
Probabilistically Bounded Staleness
for Practical Partial Quorums

Peter Bailis, Shivaram Venkataraman, Michael J. Franklin, Joseph M. Hellerstein, Ion Stoica
University of California, Berkeley

{pbailis, shivaram, franklin, hellerstein, istoica}@cs.berkeley.edu

All good ideas arrive by chance.—Max Ernst

ABSTRACT
Data store replication results in a fundamental trade-off between
operation latency and data consistency. In this paper, we exam-
ine this trade-off in the context of quorum-replicated data stores.
Under partial, or non-strict quorum replication, a data store waits
for responses from a subset of replicas before answering a query,
without guaranteeing that read and write replica sets intersect. As
deployed in practice, these configurations provide only basic even-
tual consistency guarantees, with no limit to the recency of data
returned. However, anecdotally, partial quorums are often “good
enough” for practitioners given their latency benefits. In this work,
we explain why partial quorums are regularly acceptable in prac-
tice, analyzing both the staleness of data they return and the la-
tency benefits they offer. We introduce Probabilistically Bounded
Staleness (PBS) consistency, which provides expected bounds on
staleness with respect to both versions and wall clock time. We de-
rive a closed-form solution for versioned staleness as well as model
real-time staleness for representative Dynamo-style systems under
internet-scale production workloads. Using PBS, we measure the
latency-consistency trade-off for partial quorum systems. We quan-
titatively demonstrate how eventually consistent systems frequently
return consistent data within tens of milliseconds while offering
significant latency benefits.

1. INTRODUCTION
Modern distributed data stores need to be scalable, highly avail-

able, and fast. These systems typically replicate data across dif-
ferent machines and often across datacenters for two reasons: first,
to provide high availability when components fail and, second, to
provide improved performance by serving requests from multiple
replicas. In order to provide predictably low read and write latency,
systems often eschew protocols guaranteeing consistency of reads1

and instead opt for eventually consistent protocols [4, 6, 20, 23, 38,

1This distributed replica consistency differs from transactional con-
sistency provided by ACID semantics [50, 58].

39, 55]. However, eventually consistent systems make no guaran-
tees on the staleness (recency in terms of versions written) of data
items returned except that the system will “eventually” return the
most recent version in the absence of new writes [61].

This latency-consistency trade-off inherent in distributed data
stores has significant consequences for application design [6]. Low
latency is critical for a large class of applications [56]. For exam-
ple, at Amazon, 100 ms of additional latency resulted in a 1% drop
in sales [44], while 500 ms of additional latency in Google’s search
resulted in a corresponding 20% decrease in traffic [45]. At scale,
increased latencies correspond to large amounts of lost revenue, but
lowering latency has a consistency cost: contacting fewer replicas
for each request typically weakens the guarantees on returned data.
Programs can often tolerate weak consistency by employing care-
ful design patterns such as compensation (e.g., memories, guesses,
and apologies) [33] and by using associative and commutative op-
erations (e.g., timelines, logs, and notifications) [12]. However,
potentially unbounded staleness (as in eventual consistency) poses
significant challenges and is undesirable in practice.

1.1 Practical Partial Quorums
In this work, we examine the latency-consistency trade-off in the

context of quorum-replicated data stores. Quorum systems ensure
strong consistency across reads and writes to replicas by ensuring
that read and write replica sets overlap. However, employing par-
tial (or non-strict) quorums can lower latency by requiring fewer
replicas to respond. With partial quorums, sets of replicas written
to and read from need not overlap: given N replicas and read and
write quorum sizes R and W, partial quorums imply R+W≤N .

Quorum-replicated data stores such as Dynamo [20] and its open
source descendants Apache Cassandra [41], Basho Riak [3], and
Project Voldemort [24] offer a choice between two modes of oper-
ation: strict quorums with strong consistency or partial quorums
with eventual consistency. Despite eventual consistency’s weak
guarantees, operators frequently employ partial quorums [1, 4, 23,
38, 55, 64]—a controversial decision [32, 46, 57, 58]. Given their
performance benefits, which are especially important as latencies
grow [6, 23, 32, 33], partial quorums are often considered accept-
able. The proliferation of partial quorum deployments suggests that
applications can often tolerate occasional cases of staleness and that
data tends to be “fresh enough” in most cases.

While common practice suggests that eventual consistency is of-
ten a viable solution for operators, to date, this observation has been
anecdotal. In this work, we quantify the degree to which eventual
consistency is both eventual and consistent and explain why. Un-
der worst-case conditions, eventual consistency results in an un-
bounded degree of data staleness, but, as we will show, the aver-
age case is often different. Eventually consistent data stores cannot
promise immediate and perfect consistency but, for varying degrees

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 38th International Conference on Very Large Data Bases,
August 27th - 31st 2012, Istanbul, Turkey.
Proceedings of the VLDB Endowment, Vol. 5, No. 8
Copyright 2012 VLDB Endowment 2150-8097/12/04... $ 10.00.

776



of certainty, can offer staleness bounds with respect to time (“how
eventual”) and version history (“how consistent”).

There is little prior work describing how to make these consis-
tency and staleness predictions under practical conditions. The cur-
rent state of the art requires that users make rough guesses or per-
form online profiling to determine the consistency provided by their
data stores [16, 28, 62]. Users have little to no guidance on how to
chose an appropriate replication configuration or how to predict the
behavior of partial quorums in production environments.

1.2 PBS Predictions and Contributions
To predict consistency, we need to know when and why even-

tually consistent systems return stale data and how to quantify the
staleness of the data they return. In this paper, we answer these
questions by expanding prior work on probabilistic quorums [49,
51] to account for multi-version staleness and message dissemi-
nation protocols as used in today’s systems. More precisely, we
present algorithms and models for predicting the staleness of partial
quorums, called Probabilistically Bounded Staleness (PBS). There
are two common metrics for measuring staleness in the literature:
wall clock time [28, 65, 66] and versions [28, 40, 67]. PBS de-
scribes both measures, providing the probability of reading a write
t seconds after it returns (t-visibility, or “how eventual is even-
tual consistency?”), of reading one of the last k versions of a data
item (k-staleness, or “how consistent is eventual consistency?”),
and of experiencing a combination of the two (〈k, t〉-staleness).
PBS does not propose new mechanisms to enforce deterministic
staleness bounds [40, 54, 65, 66, 67]; instead, our goal is to pro-
vide a lens for analyzing, improving, and predicting the behavior
of existing, widely deployed systems.

We provide closed-form solutions for PBS k-staleness and use
Monte Carlo methods to explore the trade-off between latency and
t-visibility. We present a detailed study of Dynamo-style PBS t-
visibility using production latency distributions. We show how
long-tailed one-way write latency distributions affect the time re-
quired for a high probability of consistent reads. For example,
in one production environment, switching from spinning disks to
solid-state drives dramatically improved staleness (e.g., 1.85ms ver-
sus 45.5ms wait time for a 99.9% probability of consistent reads)
due to decreased write latency mean and variance. We also make
quantitative observations of the latency-consistency trade-offs of-
fered by partial quorums. For example, in another production en-
vironment, we observe an 81.1% combined read and write latency
improvement at the 99.9th percentile (230 to 43.3ms) for a 202ms
window of inconsistency (99.9% probability consistent reads). This
analysis demonstrates the performance benefits that lead operators
to choose eventual consistency.

We make the following contributions in this paper:

• We develop the theory of Probabilistically Bounded Stale-
ness (PBS) for partial quorums. PBS describes the proba-
bility of staleness across versions (k-staleness) and time (t-
visibility) as well as the probability of session-based mono-
tonic reads consistency.

• We provide a closed-form analysis of k-staleness demon-
strating how the probability of receiving data k versions old
is exponentially reduced by k. As a corollary, k-staleness
tolerance also exponentially lowers quorum system load.

• We describe the WARS model for t-visibility in Dynamo-
style partial quorum systems and show how message reorder-
ing leads to staleness. We evaluate the t-visibility of Dynamo-
style systems using a combination of synthetic and produc-
tion latency models.

2. BACKGROUND
In this section, we provide background on quorum systems both

in the theoretical academic literature and in practice. We begin by
introducing prior work on traditional and probabilistic quorum sys-
tems. We next discuss Dynamo-style quorums, currently the most
widely deployed protocol for data stores employing quorum repli-
cation. Finally, we survey reports of practitioner usage of partial
quorums for three Dynamo-style data stores.

2.1 Quorum Foundations: Theory
Systems designers have long proposed quorum systems as a repli-

cation strategy for distributed data [26]. Under quorum replication,
a data store writes a data item by sending it to a set of replicas,
called a write quorum. To serve reads, the data store fetches the
data from a possibly different set of replicas, called a read quo-
rum. For reads, the data store compares the set of values returned
by the replicas, and, given a total ordering of versions,2 can return
the most recent value (or all values received, if desired). For each
operation, the data store chooses read and write quorums from a set
of sets of replicas, known as a quorum system, with one system per
data item. There are many kinds of quorum systems, but one sim-
ple configuration is to use read and write quorums of fixed sizes,
which we will denoteR andW , for a set of nodes of sizeN . To re-
iterate, a quorum replicated data store uses one quorum system per
data item. Across data items, quorum systems need not be identical

Informally, a strict quorum system is a quorum system with the
property that any two quorums (sets) in the quorum system overlap
(have non-empty intersection). This ensures consistency. The min-
imum sized quorum defines the system’s fault tolerance, or avail-
ability. A simple example of a strict quorum system is the majority
quorum system, in which each quorum is of size dN

2
e. The the-

ory literature describes alternative quorum system designs provid-
ing varying asymptotic properties of capacity, scalability, and fault
tolerance, from tree-quorums [8] to grid-quorums [52] and highly
available hybrids [9]. Jiménez-Peris et al. provide an overview of
traditional, strict quorum systems [37].

Partial quorum systems are natural extensions of strict quorum
systems: at least two quorums in a partial quorum system do not
overlap. There are two relevant variants of partial quorum systems
in the literature: probabilistic quorum systems and k-quorums.

Probabilistic quorum systems provide probabilistic guarantees
of quorum intersection. By scaling the number of replicas, one
can achieve an arbitrarily high probability of consistency [49]. In-
tuitively, this is a consequence of the Birthday Paradox: as the
number of replicas increases, the probability of non-intersection
between any two quorums decreases. Probabilistic quorums are
typically used to predict the probability of strong consistency but
not (multi-version) bounded staleness. Merideth and Reiter provide
an overview of these systems [51].

As an example of a probabilistic quorum system, consider N
replicas with randomly chosen read and write quorums of sizes R
and W . We can calculate the probability that the read quorum does
not contain the last written version. This probability is the number
of quorums of sizeR composed of nodes that were not written to in
the write quorum divided by the number of possible read quorums:

ps =

(
N−W
R

)(
N
R

) (1)

2We can easily achieve a total ordering using globally synchronized
clocks or using a causal ordering provided by mechanisms such as
vector clocks [42] with commutative merge functions [46]

777



The probability of inconsistency is high except for large N . With
N = 100, R = W = 30, ps = 1.88× 10−6 [10]. However, with
N = 3, R = W = 1, ps = 0.6. The asymptotics of these systems
are excellent—but only asymptotically.
k-quorum systems provide deterministic guarantees that a partial

quorum system will return values that are within k versions of the
most recent write [10]. In a single writer scenario, sending each
write to dN

k
e replicas with round-robin write scheduling ensures

that any replica is no more than k versions out-of-date. However,
with multiple writers, we lose the global ordering properties that
the single-writer was able to control, and the best-known algorithm
for the pathological case results in a lower bound of (2N − 1)(k−
1) +N versions staleness [11].

This prior work makes two important assumptions. First, it typ-
ically models quorum sizes as fixed, where the set of nodes with a
version does not grow over time. Prior work examined “dynamic
systems”, considering quorum membership churn [7], network-aware
quorum placement [25, 29], and network partitions [34] but not
write propagation. Second, it frequently assumes Byzantine fail-
ure. We revisit these assumptions in the next section.

2.2 Quorum Foundations: Practice
In practice, many distributed data management systems use quo-

rums as a replication mechanism. Amazon’s Dynamo [20] is the
progenitor of a class of eventually consistent key-value stores that
includes Apache Cassandra [41], Basho Riak [3], and LinkedIn’s
Project Voldemort [24]. All use the same variant of quorum-style
replication and we are not aware of any widely adopted data store
using a vastly different quorum replication protocol. However, with
some work, we believe that other styles of replication can adopt our
methodology. We describe key-value stores here, but any replicated
data store can use quorums, including full RDBMS systems.

Dynamo-style quorum systems employ one quorum system per
key, typically maintaining the mapping of keys to quorum systems
using a consistent-hashing scheme or a centralized membership
protocol. Each node stores multiple keys. As shown in Figure 1,
clients send read and write requests to a node in the system clus-
ter, which forwards the request to all nodes assigned to that key as
replicas. This coordinating node considers an operation complete
when it has received responses from a pre-determined number of
replicas (typically set per-operation). Accordingly, without mes-
sage loss, all replicas eventually receive all writes. This means
that the write and read quorums chosen for a request depend on
which nodes respond to the request first. Dynamo denotes the
replication factor of a key as N , the number of replica responses
required for a successful read as R, and the number of replica ac-
knowledgments required for a successful write as W . Under nor-
mal operation, Dynamo-style systems guarantee consistency when
R+W>N . Setting W>dN/2e ensures consistency in the pres-
ence of concurrent writes.

There are significant differences between quorum theory and data
systems used in practice. First, replication factors for data stores
are low, typically between one and three [4, 23, 30]. Second, (in
the absence of failure), in Dynamo-style partial quorums, the write
quorum size increases even after the operation returns, growing via
anti-entropy [21]. Coordinators send all requests to all replicas but
consider only the first R (W ) responses. As a matter of nomencla-
ture (and to disambiguate against “dynamic” quorum membership
protocols), we will refer to these systems as expanding partial quo-
rum systems. (We discuss additional anti-entropy in Section 4.2.)
Third, as in much of the applied literature, practitioners focus on
fail-stop instead of Byzantine failure modes [17]. Following stan-
dard practice, we do not consider Byzantine failure.

Replica Replica Replica

Coordinator

Write forwardedResponse

Client write
request

Response

Ack after W
replicas respond

KVS

Figure 1: Diagram of control flow for client write to Dynamo-
style quorum (N = 3,W = 2). A coordinator node handles the
client write and sends it to allN replicas. The write call returns
after the coordinator receives W acknowledgments.

2.3 Typical Quorum Configurations
For improved latency, operators often setR+W ≤ N . Here, we

survey quorum configurations according to practitioner accounts.
Operators frequently use partial quorum configurations, citing per-
formance benefits and high availability. Most of these accounts did
not discuss the possibility or occurrence of staleness resulting from
partial quorum configurations.

Cassandra defaults to N=3, R=W=1 [4]. The Apache Cassan-
dra 1.0 documentation claims that “a majority of users do writes at
consistency level [W=1]”, while the Cassandra Query Language
defaults to R=W=1 as well [1]. Production Cassandra users re-
port usingR=W=1 in the “general case” because it provides “max-
imum performance” [64], which appears to be a commonly held
belief [38, 55]. Cassandra has a “minor” patch [2] for session guar-
antees [60] that is not currently used [22]; according to our discus-
sions with developers, this is due to lack of interest.

Riak defaults to N=3, R=W=2 [14, 15]. Users suggest using
R=W=1, N=2 for “low value” data (and strict quorum variants
for “web,” “mission critical,” and “financial” data) [39, 47].

Finally, Voldemort does not provide sample configurations, but
Voldemort’s authors (and operators) at LinkedIn [23] often choose
N=c, R=W=dc/2e for odd c. For applications requiring “very
low latency and high availability,” LinkedIn deploys Voldemort
with N=3, R=W=1. For other applications, LinkedIn deploy-
ments Voldemort with N=2, R=W=1, providing “some consis-
tency,” particularly when three-way replication is not required. Un-
like Dynamo, Voldemort sends read requests to R of N replicas
(not N of N ) [24]; this decreases load per replica and network
traffic at the expense of read latency and potential availability. Pro-
vided staleness probabilities are independent across requests, this
does not affect staleness: even when sending reads to N replicas,
coordinators only wait for R responses.

3. PROBABILISTICALLY BOUNDED
STALENESS

In this section, we introduce Probabilistically Bounded Stale-
ness, which describes the consistency provided by existing even-
tually consistent data stores. We present PBS k-staleness, which
probabilistically bounds the staleness of versions returned by read
quorums, PBS t-visibility, which probabilistically bounds the time
before a committed version appears to readers, and PBS 〈k, t〉-
staleness, a combination of the two prior models.

We introduce k-staleness first because it is self-contained, with
a simple closed-form solution. In comparison, t-visibility is more
difficult, involving additional variables. Accordingly, this section

778



read returns

Version Tim
elines

previous read
B.)

read start
read returns

A.)
vivi-k

1+γgw/γcr

read start

acceptable versions

acceptable versions
k

Figure 2: Versions returnable by read operations under PBS
k-staleness (A) and PBS monotonic reads (B). In k-staleness,
the read operation will return a version no later than k ver-
sions older than the last committed value when it started. In
monotonic reads consistency, acceptable staleness depends on
the number of versions committed since the client’s last read.

proceeds in order of increasing difficulty, and the remainder of the
paper addresses the complexities of t-visibility.

Practical concerns guide the following theoretical contributions.
We begin by considering a model without quorum expansion or
other anti-entropy. For the purposes of a running example, as in
Equation 1, we assume that W (R) of N replicas are randomly
selected for each write (read) operation. Similarly, we consider
fixedW ,R andN across multiple operations. Next, we expand our
model to consider write propagation and time-varying W sizes in
expanding partial quorums. In this section, we discuss anti-entropy
in general, however we model Dynamo-style quorums in Section 4.
We discuss further refinements to these assumptions in Section 6.

3.1 PBS k-staleness
Probabilistic quorums allow us to determine the probability of

returning the most recent value written to the database, but do not
describe what happens when the most recent value is not returned.
Here, we determine the probability of returning a value within a
bounded number of versions. In the following formulation, we con-
sider traditional, non-expanding write quorums (no anti-entropy):

Definition 1. A quorum system obeys PBS k-staleness consis-
tency if, with probability 1 − psk, at least one value in any read
quorum has been committed within k versions of the latest com-
mitted version when the read begins.

Reads may return versions whose writes that are not yet committed
(in-flight) (see Figure 2A). The k-quorum literature defines these
as k-regular semantics [10].

The probability of returning a version of a key within the last
k versions committed is equivalent to intersecting one of k inde-
pendent write quorums. Given the probability of a single quorum
non-intersection p, the probability of non-intersection with one of
the last k independent quorums is pk. In our running example, the
probability of non-intersection is Equation 1 exponentiated by k:

psk =

((
N−W
R

)(
N
R

) )k
(2)

WhenN=3,R=W=1, this means that the probability of return-
ing a version within 2 versions is 0.5, within 3 versions, 0.703, 5
versions, > 0.868, and 10 versions, > 0.98. When N=3, R=1,
W=2 (or, equivalently, R=2, W=1), these probabilities increase:
k=1→ 0.6, k=2→ 0.8, and k=5→> 0.995.

This closed form solution holds for quorums that do not change
size over time. For expanding partial quorum systems, this solution
is an upper bound on the probability of staleness.

3.2 PBS Monotonic Reads
PBS k-staleness can predict whether a client will ever read older

data than it has previously read, a well-known session guarantee
called monotonic reads consistency [60]. This is particularly use-
ful when clients do not need to see the most recent version of a
data item but still require a notion of “forward progress” through
versions, as in timelines or streaming change logs.

Definition 2. A quorum system obeys PBS monotonic reads con-
sistency if, with probability at least 1− psMR, at least one value in
any read quorum returned to a client is the same version or a newer
version than the last version that the client previously read.

To guarantee that a client sees monotonically increasing ver-
sions, it can continue to contact the same replica [61] (provided
the “sticky” replica does not fail). However, this is insufficient for
strict monotonic reads (where the client reads strictly newer data
if it exists in the system). We can adapt Definition 2 to accommo-
date strict monotonic reads by requiring that the data store returns
a more recent data version if it exists.

PBS monotonic reads consistency is a special case of PBS k-
staleness (see Figure 2B), where k is determined by a client’s rate
of reads from a data item (γcr) and the global, system-wide rate
of writes to the same data item (γgw). If we know these rates, the
number of versions written between client reads is γgw

γcr
, as shown in

Figure 2B. We can calculate the probability of probabilistic mono-
tonic reads as a special case of k-staleness where k = 1 +

γgw
γcr

.
Again extending our running example, from Equation 2:

psMR =

((
N−W
R

)(
N
R

) )1+γgw/γcr

(3)

For strict monotonic reads, where we cannot read the version we
have previously read (assuming there are newer versions in the
database), we exponentiate with k =

γgw
γcr

.
In practice, we may not know these exact rates, but, by measur-

ing their distribution, we can calculate an expected value. By per-
forming appropriate admission control, operators can control these
rates to achieve monotonic reads consistency with high probability.

3.3 Load Improvements
Theory literature defines the load of a quorum system as a met-

ric for the frequency of accessing the busiest quorum member [52,
Definition 3.2]. Intuitively, the busiest quorum member limits the
number of requests that a given quorum system can sustain, called
its capacity [52, Corollary 3.9].

Prior work determined that probabilistic quorum systems did not
offer significant benefits to load (providing a constant factor im-
provement compared to strict quorum systems) [49]. Here, we
show that quorums tolerating PBS k-staleness have asymptotically
lower load than traditional probabilistic quorum systems (and, tran-
sitively, than strict quorum systems).

The probabilistic quorum literature defines an ε-intersecting quo-
rum system as a quorum system that provides a 1 − ε probability
of returning consistent data [49, Definition 3.1]. A ε-intersecting
quorum system has load of at least 1−

√
ε√

N
[49, Corollary 3.12].

In considering k versions of staleness, we consider the intersec-
tion of k ε-intersecting quorum systems. For a given probability p
of inconsistency, if we are willing to tolerate k versions of stale-
ness, we need only require that ε = k

√
p. This implies that our PBS

k-staleness system construction has load of at least (1−p)
1
2k√

N
, an

779



improved lower bound compared to traditional probabilistic quo-
rum systems. PBS monotonic reads consistency results in a lower

bound on load of (1−p)
1

2C√
N

, where C = 1 +
γgw
γcr

.
These results are intuitive: if we are willing to tolerate multi-

ple versions of staleness, we need to contact fewer replicas. Stal-
eness tolerance lowers the load of a quorum system, subsequently
increasing its capacity.

3.4 PBS t-visibility
Until now, we have considered only quorums that do not grow

over time. However, as we discussed in Section 2.2, real-world
quorum systems expand by asynchronously propagating writes to
quorum system members over time. This process is commonly
known as anti-entropy [21]. For generality, in this section, we
will discuss generic anti-entropy. However, we explicitly model
the Dynamo-style anti-entropy mechanisms in Section 4.

PBS t-visibility models the probability of inconsistency for ex-
panding quorums. t-visibility is the probability that a read oper-
ation, starting t seconds after a write commits, will observe the
latest value of a data item. This t captures the expected length of
the “window of inconsistency.” Recall that we consider in-flight
writes—which are more recent than the last committed version—
as non-stale.

Definition 3. A quorum system obeys PBS t-visibility consis-
tency if, with probability 1 − pst, any read quorum started at least
t units of time after a write commits returns at least one value that
is at least as recent as that write.

Overwriting data items effectively resets t-visibility; the time
between writes bounds t-visibility. If we space two writes to a
key m milliseconds apart, then the t-visibility of the first write for
t > m milliseconds is undefined; after m milliseconds, there will
be a newer version.

We denote the cumulative density function describing the num-
ber of replicasWr that have received a particular version v exactly
t seconds after v commits as Pw(Wr, t).

By definition, for expanding quorums, ∀c ∈ [0,W ], Pw(c, 0) =
1; at commit time,W replicas will have received the value with cer-
tainty. We can model the probability of PBS t-visibility for given t
by summing the conditional probabilities of each possibleWr:

pst =

(
N−W
N

)(
N
R

) +
∑

c∈(W,N ]

(
N−c
N

)(
N
R

) · [Pw(c+1, t)−Pw(c, t)] (4)

However, the above equation assumes reads occur instantaneously
and writes commit immediately after W replicas have the version
(i.e., there is no delay acknowledging the write to the coordinating
node). In the real world, coordinators wait for write acknowledg-
ments and read requests take time to arrive at remote replicas, in-
creasing t. Accordingly, Equation 4 is a conservative upper bound
on pst.

In practice, Pw depends on the anti-entropy mechanisms in use
and the expected latency of operations but we can approximate it
(Section 4) or measure it online. For this reason, the load of a PBS
t-visible quorum system depends on write propagation and is diffi-
cult to analytically determine for general-purpose expanding quo-
rums. Additionally, one can model both transient and permanent
failures by increasing the tail probabilities of Pw (Section 6).

3.5 PBS 〈k, t〉-staleness
We can combine the previous models to combine both versioned

and real-time staleness metrics to determine the probability that a
read will return a value no older than k versions stale if the last
write committed at least t seconds ago:

Definition 4. A quorum system obeys PBS 〈k, t〉-staleness con-
sistency if, with probability 1− pskt, at least one value in any read
quorum will be within k versions of the latest committed version
when the read begins, provided the read begins t units of time after
the previous k versions commit.

The definition of pskt follows from the prior definitions:

pskt = (

(
N−W
R

)(
N
R

) +
∑

c∈[W,N)

(
N−c
R

)(
N
R

) · [Pw(c+ 1, t)− Pw(c, t)])k

(5)
In this equation, in addition to (again) assuming instantaneous reads,
we also assume the pathological case where the last k writes all oc-
curred at the same time. If we can determine the time since commit
for the last k writes, we can improve this bound by considering
each quorum’s pskt separately (individual t). However, predicting
(and enforcing) write arrival rates is challenging and may introduce
inaccuracy, so this equation is a conservative upper bound on pskt.

Note that PBS 〈k, t〉-staleness consistency encapsulates the prior
definitions of consistency. Probabilistic k-quorum consistency is
simply PBS 〈k, 0〉-staleness consistency, PBS monotonic reads con-
sistency is 〈1+ γgw

γcr
, 0〉-staleness consistency, and PBS t-visibility

is 〈1, t〉-staleness consistency.
In practice, we believe it is easier to reason about staleness of

versions or staleness of time but not both together. Accordingly,
having derived a closed-form model for k-staleness, in the remain-
der of this paper, we focus mainly on deriving more specific mod-
els for t-visibility. A conservative rule-of-thumb going forward is
to exponentiate the probability of inconsistency in t-visibility by k
when up to k versions of staleness are tolerable.

4. DYNAMO-STYLE T -VISIBILITY
We have a closed-form model for k-staleness, but t-visibility is

dependent on both the quorum replication algorithm and the anti-
entropy processes employed by a given system. In this section, we
discuss PBS t-visibility in the context of Dynamo-style data stores
and describe how to asynchronously detect staleness.

4.1 Inconsistency in Dynamo: WARS Model
Dynamo-style quorum systems are inconsistent as a result of

read and write message reordering, a product of message delays.
To illustrate this phenomenon, we introduce a model of message
latency in Dynamo operation that, for convenience, we call WARS.

In Figure 3, we illustrate WARS using a space-time diagram for
messages between a coordinator and a single replica for a write
followed by a read t seconds after the write commits. This t corre-
sponds to the t in PBS t-visibility. In brief, reads are stale when all
of the first R responses to the read request arrived at their replicas
before the last (committed) write request.

For a write, the coordinator sends N messages, one to each
replica. The message from the coordinator to replica containing
the write is delayed by a value drawn from distribution W. The co-
ordinator waits for W responses from the replicas before it can
consider the version committed. Each response acknowledging the
write is delayed by a value drawn from the distribution A.

For a read, the coordinator (possibly different than the write co-
ordinator) sends N messages, one to each replica. The message

780



WRITE
(W)

wait for R
responses

Time

stale if
READ 
arrives
 before
WRITE 

wait for W
responses

send to N replicas
ReplicaCoordinator

ACK
(A)

READ
(R)

send to N replicas

RESPONSE
(S)

t seconds elapse

Figure 3: The WARS model for in Dynamo describes the mes-
sage latencies between a coordinator and a single replica for
a write followed by a read t seconds after commit. In an N
replica system, this messaging occurs N times.

from coordinator to replica containing the read request is delayed
by a value drawn from distribution R. The coordinator waits for R
responses from the replicas before returning the most recent value
it receives. The read response from each replica is delayed by a
value drawn from the distribution S.

The read coordinator will return stale data if the firstR responses
received reached their replicas before the replicas received the lat-
est version (delayed by W). When R+W>N , this is impossible.
However, under partial quorums, the frequency of this occurrence
depends on the latency distributions. If we denote the commit time
(when the coordinator has received W acknowledgments) as wt,
a single replica’s response is stale if r′ + wt + t < w′ for r′

drawn from R and w′ drawn from W. Writes have time to propagate
to additional replicas both while the coordinator waits for all re-
quired acknowledgments (A) and as replicas wait for read requests
(R). Read responses are further delayed in transit (S) back to the
read coordinator, inducing further possibility of reordering. Qual-
itatively, longer write tails (W) and faster reads increase the chance
of staleness due to reordering.

WARS considers the effect of message sending, delays, and re-
ception, but this represents a daunting analytical formulation. The
commit time is an order statistic of W and N dependent on both W

and A. Furthermore, the probability that the ith returned read mes-
sage observes reordering is another order statistic of R and N de-
pendent on W,A,R, and S. Moreover, across responses, the proba-
bilities are dependent. These dependencies make calculating the
probability of staleness rather difficult. Dynamo is straightforward
to reason about and program but is difficult to analyze in a sim-
ple closed form. As we discuss in Section 5.1, we instead explore
WARS using Monte Carlo methods, which are straightforward to
understand and implement.

4.2 WARS Scope
Proxying operations. Depending on which coordinator a client

contacts, coordinators may serve reads and writes locally. In this
case, subject to local query processing delays, a read or write to
R or W nodes behaves like a read or write to R − 1 or W − 1
nodes. Although we do not do so, one could adopt WARS to handle
local reads and writes. The decision to proxy requests (and, if not,
which replicas serve which requests) is data store and deployment-
specific. Dynamo forwards write requests to a designated coordi-
nator solely for the purpose of establishing a version ordering [20,

Section 6.4] (easily achievable through other mechanisms [36]).
Dynamo’s authors observed a latency improvement by proxying
all operations and having clients act as coordinators—Voldemort
adopts this architecture [59].

Client-side delays. End-users will likely incur additional time
between their reads and writes due to latency required to contact the
service. Individuals making requests to web services through their
browsers will likely space sequential requests by tens or hundreds
of milliseconds due to client-to-server latency. Although we do not
consider this delay here, it is important to remember for practical
scenarios because delays between reads and writes (t) may be large.

Additional anti-entropy. As we discussed in Section 2.2, anti-
entropy decreases the probability of staleness by propagating writes
between replicas. Dynamo-style systems also support additional
anti-entropy processes [50]. Read repair is a commonly used pro-
cess: when a read coordinator receives multiple versions of a data
item from different replicas in response to a read request, it will at-
tempt to (asynchronously) update the out-of-date replicas with the
most recent version [20, Section 5]. Read repair acts like an addi-
tional write for every read, except old values are re-written. Addi-
tionally, Dynamo used Merkle trees to summarize and exchange
data contents between replicas [20, Section 4.7]. However, not
all Dynamo-style data stores actively employ similar gossip-based
anti-entropy. For example, Cassandra uses Merkle tree anti-entropy
only when manually requested (e.g., nodetool repair), instead
relying primarily on quorum expansion and read repair [5].

These processes are rate-dependent: read repair’s efficiency de-
pends on the rate of reads, and Merkle tree exchange’s efficiency
(and, more generally, most anti-entropy efficiency) depends on the
rate of exchange. A conservative assumption for read repair and
Merkle tree exchange is that they never occur. For example, as-
suming a particular read repair rate implies a given rate of reads
from each key in the system.

In contrast, WARS captures expanding quorum behavior inde-
pendent of read rate and with conservative write rate assumptions.
WARS considers a single read and a single write. Aside from load
considerations, concurrent reads do not affect staleness. If multi-
ple writes overlap (that is, have overlapping periods where they are
in-flight but are not committed) the probability of inconsistency de-
creases. This is because overlapping writes result in an increased
chance that a client reads as-yet-uncommitted data. As a result,
with WARS, data may be fresher than predicted.

4.3 Asynchronous Staleness Detection
Even if a system provides a low probability of inconsistency, ap-

plications may need notification when data returned is inconsistent
or staler than expected. Here, as a side note, we discuss how the
Dynamo protocol is naturally equipped for staleness detection. We
focus on PBS t-visibility in the following discussion but it is easily
extended to PBS k-staleness and 〈k, t〉-staleness.

Knowing whether a response is stale at read time requires strong
consistency. Intuitively, by checking all possible values in the do-
main against a hypothetical staleness detector, we could determine
the (strongly) consistent value to return. While we cannot do so
synchronously, we can determine staleness asynchronously. Asyn-
chronous staleness detection allows speculative execution [63] if a
program contains appropriate compensation logic.

We first consider a staleness detector providing false positives.
Recall that, in a Dynamo-style system, we wait for R of N replies
before returning a value. The remaining N − R replicas will still
reply to the read coordinator. Instead of dropping these messages,
the coordinator can compare them to the version it returned. If there
is a mismatch, then either the coordinator returned stale data, there

781



are in-flight writes in the system, or additional versions committed
after the read. The latter two cases, relating to data committed after
the response initiation, lead to false positives. In these cases, the
read did not return “stale” data even though there were newer but
uncommitted versions in the system. Notifying clients about newer
but uncommitted versions of a data item is not necessarily bad but
may be unnecessary and violates our staleness semantics. This de-
tector does not require modifications to the Dynamo protocol and
is similar to the read-repair process.

To eliminate these uncommitted-but-newer false positives (cases
two and three), we need to determine the total, system-wide commit
ordering of writes. Recall that replicas are unaware of the commit
time for each version. The timestamps stored by replicas are not
updated after commit, and commits occur afterW replicas respond.
Thankfully, establishing a total ordering among distributed agents
is a well-known problem that a Dynamo-style system can solve by
using a centralized service [36] or using distributed consensus [43].
This requires modifications but is feasible.

5. EVALUATING DYNAMO T -VISIBILITY
As discussed in Section 3.4, PBS t-visibility depends on the

propagation of reads and writes throughout a system. We intro-
duced the WARS model as a means of reasoning about inconsis-
tency in Dynamo-style quorum systems, but quantitative metrics
such as staleness observed in practice depend on each of WARS’s
latency distributions. In this section, we perform an analysis of
Dynamo-style t-visibility to better understand how frequently “even-
tually consistent” means “consistent” and, more importantly, why.

PBS k-staleness is easily captured in closed form (Section 3.1).
It does not depend on write latency or any environmental variables.
Indeed, in practice, without expanding quorums or anti-entropy, we
observe that our derived equations hold true experimentally.
t-visibility depends on anti-entropy, which is more complicated.

In this section, we focus on deriving experimental expectations
for PBS t-visibility. While we could improve the staleness results
by considering additional anti-entropy processes (Section 4.2), we
make the bare minimum of assumptions required by the WARS
model. Conservative analysis decreases the number of experimen-
tal variables (supported by empirical observations from practition-
ers) and increases the applicability of our results.

5.1 Monte Carlo Simulation
In light of the complicated analytical formulation discussed in

Section 4.1, we implemented WARS in an event-driven simulator
for use in Monte Carlo methods. Calculating t-visibility for a given
value of t is straightforward. Denoting the ith sample drawn from
distribution D as D[i]: draw N samples from W, A, R, and S at time
t, compute wt, the W th smallest value of {W[i] + A[i], i ∈ [0, N)},
and check whether the first R samples of R, ordered by R[i] + S[i]
obeywt+R[i]+t ≤ W[i]. This requires only a few lines of code. Ex-
tending this formulation to analyze 〈k, t〉-staleness given a distri-
bution of write arrival times requires accounting for multiple writes
across time but is not difficult.

5.2 Experimental Validation
To validate WARS, our simulator, and our subsequent analyses,

we compared our predicted t-visibility and latency with measured
values observed in a commercially available, open source Dynamo-
style data store. We modified Cassandra to profile WARS laten-
cies, disabled read repair (as it is external to WARS), and, for reads,
only considered the firstR responses (often, more thanRmessages
would arrive by the processing stage, decreasing staleness). We ran

0 2 4 6 8 10
t-visibility (ms)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
(c

on
si

st
en

cy
)

ARSλ:Wλ

1:4
1:2
1:1

1:0.50
1:0.20
1:0.10

Figure 4: t-visibility with exponential latency distributions for
W and A=R=S. Mean latency is 1/λ. N=3, R=W=1.

Cassandra on three servers with 2.2GHz AMD Opteron 2214 dual-
core SMT processors and 4GB of 667MHz DDR2 memory, serving
in-memory data. To measure staleness, we inserted increasing ver-
sions of a key while concurrently issuing read requests.

Our WARS predictions matched our empirical observations of
Cassandra’s behavior. We injected each combination of exponen-
tially distributed W = λ ∈ {0.05, 0.1, 0.2} (means 20ms, 10ms
and 5ms) and A=R=S = λ ∈ {0.1, 0.2, 0.5} (means 10ms, 5ms
and 2ms) across 50,000 writes. After empirically measuring the
WARS distributions, consistency, and latency for each partial quo-
rum configuration, we predicted the t-visibility and latency. Our
average t-visibility prediction RMSE was 0.28% (std. dev. 0.05%,
max. 0.53%) for each t ∈{1,. . . ,199} ms. Our predicted latency
(for each of the {1.0, . . . , 99.9th} percentiles for each configura-
tion) had an average N-RMSE of 0.48% (std. dev. 0.18%, max.
0.90%). This validates our Monte Carlo simulator.

5.3 Write Latency Distribution Effects
As discussed in Section 4.1, the WARS model of Dynamo-style

systems dictates that high one-way write variance (W) increases stal-
eness. To quantify these effects, we swept a range of exponentially
distributed write distributions (changing parameter λ, which dic-
tates the mean and tail of the distribution) while fixing A=R=S.

Our results, shown in Figure 4, confirm this relationship. When
the variance of W is 0.0625ms (λ = 4, mean .25ms, one-fourth the
mean of A=R=S), we observe a 94% chance of consistency immedi-
ately after the write and 99.9% chance after 1ms. However, when
the variance of W is 100ms (λ = .1, mean 10ms, ten times the mean
of A=R=S), we observe a 41% chance of consistency immediately
after write and a 99.9% chance of consistency only after 65ms. As
the variance and mean increase, so does the probability of inconsis-
tency. Under distributions with fixed means and variable variances
(uniform, normal), we observe that the mean of W is less important
than its variance if W is strictly greater than A=R=S.

Decreasing the mean and variance of W improves the probability
of consistent reads. This means that, as we will see, techniques that
lower one-way write latency result in lower t-visibility. Instead
of increasing read and write quorum sizes, operators could chose
to lower (relative) W latencies through hardware configuration or
by delaying reads. This latter option is potentially detrimental to
performance for read-dominated workloads and may introduce un-
desirable queuing effects.

5.4 Production Latency Distributions
To study WARS in greater detail, we obtained production latency

statistics from two internet-scale companies.

782



%ile Latency (ms)
15,000 RPM SAS Disk
Average 4.85

95 15
99 25
Commodity SSD

Average 0.58
95 1
99 2

Table 1: LinkedIn Voldemort single-node production latencies.

%ile Read Latency (ms) Write Latency (ms)
Min 1.55 1.68
50 3.75 5.73
75 4.17 6.50
95 5.2 8.48
98 6.045 10.36
99 6.59 131.73

99.9 32.89 435.83
Max 2979.85 4465.28
Mean 9.23 8.62

Std. Dev. 83.93 26.10
Mean Rate 718.18 gets/s 45.65 puts/s

Table 2: Yammer RiakN=3,R=2,W=2 production latencies.

LinkedIn3 is an online professional social network with over 135
million members as of November 2011. To provide highly avail-
able, low latency data storage, engineers at LinkedIn built Volde-
mort. Alex Feinberg, a lead engineer on Voldemort, graciously pro-
vided us with latency distributions for a single node under peak traf-
fic for a user-facing service at LinkedIn, representing 60% read and
40% read-modify-write traffic [23] (Table 1). Feinberg reports that,
using spinning disks, Voldemort is “largely IO bound and latency
is largely determined by the kind of disks we’re using, [the] data
to memory ratio and request distribution.” With solid- state drives
(SSDs), Voldemort is “CPU and/or network bound (depending on
value size).” As an aside, Feinberg also noted that “maximum la-
tency is generally determined by [garbage collection] activity (rare,
but happens occasionally) and is within hundreds of milliseconds.”

Yammer4 provides private social networking to over 100,000
companies as of December 2011 and uses Basho’s Riak for some
client data [3]. Coda Hale, an infrastructure architect, and Ryan
Kennedy, also of Yammer, previously presented in-depth perfor-
mance and configuration details for their Riak deployment in March
2011 [31]. Hale provided us with more detailed performance statis-
tics for their application [30] (Table 2). Hale mentioned that “reads
and writes have radically different expected latencies, especially
for Riak.” Riak delays writes “until the fsync returns, so while
reads are often < 1ms, writes rarely are.” Also, although we do not
model this explicitly, Hale also noted that the size of values is im-
portant, claiming “a big performance improvement by adding LZF
compression to values.”

5.5 Latency Model Fitting
While the provided production latency distributions are invalu-

able, they are under-specified for WARS. First, the data are sum-
mary statistics, but WARS requires distributions. More importantly,
the provided latencies are round-trip times, while WARS requires
the constituent one-way latencies for both reads and writes. As
our validation demonstrated, these latency distributions are easily

3LinkedIn. www.linkedin.com
4Yammer. www.yammer.com

LNKD-SSD

W = A = R = S :
91.22%: Pareto, xm = .235, α = 10

8.78%: Exponential, λ = 1.66
N-RMSE: .55%

LNKD-DISK

W:
38%: Pareto, xm = 1.05, α = 1.51

62%: Exponential, λ = .183
N-RMSE: .26%

A = R = S : LNKD-SSD

YMMR

W:
93.9%: Pareto, xm = 3, α = 3.35

6.1%: Exponential, λ = .0028
N-RMSE: 1.84%

A = R = S :
98.2%: Pareto, xm = 1.5, α = 3.8

1.8%: Exponential, λ = .0217
N-RMSE: .06%

Table 3: Distribution fits for production latency distributions
from LinkedIn (LNKD-*) and Yammer (YMMR).

collected, but, because they are not currently collected in produc-
tion, we must fill in the gaps. Accordingly, to fit W, A, R, and S for
each configuration, we made a series of assumptions. Without ad-
ditional data on the latency required to read multiple replicas, we
assume that each latency distribution is independently, identically
distributed (IID). We fit each configuration using a mixture model
with two distributions, one for the body and the other for the tail.

LinkedIn provided two latency distributions, whose fits we de-
note LNKD-SSD and LNKD-DISK for the SSD and spinning disk
data. As previously discussed, when running on SSDs, Volde-
mort is network and CPU bound. Accordingly, for LNKD-SSD, we
assumed that read and write operations took equivalent amounts
of time and, to allocate the remaining time, we focused on the
network-bound case and assumed that one-way messages were sym-
metric (W=A=R=S). Feinberg reported that Voldemort performs at
least one read before every write (average of 1 seek, between 1-3
seeks), and writes to the BerkeleyDB Java Edition backend flush
to durable storage either every 30 seconds or 20 MB—whichever
comes first [23]. Accordingly, for LNKD-DISK, we used the same
A=R=S as LNKD-SSD but fit W separately.

Yammer provided distributions for a single configuration, de-
noted YMMR, but separated read and write latencies. Under our
IID assumptions, we fit single-node latency distributions to the pro-
vided data, again assuming symmetric A, R, and S. The data again
fit a Pareto distribution with a long exponential tail. At the 98th
percentile, the write distribution takes a sharp turn. Fitting the data
closely resulted in a long tail, with 99.99+th percentile writes re-
quiring tens of seconds—much higher than Yammer specified. Ac-
cordingly, we fit the 98th percentile knee conservatively; without
the 98th percentile, the write fit N-RMSE is .104%.

We also considered a wide-area network replication scenario, de-
noted WAN. Reads and writes originate in a random datacenter, and,
accordingly, one replica command completes quickly and the coor-
dinator routes the others remotely. We delay remote messages by
75ms and apply LNKD-DISK delays once the command reaches a
remote data center, reflecting multi-continent WAN delay [19].

We show the parameters for each distribution in Table 3 and plot
each fitted distribution in Figure 5. Note that for R, W of one,
LNKD-DISK is not equivalent to WAN. In LNKD-DISK, we only have
to wait for one of N local reads (writes) to return, whereas, in WAN,
there is only one local read (write) and the network delays all other
read (write) requests by at least 150ms.

783



LNKD-SSD LNKD-DISK YMMR WAN

10−2 10−1 100 101 102 103

0.2
0.4
0.6
0.8
1.0

C
D

F

R=1

10−2 10−1 100 101 102 103

Read Latency (ms)

0.2
0.4
0.6
0.8
1.0

R=2

10−2 10−1 100 101 102 103

0.2
0.4
0.6
0.8
1.0

R=3

10−2 10−1 100 101 102 103

0.2
0.4
0.6
0.8
1.0

C
D

F

W=1

10−2 10−1 100 101 102 103

Write Latency (ms)

0.2
0.4
0.6
0.8
1.0

W=2

10−2 10−1 100 101 102 103

0.2
0.4
0.6
0.8
1.0

W=3

Figure 5: Read and write operation latency for production fits for N=3. For reads, LNKD-SSD is equivalent to LNKD-DISK.

5.6 Observed t-visibility
We measured the t-visibility for each distribution (Figure 6).

As we observed under synthetic distributions in Section 5.3, the
t-visibility depended on both the relative mean and variance of W.
LNKD-SSD and LNKD-DISK demonstrate the importance of write

latency in practice. Immediately after write commit, LNKD-SSD had
a 97.4% probability of consistent reads, reaching over a 99.999%
probability of consistent reads after five milliseconds. LNKD-SSD’s
reads briefly raced its writes immediately after commit. However,
within a few milliseconds after the write, the chance of a read arriv-
ing before the last write was nearly eliminated. The distribution’s
read and write operation latencies were small (median .489ms),
and writes completed quickly across all replicas due to the dis-
tribution’s short tail (99.9th percentile .657ms). In contrast, un-
der LNKD-DISK, writes take much longer (median 1.50ms) and
have a longer tail (99.9th percentile 10.47 ms). LNKD-DISK’s t-
visibility reflects this difference: immediately after write commit,
LNKD-DISK had only a 43.9% probability of consistent reads and,
ten ms later, only a 92.5% probability. This suggests that SSDs
may greatly improve consistency due to reduced write variance.

We experienced similar effects with the other distributions. Im-
mediately after commit, YMMR had a 89.3% chance of consistency.
However, YMMR’s long tail hampered its t-visibility increase and
reached a 99.9% probability of consistency 1364 ms after commit.
As expected, WAN observed poor chances of consistency until after
the 75 milliseconds passed (33% chance immediately after com-
mit); the client had to wait longer to observe the most recent write
unless it originated from the reading client’s data.

5.7 Quorum Sizing
In addition to N=3, we consider how varying the number of

replicas (N) affects t-visibility while maintaining R=W=1. The
results, depicted in Figure 7, show that the probability of consis-
tency immediately after write commit decreases as N increases.
With 2 replicas, LNKD-DISK has a 57.5% probability of consistent
reads immediately after commit but only a 21.1% probability with
10 replicas. However, at high probabilities of consistency, the wait
time required for increased replica sizes is close. For LNKD-DISK,
the t-visibility at 99.9% probability of consistency ranges from
45.3ms for 2 replicas to 53.7ms for 10 replicas.

These results imply that maintaining a large number of replicas
for availability or better performance, results in a potentially large
impact on consistency immediately after writing. However, the t-
visibility staleness will still converge quickly.

5.8 Latency vs. t-visibility
Choosing a value for R and W is a trade-off between operation

latency and t-visibility. To measure the obtainable latency gains,

we compared t-visibility required for a 99.9% probability of con-
sistent reads to the 99.9th percentile read and write latencies.

Partial quorums often exhibit favorable latency-consistency trade-
offs (Table 4). For YMMR, R=W=1 results in low latency reads
and writes (16.4ms) but high t-visibility (1364ms). However, set-
ting R=2 and W=1 reduces t-visibility to 202ms and the com-
bined read and write latencies are 81.1% (186.7ms) lower than the
fastest strict quorum (W=1,R=3). A 99.9% consistent t-visibility
of 13.6ms reduces LNKD-DISK read and write latencies by 16.5%
(2.48ms). For LNKD-SSD, across 10M writes (“seven nines”), we
did not observe staleness with R=2, W=1. R=W=1 reduced
latency by 59.5% (1.94ms) with a corresponding t-visibility of
1.85ms. Under WAN, R > 1 or W > 1 results in a large latency
increase because this requires WAN messages. In summary, lower-
ing values of R and W can greatly improve operation latency and
that t-visibility can be low even when we require a high probability
of consistent reads.

6. DISCUSSION AND FUTURE WORK
In this section, we discuss enhancements to partial quorum sys-

tems that PBS enables along with future work for PBS.
Latency/Staleness SLAs. With PBS, we can automatically con-

figure replication parameters by optimizing operation latency given
constraints on staleness and minimum durability. Data store oper-
ators can subsequently provide service level agreements to appli-
cations and quantitatively describe latency/staleness trade-offs to
users. Operators can dynamically configure replication using on-
line latency measurements. PBS provides a quantitative lens for an-
alyzing consistency guarantees that were previously unknown. This
optimization formulation is likely non-convex, but the state space
for configurations is small (O(N2)). This optimization also allows
disentanglement of replication for reasons of durability from repli-
cation for reasons of low latency and higher capacity. For example,
operators can specify a minimum replication factor for durability
and availability but can also automatically increase N , decreasing
tail latency for fixed R and W .

Variable configurations. We have assumed the use of a single
replica configuration (N , R, and W ) across all operations. How-
ever, one could vary these operations over time and across keys.
By specifying a target latency, one could periodically modify R
and W to more efficiently guarantee a desired bound on staleness,
or vice versa. These time-varying configurations require additional
refinements and revisit prior work on fluid replication [53].

Stronger guarantees. We have focused on bounded staleness
analysis, but there are other (often stronger) forms of consistency
(such as causal consistency) [61]. Predicting the probability of
attaining more complex consistency semantics requires additional

784



R=1 W=1 R=1 W=2 R=2 W=1

P
(c

on
si

st
en

cy
)

0.5 1.0 1.5 2.00.970

0.975

0.980

0.985

0.990

0.995

1.000 LNKD-SSD

101 1020.4

0.5

0.6

0.7

0.8

0.9

1.0 LNKD-DISK

101 1020.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0 WAN

101 102 1030.88

0.90

0.92

0.94

0.96

0.98

1.00 YMMR

t-visibility (ms)

Figure 6: t-visibility for production operation latencies.

N: 2 3 5 10

5 10 15 200.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
(C

on
si

st
en

cy
)

LNKD-DISK

0.5 1.0 1.5 2.0
t-visibility (ms)

0.965

0.970

0.975

0.980

0.985

0.990

0.995

1.000
LNKD-SSD

20 40 60 800.0

0.2

0.4

0.6

0.8

1.0
WAN

Figure 7: t-visibility for production operating latencies for variable N and R=W=1.

modeling of application access patterns. This is possible, but we
suspect that modeling the worst-case semantics of these opera-
tions will result in unfavorably low probabilities of consistent op-
erations. We can see this in Aiyer et al.’s analysis of Byzantine
k-quorums [11]: in a worst-case deployment, with an adversarial
scheduler, the lower bound on guaranteed recency is high. We con-
jecture that the bound would be even higher had the authors per-
formed an analysis of stronger consistency models.

Alternative architectures. Dynamo is conceptually easy to un-
derstand and implement (WARS) but is painful to analytically an-
alyze. Is there a design that finds a better middle ground between
operational elegance and simplicity of analysis within the eventu-
ally consistent design space? Prior work on deterministic bounded
staleness (Section 7) provides guidance but often sacrifices avail-
ability and may be more complex to reason about.

Multi-key operations. We have considered single-key opera-
tions, however the ability to perform multi-key operations is po-
tentially attractive. For read-only transactions, if the key distribu-
tion is random and each quorum is independent, we can multiply
the staleness probabilities of each key to determine multi-key stal-
eness probabilities. Achieving atomicity of writes to multiple keys
requires more complicated coordination mechanisms such as two-
phase commit, increasing operation latency. Transactions are feasi-
ble but require considerable care in implementation, complicating
what is otherwise a simple replication scheme.

Failure modes. In our evaluation of t-visibility, we focused
on normal, steady state operating conditions. Unless failures are
common-case, they affect tail staleness probabilities (which appear
as latency spikes in WARS). For example, if, as Jeff Dean of Google
suggests [19], servers crash at least twice per year, given a ten-hour
downtime per failure, this results in .23% downtime per machine
per year. If failures are correlated, this may be a problem. If they
are independent, a replica set of N nodes with F failed nodes be-
haves like an N − F replica set. The probability of all N nodes
failing is (.23)N% (“five nines” reliability forN=3) and the proba-
bility tail will hide these failures. Quantifying these effects requires
information about failure rates and their impact on latency distribu-
tions but would be beneficial. Modeling recovery semantics such
as hinted handoff [20, Section 4.6] would also be useful.

7. RELATED WORK
We surveyed quorum replication techniques [7, 9, 8, 10, 11, 26,

29, 34, 37, 49, 51, 52] in Section 2. In this work, we specifically
draw inspiration from probabilistic quorums [49] and determinis-
tic k-quorums [10, 11] in analyzing expanding quorum systems
and their consistency. We believe that revisiting probabilistic quo-
rum systems—including non-majority quorum systems such as tree
quorums—in the context of write propagation, anti-entropy, and
Dynamo is a promising area for theoretical work.

Data consistency is a long-studied problem in distributed sys-
tems [18] and concurrent programming [35]. Given the CAP Theo-
rem and the inability to maintain all three of consistency, availabil-
ity, and partition tolerance [27], data stores have turned to “even-
tually consistent” semantics to provide availability in the face of
partitions [18, 61]. Real-time causal consistency is the strongest
consistency model achievable in an available, one-way convergent
(eventually consistent) system [48]. However, there is a plethora
of alternative consistency models offering different performance
trade-offs, from session guarantees [60] to causal+ consistency [46]
and parallel snapshot isolation [57]. Instead of proposing a new
consistency model and building a system implementing new se-
mantics, we have examined what consistency existing, widely de-
ployed quorum-replicated systems actually provide.

Prior research examined how to provide deterministic staleness
bounds. FRACS [67] allows replicas to buffer updates up to a given
staleness threshold under multiple replication schemes, including
master-drive and group gossip. AQuA [40] asynchronously prop-
agates updates from a designated master to replicas that in turn
serve reads with bounded staleness. AQuA actively selects which
replicas to contact depending on response time predictions and a
guaranteed staleness bound. TRAPP [54] provides trade-offs be-
tween precision and performance for continuously evolving numer-
ical data. TACT [65, 66] models consistency along three axes: nu-
merical error, order error, and staleness. TACT bounds staleness
by ensuring that each replica (transitively) contacts all other repli-
cas in the system within a given time window. Finally, PIQL [13]
bounds the number of operations performed per query, trading op-
eration latency at scale with the amount of data a particular query

785



LNKD-SSD LNKD-DISK YMMR WAN

Lr Lw t Lr Lw t Lr Lw t Lr Lw t
R=1, W=1 0.66 0.66 1.85 0.66 10.99 45.5 5.58 10.83 1364.0 3.4 55.12 113.0
R=1, W=2 0.66 1.63 1.79 0.65 20.97 43.3 5.61 427.12 1352.0 3.4 167.64 0
R=2, W=1 1.63 0.65 0 1.63 10.9 13.6 32.6 10.73 202.0 151.3 56.36 30.2
R=2, W=2 1.62 1.64 0 1.64 20.96 0 33.18 428.11 0 151.31 167.72 0
R=3, W=1 4.14 0.65 0 4.12 10.89 0 219.27 10.79 0 153.86 55.19 0
R=1, W=3 0.65 4.09 0 0.65 112.65 0 5.63 1870.86 0 3.44 241.55 0

Table 4: t-visibility for pst = .001 (99.9% probability of consistency for 50, 000 reads and writes) and 99.9th percentile read (Lr)
and write latencies (Lw) across R and W , N=3 (1M reads and writes). Significant latency-staleness trade-offs are in bold.

can access, impacting accuracy. These deterministically bounded
staleness systems represent the deterministic dual of PBS.

Finally, recent research has focused on measuring and verify-
ing the consistency of eventually consistent systems both theoreti-
cally [28] and experimentally [16, 62]. This is useful for validating
consistency predictions and understanding staleness violations.

8. CONCLUSION
In this paper, we introduced Probabilistically Bounded Staleness,

which models the expected staleness of data returned by eventually
consistent quorum-replicated data stores. PBS offers an alterna-
tive to the all-or-nothing consistency guarantees of today’s systems
by offering SLA-style consistency predictions. By extending prior
theory on probabilistic quorum systems, we derived an analytical
solution for the k-staleness of a partial quorum system, represent-
ing the expected staleness of a read operation in terms of versions.
We also analyzed t-visibility, or expected staleness of a read in
terms of real time, under Dynamo-style quorum replication. To do
so, we developed the WARS latency model to explain how message
reordering leads to staleness under Dynamo. To examine the ef-
fect of latency on t-staleness in practice, we used real-world traces
from internet companies to drive a Monte Carlo analysis. We find
that eventually consistent quorum configurations are often consis-
tent after tens of milliseconds due in large part to the resilience
of Dynamo-style protocols. We conclude that “eventually consis-
tent” partial quorum replication schemes frequently deliver consis-
tent data while offering significant latency benefits.

Interactive Demonstration
An interactive demonstration of Dynamo-style PBS is available at
http://pbs.cs.berkeley.edu/#demo.

Acknowledgments
The authors would like to thank Alex Feinberg and Coda Hale for
their cooperation in providing real-world distributions for experi-
ments and for exemplifying positive industrial-academic relations
through their conduct and feedback.

The authors would also like to thank the following individu-
als whose discussions and feedback improved this work: Marcos
Aguilera, Peter Alvaro, Eric Brewer, Neil Conway, Greg Durrett,
Jonathan Ellis, Andy Gross, Hariyadi Gunawi, Sam Madden, Bill
Marczak, Kay Ousterhout, Vern Paxson, Mark Phillips, Christo-
pher Ré, Justin Sheehy, Scott Shenker, Sriram Srinivasan, Doug
Terry, Greg Valiant, and Patrick Wendell. We would especially like
to thank Bryan Kate for his extensive comments and Ali Ghodsi,
who, in addition to providing feedback, originally piqued our inter-
est in theoretical quorum systems.

This work was supported by gifts from Google, SAP, Amazon
Web Services, Blue Goji, Cloudera, Ericsson, General Electric,
Hewlett Packard, Huawei, IBM, Intel, MarkLogic, Microsoft, NEC

Labs, NetApp, NTT Multimedia Communications Laboratories, Or-
acle, Quanta, Splunk, and VMware. This material is based upon
work supported by the National Science Foundation Graduate Re-
search Fellowship under Grant DGE 1106400, National Science
Foundation Grants IIS-0713661, CNS-0722077 and IIS-0803690,
the Air Force Office of Scientific Research Grant FA95500810352,
and by DARPA contract FA865011C7136.

9. REFERENCES
[1] Apache Cassandra 1.0 documentation: About data consistency in

Cassandra.
http://datastax.com/docs/1.0/dml/data_consistency.

[2] Apache Cassandra Jira: “Support session (read-after-write)
consistency”.
https://issues.apache.org/jira/browse/CASSANDRA-876.
October 2010 (Accessed 13 December 2011).

[3] Basho Riak. http://basho.com/products/riak-overview/
(2012).

[4] Cassandra 1.0 Thrift Configuration.
https://github.com/apache/cassandra/blob/
cassandra-1.0/interface/cassandra.thrift.

[5] Cassandra wiki: Operations.
http://wiki.apache.org/cassandra/Operations#
Repairing_missing_or_inconsistent_data. Accessed 13
December 2011.

[6] D. J. Abadi. Consistency tradeoffs in modern distributed database
system design: CAP is only part of the story. IEEE Computer,
45(2):37–42, 2012.

[7] I. Abraham and D. Malkhi. Probabilistic quorums for dynamic
systems (extended abstract). In DISC, pages 60–74, 2003.

[8] D. Agrawal and A. E. Abbadi. The tree quorum protocol: An
efficient approach for managing replicated data. In VLDB, pages
243–254, 1990.

[9] D. Agrawal and A. E. Abbadi. Resilient logical structures for efficient
management of replicated data. In VLDB, pages 151–162, 1992.

[10] A. Aiyer, L. Alvisi, and R. A. Bazzi. On the availability of non-strict
quorum systems. In DISC, pages 48–62, 2005.

[11] A. S. Aiyer, L. Alvisi, and R. A. Bazzi. Byzantine and multi-writer
k-quorums. In DISC, pages 443–458, 2006.

[12] P. Alvaro, N. Conway, J. M. Hellerstein, and W. R. Marczak.
Consistency analysis in Bloom: a CALM and collected approach. In
CIDR, pages 249–260, 2011.

[13] M. Armbrust, K. Curtis, T. Kraska, A. Fox, M. J. Franklin, and D. A.
Patterson. PIQL: Success-tolerant query processing in the cloud. In
VLDB, pages 181–192, 2012.

[14] Basho Technologies, Inc. Riak wiki: Riak > concepts > replication.
http://wiki.basho.com/Replication.html. Accessed 13
December 2011.

[15] Basho Technologies, Inc. riak kv 1.0 application.
https://github.com/basho/riak_kv/blob/1.0/src/riak_
kv_app.erl.

[16] D. Bermbach and S. Tai. Eventual consistency: How soon is
eventual? An evaluation of Amazon S3’s consistency behavior. In
MW4SOC, pages 1:1–1:6, 2011.

[17] K. Birman, G. Chockler, and R. van Renesse. Toward a cloud
computing research agenda. SIGACT News, 40(2):68–80, 2009.

786



[18] S. Davidson, H. Garcia-Moina, and D. Skeen. Consistency in
partitioned networks. ACM Computing Surveys, 17(3):314–370,
1985.

[19] J. Dean. Designs, lessons, and advice from building large distributed
systems. Keynote from LADIS 2009.

[20] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and
W. Vogels. Dynamo: Amazon’s highly available key-value store. In
SOSP, pages 205–220, 2007.

[21] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker,
H. Sturgis, D. Swinehart, and D. Terry. Epidemic algorithms for
replicated database maintenance. In PODC, pages 1–12, 1987.

[22] J. B. Ellis. Revision 986783: revert ’per-connection read-your-writes
“session” consistency’. http://svn.apache.org/viewvc?view=
revision&revision=986783. 18 August 2010, one week after the
original patch was accepted.

[23] A. Feinberg. Personal communication. 23, 24 October, 14, 19, 21, 30
November, 1 December 2011.

[24] A. Feinberg. Project Voldemort: Reliable distributed storage. In
ICDE, 2011. Project site: http://www.project-voldemort.com
(2012).

[25] A. W. Fu. Delay-optimal quorum consensus for distributed systems.
IEEE Transactions on Parallel and Distributed Systems, 8(1):59–69,
1997.

[26] D. K. Gifford. Weighted voting for replicated data. In SOSP, pages
150–162, 1979.

[27] S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibility of
consistent, available, partition-tolerant web services. SIGACT News,
33:51–59, 2002.

[28] W. Golab, X. Li, and M. A. Shah. Analyzing consistency properties
for fun and profit. In PODC, pages 197–206, 2011.

[29] A. Gupta, B. M. Maggs, F. Oprea, and M. K. Reiter. Quorum
placement in networks to minimize access delays. In PODC, pages
87–96, 2005.

[30] C. Hale. Personal communication. 16 November 2011.
[31] C. Hale and R. Kennedy. Using Riak at Yammer. http://dl.

dropbox.com/u/2744222/2011-03-22_Riak-At-Yammer.pdf.
23 March 2011.

[32] J. Hamilton. Perspectives: I love eventual consistency but...
http://perspectives.mvdirona.com/2010/02/24/
ILoveEventualConsistencyBut.aspx. 24 February 2010.

[33] P. Helland and D. Campbell. Building on quicksand. In CIDR, 2009.
[34] M. Herlihy. Dynamic quorum adjustment for partitioned data. ACM

Transactions on Database Systems, 12 (2):170–194, 1987.
[35] M. Herlihy and J. M. Wing. Linearizability: a correctness condition

for concurrent objects. ACM Transactions on Programming
Languages and Systems, 12(3):463–492, 1990.

[36] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. ZooKeeper:
Wait-free coordination for internet-scale systems. In USENIX ATC,
pages 145–158, 2010.

[37] R. Jiménez-Peris, M. Patiño Martı́nez, G. Alonso, and K. Bettina.
Are quorums an alternative for data replication? ACM Transactions
on Database Systems, 28(3):257–294, 2003.

[38] D. King. keltranis comment on “reddit’s now running on Cassandra”.
http://www.reddit.com/r/programming/comments/bcqhi/
reddits_now_running_on_cassandra/c0m3wh6. March 2010.

[39] J. Kirkell. Consistency or bust: Breaking a Riak cluster.
http://www.oscon.com/oscon2011/public/schedule/
detail/19762. Talk at O’Reilly OSCON 2011, 27 July 2011.

[40] S. Krishnamurthy, W. H. Sanders, and M. Cukier. An adaptive
quality of service aware middleware for replicated services. IEEE
Transactions on Parallel and Distributed Systems,
14(11):1112–1125, 2003.

[41] A. Lakshman and P. Malik. Cassandra - a decentralized structured
storage system. In LADIS, pages 35–40, 2008. Project site:
http://cassandra.apache.org (2012).

[42] L. Lamport. Time, clocks, and the ordering of events in a distributed
system. CACM, 21(7):558–565, 1978.

[43] L. Lamport. The part-time parliament. ACM Transactions on
Computer Systems, 16(2):133–169, 1998.

[44] G. Linden. Make data useful. https://sites.google.com/
site/glinden/Home/StanfordDataMining.2006-11-29.ppt.
29 November 2006.

[45] G. Linden. Marissa Mayer at Web 2.0. http://glinden.
blogspot.com/2006/11/marissa-mayer-at-web-20.html. 9
November 2006.

[46] W. Lloyd, M. J. Freedmand, M. Kaminsky, and D. G. Andersen.
Don’t settle for eventual: Scalable causal consistency for wide-area
storage with COPS. In SOSP, pages 401–416, 2011.

[47] J. Lynch. Rolling with Riak. http://sdruby.org/podcast/81.
Talk presented at SD Ruby meeting (Podcast 81), 2010.

[48] P. Mahajan, L. Alvisi, and M. Dahlin. Consistency, availability,
convergence. Technical Report TR-11-22, Computer Science
Department, University of Texas at Austin, 2011.

[49] D. Malkhi, M. Reiter, A. Wool, and R. Wright. Probabilistic quorum
systems. Information and Communication, (170):184–206, 2001.

[50] A. Marcus. The NoSQL Ecosystem. In The Architecture of Open
Source Applications, pages 185–205. 2011.

[51] M. Merideth and M. Reiter. Selected results from the latest decade of
quorum systems research. In Replication, volume 5959 of LNCS,
pages 185–206. Springer, 2010.

[52] M. Naor and A. Wool. The load, capacity, and availability of quorum
systems. SIAM Journal on Computing, 27(2):214–225, 1998.

[53] B. Noble, B. Fleis, and M. Kim. A case for fluid replication. In
Network Storage Symposium, 1999.

[54] C. Olston and J. Widom. Offering a precision-performance tradeoff
for aggregation queries over replicated data. In VLDB, pages
144–155, 2000.

[55] Outbrain Inc. Introduction to no:sql [sic] and Cassandra (and
Outbrain). https://docs.google.com/present/view?id=
ahbp3bktzpkc_220f7v26vg7. January 2010.

[56] E. Schurman and J. Brutlag. Performance related changes and their
user impact. Presented at Velocity Web Performance and Operations
Conference, June 2009.

[57] Y. Sovran, R. Power, M. K. Aguilera, and J. Li. Transactional storage
for geo-replicated systems. In SOSP, pages 385–400, 2011.

[58] M. Stonebraker. Urban myths about SQL.
http://voltdb.com/_pdf/
VoltDB-MikeStonebraker-SQLMythsWebinar-060310.pdf.
VoltDB Webinar, June 2010.

[59] R. Sumbaly. Writing own client for voldemort.
https://github.com/voldemort/voldemort/wiki/
Writing-own-client-for-Voldemort. 16 June 2011 (accessed
21 December 2011).

[60] D. B. Terry, A. J. Demers, K. Petersen, M. J. Spreitzer, M. M.
Theimer, and B. B. Welch. Session guarantees for weakly consistent
replicated data. In PDIS, pages 140–149, 1994.

[61] W. Vogels. Eventually consistent. CACM, 52:40–44, 2009.
[62] H. Wada, A. Fekete, L. Zhao, K. Lee, and A. Liu. Data consistency

properties and the trade-offs in commercial cloud storage: the
consumers perspective. In CIDR, pages 134–143, 2011.

[63] B. Wester, J. Cowling, E. B. Nightingale, P. M. Chen, J. Flinn, and
B. Liskov. Tolerating latency in replicated state machines through
client speculation. In NSDI, pages 245–260.

[64] D. Williams. HBase vs Cassandra: why we moved.
http://ria101.wordpress.com/2010/02/24/
hbase-vs-cassandra-why-we-moved. 24 February 2010.

[65] H. Yu and A. Vahdat. Design and evaluation of a conit-based
continuous consistency model for replicated services. ACM
Transactions on Computer Systems, 20(3):239–282, 2002.

[66] H. Yu and A. Vahdat. The costs and limits of availability for
replicated services. ACM Transactions on Computer Systems,
24(1):70–113, 2006.

[67] C. Zhang and Z. Zhang. Trading replication consistency for
performance and availability: an adaptive approach. In ICDCS, pages
687–695, 2003.

787


