latencies.

Partial quorums often exhibit favorable latency–consis-
tency trade-offs (Table 4). For YMMR, R = W = 1 results

in low latency reads and writes (16.4 ms) but high (∆, p)-
regular semantics (1,364 ms). However, setting R = 2 and
W = 1 reduces (∆, p)-regular semantics to 202 ms and the
combined read and write latencies are 81.1 % (186.7 ms)
lower than the fastest strict quorum (W = 1, R = 3).
A 99.9 % consistent (∆, p)-regular semantics of 13.6 ms
reduces LNKD-DISK read and write latencies by 16.5 %
(2.48 ms). For LNKD-SSD, across 10 M writes (“seven
nines”), we did not observe staleness with R = 2, W = 1.
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Table 4 (∆, p)-regular semantics for pst = .001 (99.9 % probability of consistency for 50,000 reads and writes) and 99.9th percentile read (Lr )
and write latencies (Lw) across R and W, N = 3 (1 M reads and writes)

LNKD-SSD LNKD-DISK YMMR WAN
Lr Lw t Lr Lw t Lr Lw t Lr Lw t

R = 1, W = 1 0.66 0.66 1.85 0.66 10.99 45.5 5.58 10.83 1,364.0 3.4 55.12 113.0

R = 1, W = 2 0.66 1.63 1.79 0.65 20.97 43.3 5.61 427.12 1,352.0 3.4 167.64 0

R = 2, W = 1 1.63 0.65 0 1.63 10.9 13.6 32.6 10.73 202.0 151.3 56.36 30.2

R = 2, W = 2 1.62 1.64 0 1.64 20.96 0 33.18 428.11 0 151.31 167.72 0

R = 3, W = 1 4.14 0.65 0 4.12 10.89 0 219.27 10.79 0 153.86 55.19 0

R = 1, W = 3 0.65 4.09 0 0.65 112.65 0 5.63 1,870.86 0 3.44 241.55 0

Significant latency–staleness trade-offs are in bold
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Fig. 8 Impact of heterogeneous synthetic latency distributions across replicas. We evaluate cases where one or two replicas have higher write
latency (W ′) than the other replica(s) (W ) for exponentially distributed latencies

R = W = 1 reduced latency by 59.5 % (1.94 ms) with a
corresponding (∆, p)-regular semantics of 1.85 ms. Under
WAN, R > 1 or W > 1 results in a large latency increase
because writes incur large wide-area transit delays. In sum-
mary, lowering values of R and W can greatly improve opera-
tion latency, but, even in the tail, the duration of inconsistency
(∆) is relatively small.

6.9 Heterogeneous replica behavior

In our experiments thus far (with the exception of the multi-
datacenter WAN scenario), we have assumed that all replicas
behave according to the same latency distribution. In prac-
tice, this may not be the case: some nodes may have faulty
components, may experience greater network delays, or may
otherwise display anomalous behavior. Accordingly, we now
use our PBS models to consider how heterogeneous nodes
could affect the observed consistency. To begin, we quantify
the effects of slow writes at replicas, using a range of expo-
nentially distributed write latencies per replica in our Monte
Carlo analysis. We fix A=R=S latencies as exponential dis-
tributions with mean 1 ms and vary W. Figure 8 shows how
consistency changes with time when we either have one or
two slow replicas (for N = 3, R = 1, W = 1). With one

slow replica, when the variance of the slower replica (W∗) is
100 ms (λ = .1, mean 10 ms) the chance of consistent reads
immediately after a write drops to around 60 % (compared
to 75 % when all replicas have the same write latency). We
see more inconsistency as the variance of the slow replica
increases because write variance dictates the amount of stal-
eness observed in the WARS model. Comparing the results
for W∗ with 100 ms variance to Sect. 6.3 (Fig. 4), we see that
having one slow replica (60 % chance at ∆ = 0, λ = 0.10)
has lower staleness than all three replicas being slow (40 %
chance at ∆ = 0, λ = 0.10). Accordingly, having a few
high variance replicas is better than having all high variance
replicas.

To explore a real-world setting with heterogeneous replica
behavior, we consider a scenario where some of the repli-
cas store data on SSDs while others use spinning disks. We
model this setup by using the LNKD-SSD and LNKD-DISK
latency distributions for different replica configurations. For
R = 1, W = 1 (Fig. 9), having one replica with disks and
two replicas with SSDs results in (∆, p)-regular semantics of
35 ms at 99.9 % probability of consistency. When two replicas
use disks, we find that the (∆, p)-regular semantics at 99.9 %
probability becomes 43 ms, which is very close to the case
where all the replicas use spinning disks (45.5 ms at 99.9 %).
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Fig. 9 Impact of heterogeneous empirical latency distributions across replicas. For N = 3, we consider cases where some replicas use SSDs while
others use disks

With R = 2, W = 1, the effect of the slow node is reduced,
and the (∆, p)-regular semantics are 3 ms at 99.9 % proba-
bility (compared to 13.6 ms at 99.9 %). These results indicate
that the consistency benefit of partially upgrading hardware
across servers may not outweigh the cost of performance
heterogeneity. However, if upgrading for other reasons (e.g.,
latency), consistency may improve as a side benefit.

We also modeled cases where a subset of the replicas have
high latencies for W,A,R and S, a plausible approximation
of the scenario of network congestion between some server
racks within a data center (not shown). When all clients
experienced the same slowdown across replicas (i.e., the
clients were not co-located with the slow rack), we found
that observed consistency actually increased, as the slower
replicas were ignored by the read operations. This results in
writes and reads being served from the faster replicas, mean-
ing there are fewer chances for message re-ordering. Simi-
larly, a single node failure can be approximated by using a
latency distribution with a large mean for all operations on
the failed node, and we again see an increase in consistency.
If clients and servers are partitioned from one another, we do
not expect this behavior: observed consistency will degrade.

7 Multi-key guarantees

In this section, we consider two important kinds of multi-key
guarantees: transactional atomicity and causal consistency.

7.1 Transactional atomicity

Transactional atomicity (not to be confused with linearizabil-
ity, often called atomicity in a distributed context) ensures
that either all effects of a transaction are seen, or none are.
We can use PBS to provide conservative bounds on the proba-
bility of transactional atomicity. If we assume that each write
operation in the transaction is independent and all writes are
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Fig. 10 Probability of transactional atomicity for LNKD-DISK, vary-
ing transaction size

buffered until transaction commit, then the probability that
we observe transactional atomicity is equal to P(all updates
are visible)+P(no updates are visible).

We consider write-only transactions where we wish to
observe all updated data items after commit (such that delay-
ing the visibility of the updated data items is not allowed) and
plot the results of varying transaction size in Fig. 10. Under
LNKD-DISK, 50 ms after a write, a transaction of size 2 has a
99.4 % chance of consistency, while a transaction of size 100
only has a 90.2 % chance of consistency. However, after 1 s, a
transaction of size 100 has a 99.8 % chance of consistency—
the LNKD-DISK distribution has a long tail, but it is unlikely
that samples drawn from the distribution will take longer than
a few seconds.

7.2 Causal consistency

Causal consistency has received considerable attention in
recent research on distributed data stores [14,54]. Under
causal consistency, reads obey a partial order of versions
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across data items [7]. As an example, a social network-
ing site might wish to enforce that comment replies are
seen only along with their parents and would accordingly
order replies after their parent comment in the partial order.
We can use PBS to determine the likelihood of violat-
ing causal consistency in an eventually consistent data
store.

To understand the structure of application-level causality
relationships, we examined two publicly available datasets
from two popular Web services: Twitter and Metafilter. Twit-
ter is a microblogging service with over 500 million users. We
use a corpus of 936,236 conversations on Twitter compris-
ing 4,937,001 Tweets collected between February and July
2011 [66]. Metafilter is an active community Weblog with a
range of topics and over 59,000 users. We use a corpus of
Metafilter posts from July 1999 to October 2012 containing
362,584 posts and 8,749,130 comments [56].

Using PBS predictions, we can determine the likelihood
that an eventually consistent store would show events out of
order; that is, a Tweet in a conversation might be shown with-
out the rest of the conversation. Effectively, violations occur
when an event appears before its respective ancestors in the
causal order have arrived. The likelihood of this reordering is
determined by the eventually consistent store as well as the
inter-arrival time for each event. If we have three events A, B,
and C occurring at times tA, tB, tC such that A → B → C in
the desired causal ordering, we can calculate the probability
of causal consistency at time tD > tC given a measure for
(∆, p)-semantics. As a simple case, consider no overwrites
to A, B, or C , and a single set of reads to all three items. If
we denote the case in which the read returns a non-null data
item I as RI (and null as ¬RI ), then the probability of causal
consistency is:

P(¬RA ∧ ¬RB ∧ ¬RC )

+P(RA ∧ ¬RB ∧ ¬RC )

+P(RA ∧ RB ∧ ¬RC )

+P(RA ∧ RB ∧ RC ) (6)
We can calculate each of RA, RB , and RC based on tA, tB, tC ,
and tD , setting ∆ = tD − tA, and so on.

In practice, the inter-arrival time between replies is far
greater than most ∆ for reasonably high p in the (∆, p)-
regular semantics we saw in Sect. 6. We plot the inter-
arrival time for each conversation/comment thread in Fig. 11.
The median inter-arrival time is 153 s for Twitter and over
412 s for Metafilter. Only 0.001 % of Tweet replies arrived
within 1 s, and only 0.0766 % arrived within 10 s. 0.3693 % of
Metafilter comments arrived within one second of the prior
comment, while 3.1225 % arrived within 10 s. When com-
pared to expected stability within hundreds of milliseconds
at the 99.9th percentile, these inter-arrival times leave little
room for reordering within application-level causal relation-
ships.
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Fig. 11 Inter-arrival time for Twitter and Metafilter causal events

Table 5 Probability of causal consistency for 0.001 % fastest inter-
arrival times for conversations in Twitter and Metafilter dataset

Model Twitter Metafilter

∆ 0 s 1 s 0 s 1 s

LNKD-DISK 95.08 (%) 99.99 (%) 75.35 (%) 99.97 (%)

YMMR 97.94 (%) 99.92 (%) 90.01 (%) 99.64 (%)

Especially as the window of inconsistency closes within
hundreds of milliseconds while the majority of requests for a
data item often occur much later, we expect causal violations
due to eventually consistent store operation to be rare dur-
ing normal operation in practice. We configured our (∆, p)-
regular predictor for LNKD-DISK and YMMR and calculated
the probability of causal inconsistency for the 0.001th per-
centile of Twitter and Metafilter thread prefixes ranked by
fastest inter-arrival time (i.e., if A → B → C, B happened
immediately after A, then C happened t > 0 units of time
after B, we only consider A → B). As shown in Table 5,
the probability of causal consistency immediately after the
latest event is at least 75 % and is at least 99.6 % after 1 s for
these threads, which are themselves among the fastest in the
dataset. Of course, a probabilistic expectation is not a deter-
ministic guarantee, but this data, paired with our PBS results,
helps further illuminate how, for many services—particularly
those with human-generated causal event chains (which are
limited in inter-arrival time by both human processing time
and fine motor reactions)—eventually consistent configura-
tions often provide causal consistency.

8 Discussion: PBS design and implementation

8.1 Prediction and verification

There has been a proliferation of recent work verifying and
measuring the behavior of various stores with respect to
different consistency models [19,35,65,75,80]. Here, we
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briefly discuss the strengths and weaknesses of both con-
sistency prediction and verification.

Prediction, as in PBS, gives an expectation of system
behavior given a set of input data about the system and
the current operating environment. This prediction is both
flexible (allowing a wide range of scenarios and parameter
exploration) and decentralized (e.g., PBS prediction can be
performed on a single node, or even outside of the system—
given input data) but is only as good as the traces captured.
With perfectly representative input data, capturing all sub-
tleties like dependencies between requests and across pre-
dictions, predictions will be entirely accurate. With unrep-
resentative data or bad models, predictions may be inac-
curate. On the other hand, predictions allow users to eas-
ily perform “what-if” analysis across arbitrary replication
configurations, request distributions (∆ and K ), and hard-
ware configurations (e.g., switching from SSDs to disks).
Given a trace, one can determine the staleness after an arbi-
trary amount of time or number of versions without hav-
ing to actually run any additional queries, and, in our expe-
rience, the computational requirements for prediction are
modest (achievable in real-time even in a Web browser—
see Sect. 8.3). Algorithmically, prediction does not require
consensus: we need not know the “latest version” for any
key (Sect. 5.3). This means that readers and writers need not
coordinate or all participate in order to provide meaningful
statistics for users. In our Cassandra implementation, only
one server needs to participate in predictions, even if other
servers act as coordinators for requests to the same key.

In contrast with prediction, verification informs users how
their data stores are performing with certainty. If a user makes
a change to their replication settings using a predictor, she
may want to ensure that the change behaves as expected.
While this verification is not well suited to the first step
(“what-if” analysis) or in determining how the system will
behave under different workloads, it is an important comple-
ment to prediction. Verification effectively provides a metric
that results from integrating the (K ,∆, p)-regular seman-
tics PDF weighted by the given read request rate (measured
with respect to time since the last write). If verifying how
often an eventually consistent (or weakly consistent) store
provides “strong” consistency models such as linearizabil-
ity or sequential consistency, then, in the presence of par-
titions, verification will stall. Additionally, verification is
algorithmically complex [35] (NP-complete for models such
as serializability and linearizability if values written are not
unique [33,71]), but, in our experience (Sect. 6.2) is not ter-
ribly difficult to implement.

Taken together, consistency prediction and verification
techniques form a powerful toolkit. Prediction allows explo-
ration of arbitrary configurations and both server and end-
user behavior, while verification validates predictions. Pre-
diction acts on a set of finite input data and allows reasoning

about arbitrary conditions and traces, while verification—by
definition—operates on a finite trace of system behavior. We
believe that both techniques will be increasingly useful as
systems begin to treat consistency as a continuous, quantita-
tive metric.

8.2 White-box versus black-box techniques

One final considerable distinction between PBS and recent
work on consistency verification is the treatment of the under-
lying data store: should the data store be treated as a transpar-
ent white box, or should we disregard any expert knowledge
we have in favor of ostensible portability?

In this work, we take a white-box approach to consistency:
if we know how data stores are implemented, we can exploit
this knowledge. At the minimum, a distributed data store
developer has access to its source code and can examine the
protocols used in providing predictions. In practice, others
(like the authors) can often examine the (open) source code
for themselves. Moreover, once the prediction developer has
identified the relevant portions of the replication protocol,
she can instrument their behavior and expose these metrics
in a separate prediction module. Note that, in the white-box
model, we translate the user-centric, declarative specification
of consistency anomalies into back-end protocol events (e.g.,
in WARS, the reordering between read and write responses).

In contrast, recent related work treats data stores as black
boxes. These verification-centric techniques typically require
monitoring end-user requests and reconstructing consistency
behavior from a prefix of the operations. The benefit of this
approach is that these techniques can work atop arbitrary
stores (practical yet substantial issues relating to data model
and query interfaces aside). Performing prediction in a black-
box scenario appears substantially more complex, possibly
requiring inference regarding the behavior of the underly-
ing data store or otherwise constructing a model via active
search of the state space. Unlike white-box modeling, which
requires a protocol-centric translation of consistency anom-
alies, black-box modeling is, by definition, constrained to
reason about operation traces (or similar), which are closer
to the original model definitions.

Given our success in integrating prediction into an existing
data store (Sect. 8.3), we believe that white-box techniques
are feasible, even if they require modifications to existing
stores.

8.3 Real-world store integration

With the help of several open source developers, we have
developed patches for PBS functionality within two NoSQL
stores: Cassandra and Voldemort. In this section, we briefly
outline the technical details and architecture of these modi-
fications. For Cassandra, we have taken two approaches: an
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invasive but more accurate implementation and an external
but less accurate prediction module. For Voldemort, we have
performed simple logging required for reconstructing WARS
offline. Next, we discuss the technical details involved in our
two approaches to PBS predictions in Cassandra.

Our first approach to predictions in Cassandra modified
the messaging layer to directly provide a node-local predic-
tion module with latency traces. We integrated, as part of
Cassandra 1.2.0, PBS profiling and prediction. We modified
the Cassandra messaging layer to add a message creation
timestamp in order to measure each of W,A,R,Sdistributions.
When tracing is enabled on a given node, the messaging layer
logs per-operation timestamps in a separate PBS prediction
module. The timestamps are stored in an in-memory circu-
lar buffer for each of the required message latencies. Subse-
quently, users can call the PBS predictor module via an exter-
nally accessible interface (Java MBean, or via JMX) which
they can use to provide advanced functionality like dynamic
replication configuration and monitoring (Sect. 8.4). This
provides highly accurate predictions at the expense of having
to modify the messaging layer. Predictions can be performed
outside of the database or as an internal module.

Our second approach is less invasive and leverages sev-
eral developments that were introduced to the system dur-
ing the course of this project. Concurrently with our mod-
ifications, Cassandra developers introduced improved mon-
itoring for each of its tables (Column Families), including
latency sampling. This enables basic (but not necessarily
high-fidelity) trace estimation without performing any modi-
fying the underlying message layer (as in our first implemen-
tation). Accordingly, stock Cassandra allows rough predic-
tions. However, currently (as of July 2013), Cassandra only
allows traces for round-trip times, requiring a predictor to
estimate the time spent in the network and in local process-
ing. Given the benefits of fine-grained per-replica monitoring
(including ascertaining how query performance is affected
by the network and the storage manager), we believe that
the remaining metrics required for accurate predictions will
be both easy to implement and useful to other downstream
consumers (i.e., traditional monitoring tools). Accordingly,
while our second implementation, a external predictor that
consumes standard Cassandra metrics, is currently limited
to round-trip times, we expect this limitation to be lifted in
the near future. As an alternative design, we have considered
leveraging Cassandra’s experimental query tracing features
to provide more accurate timing.

If Cassandra is a case study for PBS prediction, we are
encouraged by the rapid pace of feature development over the
past 18 months. Not only is the feature set of these emerging
data stores growing, but, in our experience, developers are
willing to engage with academics throughout the design and
implementation phases. Ultimately, balancing the challenge
of code maintainability with experimental functionality is

an engineering exercise, but we believe that, as these stores
mature, our ability to make white-box predictions will only
improve.

8.4 Additional functionality

8.4.1 Latency–consistency SLAs

With PBS, we can automatically configure replication para-
meters by optimizing operation latency given constraints on
staleness and minimum durability. Data store operators can
subsequently provide service level agreements to applica-
tions and quantitatively describe latency/staleness trade-offs
to users. Operators can dynamically configure replication
using online latency measurements. PBS provides a quan-
titative lens for analyzing consistency guarantees that were
previously unknown. This optimization formulation is likely
non-convex, but the state space for configurations is small
(O(N 2)). This optimization also allows disentanglement of
replication for reasons of durability from replication for rea-
sons of low latency and higher capacity. For example, oper-
ators can specify a minimum replication factor for durabil-
ity and availability but can also automatically increase N ,
decreasing tail latency for fixed R and W .

To illustrate these capabilities, we developed a demonstra-
tion of these functionalities for developers, which we posted
online as an interactive browser-based console (Fig. 12). The
demonstration shows how a hypothetical user or systems
administrator can—today, with the aid of PBS predictions in
her database—explore the state space of configurations with-
out changing the database’s settings in production. While the
demo requires a human to operate, as we have alluded to, we
believe that automating the search process and configuration
selection can be easily automated in the future; we briefly
outlined these possibilities in a SIGMOD 2013 demo that
featured similar real-time predictions, but for a live Cassan-
dra cluster and Web service [16].

8.4.2 On-boarding

Our discussions with industry indicate that PBS could also be
used as an aid for on-boarding internal customers of an even-
tually consistent data store. When developers wish to lever-
age an internally deployed data store, they frequently work
with data store administrators and support staff on provi-
sioning and configuration. When faced with decisions about
replication parameters, developers often do not have insight
into how their data store will perform or what semantics the
store will provide in an eventually consistent deployment.
With PBS, this on-boarding process is simplified and the
developer—who likely has a rough cost–benefit model for
latency–consistency—can make an informed decision (à la
consistency rationing [47]).
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Fig. 12 Screenshot of PBS
configuration demo (Hosted
online at http://pbs.cs.berkeley.
edu/)

9 Related work

We surveyed quorum replication techniques [4–6,8,9,34,36,
41,44,58,60,61] in Sect. 3. In this work, we specifically draw
inspiration from probabilistic quorums [58] and determinis-
tic k-quorums [8,9] in analyzing expanding quorum systems
and their consistency. We believe that revisiting probabilistic
quorum systems—including non-majority quorum systems
such as tree quorums—in the context of write propagation,
anti-entropy, and Dynamo is a promising area for theoretical
work.

Maintaining data consistency is a long-studied problem in
distributed systems [25] and concurrent programming [42].
There is a plethora of consistency models offering different
trade-offs between semantics, performance, and availability.
Traditional models like serializability [64] and linearizabil-
ity [42] as well as more recently proposed models such as
timeline consistency [24] and parallel snapshot isolation [68]
all provide “strong” semantics at the cost of high availability,
or the ability to provide “always-on” response behavior at all
replicas. In contrast, faced with a requirement for high avail-
ability and low latency, many production data stores have
turned to weaker semantics to provide availability in the face
of partitions [25,74].

Our focus in this paper is on the semantics provided by
existing, widely deployed systems both in theory and in prac-
tice. Due to the prevalence of “strong” consistency and even-
tual consistency models in practice (and the explicit choice
between these two models in Dynamo-style systems), we
largely focus on this dichotomy. However, there are a range of
alternative but still “weak” models. As an example, the Bayou
system provided a range of “session guarantees,” including
read-your-writes and monotonic reads consistency [72]. Sim-
ilarly, a technical report from UT Austin claims that a vari-
ant of causal consistency is the strongest consistency model

achievable in an available, one-way convergent (eventually
consistent) system [57], a model that has recently attracted
systems implementations [54]. As we have hinted, proba-
bilistic approaches are applicable to the consistency models
beyond those we have considered here.

Prior research has examined how to provide determinis-
tic staleness bounds. FRACS [81] allows replicas to buffer
updates up to a given staleness threshold under multiple repli-
cation schemes, including master-slave and group gossip.
AQuA [48] asynchronously propagates updates from a desig-
nated master to replicas that in turn serve reads with bounded
staleness. AQuA actively selects which replicas to contact
depending on response time predictions and a guaranteed
staleness bound. TRAPP [62] provides trade-offs between
precision and performance for continuously evolving numer-
ical data. TACT [78,79] models consistency along three axes:
numerical error, order error, and staleness. TACT bounds
staleness by ensuring that each replica (transitively) contacts
all other replicas in the system within a given time win-
dow. Finally, PIQL [12] bounds the number of operations
performed per query, trading operation latency at scale with
the amount of data a particular query can access, impacting
accuracy. These deterministically bounded staleness systems
represent the deterministic dual of PBS.

Finally, recent research has focused on measuring and ver-
ifying the consistency of eventually consistent systems both
theoretically [35] and experimentally [19,65,75,80]. This is
useful for validating consistency predictions and understand-
ing staleness violations.

10 Conclusion

In this paper, we introduced Probabilistically Bounded Stale-
ness, which models the expected staleness of data returned by
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eventually consistent data stores. PBS offers an alternative to
the all-or-nothing consistency guarantees of today’s systems
by offering SLA-style consistency predictions. By extend-
ing prior theory on probabilistic quorum systems, we derived
an analytical solution for the (K , p)-regular semantics of a
partial quorum system, representing the expected staleness
of a read operation in terms of versions. We also analyzed
(∆, p)-regular semantics, or expected staleness of a read in
terms of real-time, under Dynamo-style quorum replication.
To do so, we developed the WARS latency model to explain
how message reordering leads to staleness under Dynamo. To
examine the effect of latency on (∆, p)-regular semantics in
practice, we used real-world traces from Internet companies
to drive a Monte Carlo analysis. We find that eventually con-
sistent quorum configurations are often consistent after tens
of milliseconds due in large part to the resilience of Dynamo-
style protocols. We conclude that “eventually consistent” par-
tial quorum replication schemes frequently deliver consistent
data while offering significant latency benefits.

11 Interactive demonstration

An interactive demonstration of Dynamo-style PBS is avail-
able at http://pbs.cs.berkeley.edu/#demo.
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