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Abstract
It is cumbersome to write complex machine learning and
graph algorithms in existing data-parallel models like
MapReduce. Many of these algorithms are, by nature, it-
erative and perform incremental computations, neither of
which are efficiently supported by current frameworks.
We argue that array-based languages, like R [1], are ideal
to express these algorithms, and we should extend these
languages for processing in the cloud. In this paper we
present the challenges and abstractions to extend R. Early
results show that many computations are an order of
magnitude faster than processing in Hadoop.

1 Introduction
Randomness combined with linear algebra is a
powerful tool for modern problems.
—Ravi Kannan, FCRC 2011 [8]

Many real-world analytics applications are best for-
mulated as iterative linear algebra operations. For exam-
ple, PageRank and anomaly detection on graphs calcu-
late eigenvectors of large matrices [3, 7] and recommen-
dation systems implement matrix decomposition [17].
Even graph algorithms (shortest path, spanning tree,
strongly connected components, etc.) primarily involve
array manipulation and can be expressed with linear al-
gebra operators such as matrix multiply [9].

Existing frameworks for large-scale processing [5, 6]
are both ill-suited to express and inefficient to implement
many applications of this type. For example, it is known
that most large-scale frameworks are not efficient for ma-
trix operations [14]. Linear algebraic algorithms execute
on structured data, such as matrices, while MapReduce-
like systems do not retain this structure.

An additional challenge of implementing these appli-
cations is that many are incremental in nature, and re-
fine their underlying mathematical models by analyzing
newly arriving data. For example, user recommendations
in Netflix and Amazon should be updated as new ratings
appear, PageRank recalculated as Web pages change, and
spammers in a social network detected as they add spu-
rious relationships. Current systems either don’t support
incremental computations or, if they do, are inefficient
for linear algebra (Incoop [2]).

A major challenge of supporting incremental compu-
tations is creating appropriate bindings between the stor-
age system and the processing framework. Caching data

in memory [16] can speed up iterative programs, but cur-
rent systems do not have primitives to maintain consis-
tency in the presence of updates to the storage systems.

As our reliance upon linear algebra for analyzing mas-
sive data increases, we need large-scale systems that can
express and efficiently implement such analysis.

We argue that array-based languages such as R provide
a more appropriate programming model to express many
machine learning and graph algorithms. The core con-
struct of arrays make these languages ideal to represent
vectors and matrices, and perform matrix operations. R
has traditionally been the software of choice for machine
learning users and statisticians, albeit for small problem
sizes. It does not support scalable, fault-tolerant compu-
tations and was not built for incremental processing.

In this paper, we embrace R and extend it for large
scale incremental processing. Our primary focus is on
machine learning and graph algorithms. We hypothesize
that by extending R, programmers will not only express
the algorithms in a natural, linear algebraic formulation,
but that the execution of the underlying implementation
will also be significantly more efficient.

We present a prototype called Presto that extends R
to run on a cluster and supports incremental process-
ing. Early results show that several algorithms can be ex-
pressed in fewer than 140 lines of Presto code and are an
order of magnitude faster than Hadoop implementations.

2 Challenges of using R
While R has over 2,000 packages for analysis, it is pri-

marily used as a single threaded, single machine instal-
lation. R is not scalable nor does it support incremen-
tal processing. We list the challenges of using R, some
of which are due to incremental processing while others
arise because of the array-based programming model.

Structure and Scalability. Scaling R to run on a clus-
ter has its challenges. Unlike MapReduce, Spark and oth-
ers, where only one record is addressed at a time, the ease
of array-based programming is due to a global view of
data. R programs maintain the structure of data by map-
ping data to arrays and manipulating them. For example,
graphs are represented as adjacency matrices and outgo-
ing edges of a vertex are obtained from the correspond-
ing row (used in PageRank, shortest path, etc). In con-
trast, MapReduce-like programs don’t act on the global
structure of data which results in inefficiencies: Pregel
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observes that MapReduce has to pass the entire state of
the graph between steps [10]. Ideally, after scaling R,
programmers will still be able to address and manipulate
distributed arrays. This goal forces us to ask: what kind
of memory management and runtime support is required
for scaling an array-based language like R?

Sparse datasets. Most real-world datasets are sparse.
For example, the Netflix prize dataset is a matrix with
480K users (rows) and 17K movies (cols) but only 100
million of the total possible 8 billion ratings are available.
Similarly, very few of the total edges are present in Web
graphs. It is important to store and manipulate such data
as sparse matrices and retain only non-zero entries.

How do we efficiently handle distributed sparse ar-
rays and assign tasks to process them? Without care-
ful task assignment performance can suffer from load
imbalance: certain tasks may process partitions contain-
ing many non-zero elements and end up slowing down
the whole system. Load imbalance is not a problem in
MapReduce based systems where mappers scan any of
the equal-size data partitions but the algorithm pays the
additional price of sorting to send the right data to the
reducers. Supporting incremental updates is also chal-
lenging as array partitions which were previously sparse
may become dense and vice-versa. How do we handle
such imbalance in the data partitions and perform effi-
cient scheduling and straggler mitigation?

Incremental processing. In incremental processing, if
a programmer writes y = f (x), then y is recomputed au-
tomatically whenever x changes. Incremental processing
raises many challenging questions. Only a few portions
of the input may change; hence only the affected parts of
the algorithm should be re-executed. How do we express
such partial computations without scanning the whole
dataset? Since new data continuously enters the system
how should we enforce that distributed algorithms run
only on a consistent view of the data?

Storage. Our target environment is one where data re-
sides in distributed storage and multiple parallel pro-
grams incrementally process the data. What are the stor-
age requirements and interfaces for an array-based sys-
tem? How do we maintain consistency between the in-
memory data of the program and the data stored on disk?

3 Background on R
In this section we briefly review R and the syntax for

arrays [1]. R uses interpreted conditional execution (if),
loops (for, while, repeat), and commonly uses
procedures written in C, C++ and FORTRAN for better
performance. Line 1 in Figure 1 creates a 3× 3 matrix.
The argument dim specifies the shape of the matrix and
the sequence 10 : 18 is used to fill the matrix. One can re-
fer to entire subarrays by omitting specific index values
along a dimension. For example, in line 3 the first row

1: > A<-array(10:18,dim=c(3,3)) #3x3 matrix
2: > A

[,1] [,2] [,3]
[1,] 10 13 16
[2,] 11 14 17
[3,] 12 15 18

3: > A[1,] #First row
[1] 10 13 16

4: > idx<-array(1:3,dim=c(3,2)) #Index vector
5: > idx

[,1] [,2]
[1,] 1 1
[2,] 2 2
[3,] 3 3

6: > A[idx] #Diagonal of A
[1] 10 14 18

7: > A%*%idx #Matrix multiply
[,1] [,2]

[1,] 84 84
[2,] 90 90
[3,] 96 96

Figure 1: Example array use in R.

of the matrix is obtained by A[1, ], where the column is
left blank to fetch the entire first row. Subsections of a
matrix can be easily extracted using index vectors. Index
vectors are an ordered vector of rows where each row
can be the index to another array. To extract the diago-
nal of A we create an index vector idx in line 4 whose
elements are (1,1),(2,2) and (3,3). In line 6, A[idx]
returns the diagonal elements of A. In a single machine
environment, R has native support for matrix multiplica-
tion, linear equation solvers, matrix decomposition and
others. For example, % ∗% is an R operator for matrix
multiplication (line 7).

4 Presto: New R abstractions
Presto extends R with new language extensions and a

runtime to manage distributed execution. In addition to
scalability, these extensions add parallel execution and
incremental processing. As shown in Figure 2, program-
mers use these extensions to write a Presto program and
then submit it to a master node. The runtime at the mas-
ter node is in charge of the overall execution. It fault tol-
erantly executes the Presto program as distributed tasks
across worker nodes.

4.1 Storage driver
The storage driver in Presto is used to read input data,

handle incremental updates, and save output data. While
Presto can be ported to different storage systems using a
driver program, it is natural to use it with a distributed ta-
ble store such as HBase or HP Vertica. Using a table store
makes it easier to map the complete data or subsets of it
to arrays. In this paper we will assume that HBase is the
underlying storage layer. Multiple programs, including
MapReduce, SQL queries, and Presto programs may ex-
ecute on the same HBase data. The Presto storage driver
exports an interface that allows programs to register call-
backs on tables (similar to database triggers). Callbacks
are needed to notify the Presto program when data enters
the store or is modified during incremental processing.
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Figure 2: Presto architecture

The storage layer should support atomic multi-row up-
dates which is available in databases and can be built on
top of HBase [12].

4.2 Distributed arrays
Presto solves the problem of structure and scalability

by introducing distributed arrays in R. Distributed arrays
(darray) provide a shared, in-memory view of multi-
dimensional data stored across multiple machines. Dis-
tributed arrays have the following characteristics:

Partitioned. Distributed arrays can be partitioned into
chunks of rows, columns or blocks. Users can either
specify the size of the partitions or let the runtime de-
termine it. Locally, sparse partitions are stored in a com-
pressed sparse column format. Partitions help program-
mers specify coarse-grained parallelism by assigning
tasks to operate on partitions. Partitions can be referred
to by the splits function.

Shared. Distributed arrays can be read-shared by mul-
tiple concurrent tasks. The runtime can leverage user
hints to cache and co-locate data. Such hints reduce the
overhead of remote copying during computation. Con-
current writes to array partitions are not allowed in the
system. This is a conscious choice as Presto targets
linear algebra operators which perform transformations
from an input vector space to an output vector space. In
such operations, each output element is calculated and
written only once. Hence, Presto supports single-writer,
multiple-reader consistency semantics.

Dynamic. Distributed arrays can be directly con-
structed from data in the storage layer. The Presto stor-
age driver supports parallel loading of array partitions. If
the array registered a callback on the storage table then
whenever the data is changed the array will be notified
and updated by the driver. Distributed arrays can also be
created, re-sized and updated in the form of intermediate
data during a computation. Thus, distributed arrays are
dynamic; both the contents and the size of the distributed
arrays can change as data is incrementally updated.

4.3 Distributed parallelism
Presto provides programmers with the foreach con-

struct to execute deterministic functions in parallel. The

Presto runtime creates tasks on worker nodes for paral-
lel execution of the loop body. By default, there is an
implicit barrier at the end of the loop to ensure that all
parallel tasks finish before statements after the loop are
executed. Programmers can set the loop parameter wait
to false to remove the barrier and create tasks that con-
tinue to run without synchronizing.

4.4 Incremental computations
Presto introduces onchange and update to execute

incremental algorithms on a consistent view of data. Pro-
grammers express dependencies by waiting on updates
to distributed arrays. For example, onchange(A){..}
implies that the embedded statements will be executed
whenever array A is updated. A can also be a list of dis-
tributed arrays or just an array partition.

Programmers use the update construct to propa-
gate changes to data. Programmers have the flexibility
to determine what constitutes a change. For example, a
PageRank calculation (Section 4.5) may batch multiple
changes to the whole Web graph matrix, M, and then call
update(M), or it may absorb changes corresponding
to only the top 100 Websites and call update on the sub-
matrix, update(M[v]). In both cases the runtime will
invoke the corresponding tasks that are waiting for the
changes.

By calling update, programmers not only trigger the
corresponding onchange tasks but also bind the tasks
to the data that they should process. The update con-
struct creates a version vector that succinctly describes
the state of the array, including the versions of partitions
that may be distributed across machines. This version
vector is sent to all waiting tasks. Each task fetches the
data corresponding to the version vector and, thus, exe-
cutes on a programmer-defined, consistent view of data.

4.5 Example: PageRank
Figure 3 shows the code for incremental PageRank.

The PageRank of a Web page measures its relative im-
portance in the Web. The graph is represented as an ad-
jacency matrix M. PageRank is the principal eigenvector
of the matrix and is calculated in parallel (lines 5–12) us-
ing the power method [3]. In line 1, M is partitioned and
loaded in parallel from the HBase table. The vector pgr
is the initial PageRank vector and is partitioned similar
to M. The PageRank calculation code is embedded inside
the onchange clause in line 4. Therefore, whenever M
is updated the changes are propagated to the PageRank
task waiting on the onchange clause. For clarity we
have simplified the code; the actual PageRank calcula-
tion occurs on the transition matrix and not the adjacency
matrix. Therefore, changes to the adjacency matrix trig-
gers recalculation of the transition matrix, which in turn
causes re-computation of PageRank.
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#Load data in parallel from adjacency matrix in HBase
1 : M<- darray(dim=c(NA,NA),blocks=ROW,drv=’HBase’)
2 : load(M, table=’Web-graph’)
3 : pgr<- darray(dim=c(ncol(M),1),blocks=shape(M),sparse=F)
#Calculate PageRank (pgr). Z is a vector of constants
4 : onchange (M){
5 : repeat{

#Distributed matrix operations
6 : foreach(i, 1: numsplits(M),

prFunc(p= splits(pgr,i), m= splits(M,i),
x= splits(xold), z= splits(Z,i)) {

7 : p<-(m%*%x)+ z
8 : update(p)
9 : })
10: if(norm(pgr-xold)>1e-9) break
11: xold<-pgr
12: }
13: }

Figure 3: Incremental PageRank on a dynamic Web graph.

5 Design and implementation sketch
The Presto master acts as the control thread for pro-

gram execution. New tasks are created on workers when-
ever foreach loops are encountered in the program.
The master keeps a map of the variables and their physi-
cal location which is used by workers to exchange infor-
mation using pairwise communication. Presto reuses re-
sults from previous computations using task level mem-
oization. For example, in the matrix multiplication C =
A×B, if only a few rows of A change then only the cor-
responding blocks in C will be re-calculated. We briefly
describe other mechanisms used in Presto.

Dynamic partitioning. Partitioning a sparse matrix
uniformly by rows or columns may lead to an uneven
distribution of non-zero elements. Since it is important to
distribute the computation evenly across tasks, the Presto
runtime checks the size of partitions and if required, di-
vides them further to reduce load imbalance. As the in-
put for our programs are from a table in HBase, we reuse
the HBase region boundaries to create the initial sparse
matrix partitions. For iterative algorithms, we refine the
partitions based on the execution of the first few itera-
tions. Although repartitioning may involve copying data,
it is expensive to calculate optimal partitions statically
and static partitions do not help in cases where the data
is incrementally updated. Dynamic partitioning also pro-
vides the flexibility to increase or decrease the amount of
parallelism (tasks) in the program at runtime.

Versioning. Presto uses versioning to ensure correct-
ness when arrays are updated across iterations or data
is incrementally added from external sources. For exam-
ple, write conflicts may arise if tasks read share an array
which is also written to within that iteration. To avoid
conflicts, each partition of a distributed array has a ver-
sion. The version of a distributed array is a concatenation
of the versions of its partitions, similar in spirit to vector
clocks. Writes to array partitions create a new version of
the partition. This version update ensures that concurrent
readers of previous versions still have access to data. By

versioning arrays Presto can safely execute iterative al-
gorithms and multiple concurrent onchange tasks.

Co-location and caching. Presto workers execute
functions which generally require multiple array parti-
tions including remote ones. Presto uses two mechanisms
to reduce communication overhead: partition co-location
and caching. Partitions which are accessed and modified
together in the same function are co-located on the same
worker. Further, Presto automatically caches remote ar-
rays partitions that are fetched during task execution.
Workers use the version vector to make sure the cached
arrays are valid and use the least recently used policy to
evict older entries. Due to automatic caching, Presto does
not need to provide explicit directives such as broadcast
variables [16].

Handling dependences. Programmers can use the
onchange clause to express dependence on multiple
arrays. Presto resolves a multi-dependence as a logical
conjunction. Statements embedded in onchange are in-
voked only when update has been called on all the ar-
rays present in the dependence. Presto uses task queues
to store tasks that will be invoked when data depen-
dences have been satisfied. Task queues store a han-
dle to functions embedded in the onchange clause.
The onchange construct registers callbacks on dis-
tributed arrays that are specified in the clause. Whenever
update is called on an array, Presto notifies the regis-
tered onchange task. The notification includes the ver-
sion vector of the array which the onchange task should
process. When all the dependences of an onchange task
are satisfied, it is executed by the runtime.

Fault tolerance. Presto uses primary-backup replica-
tion to withstand failures of the master node. Only the
meta-data information like the symbol table, program
execution state, and worker information is replicated.
When workers fail they are restarted and the correspond-
ing functions are re-executed. Presto uses re-execution to
transitively reconstruct lost partitions. Partitions are pe-
riodically made durable on HBase for faster recovery.

6 Evaluation
We have implemented six algorithms in Presto: matrix

multiply, PageRank, Netflix recommendation [17], Twit-
ter anomaly detection (calculates eigenvalues using itera-
tive Lanczos) [7], vertex centrality in a graph, and Smith
Waterman alignment used in gene sequencing. Each of
these algorithms is implemented in fewer than 140 lines
of code. Our comparison with Apache Mahout shows
that Presto can be 20× faster than Hadoop. We are im-
plementing other graph algorithms in Presto and plan to
compare against recent systems like Spark.

Figure 4(a) compares the per-iteration performance of
PageRank with that of Hadoop on the 100M node and
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Figure 4: PageRank experiment (a) Comparison with Hadoop (b) Convergence time as the Web links are updated. Lower is better.
Y-axis is log scale.

1.2B edge ClueWeb091 graph. With 64 workers, each it-
eration in Hadoop takes about 161 seconds while Presto
takes only 8 seconds on average. The first iteration in
Presto takes 175 seconds because it incurs the overhead
of disk loading and has data imbalance; the first partition
has one-sixth of the total data.

Figure 4(b) shows the convergence time when 1M
Web links (0.1% of the Web graph) are updated in a day.
We compare the time to incrementally compute PageR-
ank as the number of updates vary versus running one
calculation from scratch at the end of a day (Static). The
plot shows that convergence time increases with number
of updates; from 220 seconds for 100K updates to 327
seconds for 1M updates. Processing each update is con-
siderably faster than performing the Static computation,
which takes 602 seconds. However, incremental process-
ing means computations occur more often: if the batch
size is 100K then 10 re-computations are triggered and
the total processing time (the middle bar) exceeds that
of Static computation. Thus, there is a tradeoff between
freshness of results and overall resource usage.

7 Related work
Programming models such as MapReduce,

DryadLINQ, and others do not export a global view
of data. They are inefficient to express linear algebraic
formulations, and don’t support incremental process-
ing [5, 6, 16, 11]. Piccolo is closest to Presto in terms
of programming model as it is based on partitioned
tables but uses a key-value interface instead of matrices
and does not focus on linear algebra [14]. Piccolo
currently does not support incremental processing.
Parallel MATLAB and certain extensions of R execute
distributed array programs but don’t handle faults, load
imbalance or incremental processing. MadLINQ [15]
provides a platform on Dryad specifically for matrix
computations. Similar to Presto, MadLINQ can reuse
existing matrix libraries on local partitions, is fault
tolerant and distributed. However MadLINQ does not
efficiently handle sparse datasets or support dynamic
partitioning.

Incoop uses memoization for incremental computa-
1http://lemurproject.org/clueweb09.php

tions but works only for MapReduce jobs thus inher-
iting its inefficiencies [2]. DryadInc supports a limited
form of incremental processing and does not handle dy-
namic data or arbitrary task dependences [13]. Percola-
tor [12] is Google’s incremental processing system that
applies multi-row transactional updates to Bigtable [4].
Presto can reuse Percolator’s storage abstractions such
as atomic multi-row updates and notifications for HBase
and HP Vertica. Unlike Percolator, Presto also provides
the language abstractions and mechanisms to handle
fine-grained incremental processing such as dynamic
partitioning, consistent updates, and memory manage-
ment.

8 Conclusion
This paper advocates the use of array-based languages,

such as R, for large-scale machine learning and graph
processing. We list the challenges of using R and propose
abstractions to extend it for such computations.

Acknowledgements. We thank the anonymous re-
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