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Abstract—Public cloud providers lease virtual
machines(VM) on a server to customers. This model
makes it easier for cloud providers to manage
their infrastructure. However, on the other hand,
it presents the customers with difficulty in terms
of manually selecting the VM instance type. The
inherent performance heterogeneity observed in pub-
lic clouds further leads to the uncertainty of VM
performance observed.

We propose Jua, a customer facing system that
solves the above problems. It consists of two main
modules - VM Instance Selector and VM placement
Gamer. The former performs the task of choosing the
appropriate VM instance type adopting a machine
learning methodology and the latter module imple-
ments a number of placement gaming strategies to
ensure that the customers get the best performance
relative to the cost they incur. Initial evaluation of
Jua confirms the viability of using a machine learning
based approach for the selection of instance type. Fi-
nally, we develop a simulator to model and implement
the various placement strategies and evaluate the
same using a wide variety of synthetic benchmarks.
We achieve a maximum performance improvement
of 70%.

1 INTRODUCTION

Public cloud providers use an easy to understand
coarse-grained billing model in which customers
pay a flat fee per time quantum to use a virtual
machine (VM) pre-configured with a bundle of vir-
tualized resources. For example, Amazon’s Elastic
Compute Cloud (EC2) charges customers hourly
and allows customers to choose from a wide variety
of VM instance types that mainly differ based on
the virtualized resources that they offer [1]. Var-
ious other public cloud providers also follow suit
[2, 3]. Adopting such an approach for billing makes
managing the cloud easier for the cloud providers
by limiting the ways in which the cloud resources
can be used by customers. However, there are two
main shortcomings of the aforementioned billing
approach from the point of view of the customers.

Firstly, the customers are presented with a
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wide range of VM instance types to choose from.
Each VM instance type is characterized by a num-
ber of low level technical specifications such as
CPU, memory, storage and networking capacity.
In an effort to provide more flexibility to cus-
tomers, each VM instance type is normally offered
in multiple sizes. As a result, the customers are
faced with the non-trivial task of choosing the
appropriate VM instance type for their application
based on these specifications. The selection process
involves customers mapping their high-level appli-
cation specific service level attributes (HL-SLAs) to
a set of low level technical specifications leading to
choosing the specific VM instance type. However,
the entire mapping process can be a complex task
for customers as it is non-intuitive for them to
translate their application requirements to low level
technical specifications.

Secondly, since the billing model does not
allow customers to have a fine-grained control over
the physical resources allocated for hosting their
VM, not all instances of a given type offer the same
performance. The main reason for this performance
heterogeneity can be attributed to the fact that data
centers contain multiple generations of hardware.
VMs of the same type are not guaranteed to be
hosted on the same underlying hardware. Extensive
prior work [4, 5, 6, 7] in this domain indeed
confirms that performance heterogeneity is a com-
monly observed phenomenon in public clouds to-
day. In [8], the authors state and verify that the three
main causes for the observed performance hetero-
geneity are due to inter-architecture heterogeneity
i.e differences due to processor architecture or sys-
tem configuration, intra-architecture heterogeneity
i.e differences within a processor architecture or
system configuration and temporal heterogeneity i.e
differences within a single machine over time.

As a part of this work, we propose method-
ologies to solve the above two problems. The
former problem is tackled using a module devel-
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Figure 1: Temporal network performance hetero-
geneity with microbenchmark iPerf3

oped by us that automatically translates application
specific HL-SLAs to an appropriate VM instance
type. The latter problem is tackled by introducing
a number of customer-controlled strategies for se-
lecting instances in order to mitigate the negative
impact of the existing performance heterogeneity in
public clouds. The proposed strategies are largely
based on the strategies mentioned in [8].

Our main contributions can be summarized
as follows-

o Verification of the existence of performance
heterogeneity in public clouds
e Jua, a customer facing system that ensures

— Automatic VM instance type selection
based on HL-SLAs

— Customers get the best performance rel-
ative to the cost they incur by using a
number of VM placement strategies

The rest of the paper is organized as follows:
Section 2 gives details about the experiments car-
ried out on Amazon’s EC2 to verify the existence
of performance heterogeneity in public clouds. The
details regarding the proposed solution are present
in Section 3. Section 4 gives details regarding the
extensions incorporated by Jua in the context of the
various VM placements strategies. We present the
key insights from the evaluation of Jua in Section 5
and demonstrate a performance improvement upto a
maximum of 70%. Section 6 gives details regarding
prior work done in the same domain of research.
Section 7 lists the future enhancements based on
which Jua can be extended. Section 8 summarizes
the work put forth in this paper.
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Figure 2: Temporal CPU performance heterogene-
ity with microbenchmark NQueens

Benchmark Measured resources
NQueens CPU
iPerf3 Network bandwidth
CPU and Network
ApacheBench bandwidth

Table 1. Microbenchmarks for EC2 performance
evaluation

2 EC2 PERFORMANCE EVALUATION
2.1 Methodology

The main purpose of this performance evaluation
was to verify if performance heterogeneity due to
the factors mentioned in [8] still exist. We carried
out our evaluation in the US-West region of Ama-
zon’s EC2. We restricted the scope of our evaluation
to investigate whether or not performance variation
exists in f2.micro instances, which are guaranteed
to have a balance of compute, network and memory
resources. We aim to extensively study the nature
and range of performance variation across the dif-
ferent available instance types in the future.

In order to verify if temporal heterogeneity
still exists we use two benchmarks - NQueens
and iPerf3 [9]. The former benchmark focuses on
benchmarking CPU performance whereas the latter
focuses on benchmarking network performance. We
used Apache web server [10] to verify if perfor-
mance heterogeneity exists due to inter-architecture
heterogeneity and intra-architecture heterogeneity.
Table 1 details the various benchmarks and applica-
tion used to evaluate the performance of the chosen
instance.

2.2 Temporal Performance Heterogeneity

In order to verify the existence of temporal hetero-
geneity, we ran iPerf3 [9] as well as NQueens for



Freq | Cache| Mem

CPU Count [GHz]| [MB] | [GiB]
Intel E5-2670 29 2.50 25 1
Intel E5-2676 21 2.40 30 1

Table 2. Examples of processor heterogeneity in
Amazon EC2

Time per Transfer

SL No. | Requests/s requestlzms) rate (KBps)
1 1073.85 1.02 12,356.64
1042.62 1.16 11,997.29
3 725.54 1.77 8,348.62

Table 3. Performance heterogeneity observed on 3
t2.micro instances that use the same processor

24 hours on a t2.micro instance and recorded the
relevant metrics reported by the benchmarks. As
seen from Figures 1 and 2, there is performance
variation observed across time - the execution time
for the NQueens benchmark varies across multi-
ple runs while the bandwidth reported by iPerf3
also varies. One probable reason for the observed
heterogeneity could be due to the presence of
competing workloads on the physical machine on
which the VM under test is hosted.

2.3 Performance Heterogeneity due to Pro-
cessor Heterogeneity

As reported in [8], one of the major causes of
performance heterogeneity is the presence of dif-
ferent processor architectures in the public cloud.
Newer generation processor architectures tend to
perform better than the older generation processor
architectures due to incorporation of the latest tech-
nological performance enhancements in the newer
generations. To verify the presence of different pro-
cessors in Amazon’s EC2, we launched a number of
instances and recorded the details of the underlying
hardware on which the VM is hosted. Table 2
lists out the different processors that we encoun-
tered while randomly launching fifty instances of
12.micro.

Time per Transfer

CPU Requests/s request (ms) | rate (KBps)
Intel E5-2670 927.59 1.12 10673.69
Intel E5-2676 947.95 1.05 12792.84

Table 4. Performance heterogeneity observed on 2
t2.micro instances that use different processors
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Figure 3: Proposed Design of Jua

In order to verify the presence of intra-
architecture and inter-architecture performance het-
erogeneity, we benchmarked the performance of the
Apache web server [10] using ApacheBench(ab)
[11]. As seen in Tables 3 and 4, performance
heterogeneity due to processor heterogeneity still
exists. Probable reasons for the observed variation
could be due to different peripherals being associ-
ated with the various VM instances as well as the
presence of different competing workloads.

3 Design

We propose Jua, a customer facing system that
resolves the above mentioned issues. As can be seen
from Figure 3, the system consists of the following
three modules:

e VM Instance Selector (VIS)
¢ VM Placement Gamer (VPG)
¢ Collaboration Information Bank (CIB)

3.1 Jua Workflow

We envision a customer to install Jua on a Manage-
ment VM via which Jua can appropriately choose
and monitor the VMs allocated for the application
of the customer while ensuring that the customer
gets the best deal with respect to the ease of
deciding the instance type as well as performance
relative to the cost.

A customer interacting with Jua, would spec-
ify as input to the system their HL-SLAs which
satisfy the requirements of the application they
would like to host in the public cloud. For exam-
ple, a customer who wants to host a web server
like Apache can specify the HL-SLAs in terms



of metrics such as requests per second, request
concurrency level and so on. The aforementioned
group of HL-SLAs are used by the VIS module
to predict the appropriate VM instance type that
would best meet the customer’s requirements. The
output of the VIS (i.e VM instance type) is passed
as input to the VPG.

Based on the output of the VIS module
and the VM placement strategy selected by the
customer, Jua launches a number of VMs in the
public cloud. Post which, Jua also ensures that a
performance monitoring daemon that monitors the
application’s performance in terms of the customer
specified HL-SLAs, is launched in the VM. At the
end of each quantum, these daemons will commu-
nicate the measured performance statistics along
with the details of the underlying hardware to the
centralized CIB. The various strategies of the VPG
module use the performance statistics to decide
whether a particular VM should be retained for
the next quantum or not. The following subsections
give a more detailed implementation of the modules
of Jua.

3.2 VM Instance Selector

The VIS is responsible for mapping the customer’s
application needs to the various low level technical
specifications and then choosing the appropriate
VM instance type. This module takes in as input
the customer’s application requirements in terms of
a vector of HL-SLAs and outputs a specific VM
instance type.

A machine learning based approach is used to
solve the task of automatic instance type selection
based on the customer’s HL-SLAs. Internally, the
VIS consists of a machine learning based classifier
per application type that does the required mapping
task for customer application level requirements to
VM instance type. All applications that have the
same type of HL-SLAs are assumed to be of the
same application type. Based on the customer’s HL-
SLAs, the appropriate classifier is chosen to do the
required mapping. Each of the classifier is trained
with data that has the required mapping for the
entire range of permissible values of the HL-SLAs
vector. The training data as described above can
be collected based on the decisions taken by the
customer or by launching a benchmarking phase

to collect the required data. More details about the
latter are given in the evaluation section.

3.3 VM Placement Gamer

This module is responsible for ensuring that the
customers get the best performance relative to the
cost they incur while mitigating the performance
heterogeneity observed due to the various factors
mentioned earlier. Internally, the VPG implements
a number of VM placement gaming strategies with
the objective of maximizing performance relative
to cost. Currently, Jua supports and extends all the
strategies proposed in [8]. This was achieved by
ensuring that Jua has the capability of launching
performance monitoring daemons on each of the
customer’s VMs. The VPG in-turn decides the next
step to be taken, based on the strategy chosen by the
customer as well as the metrics it has aggregated
over the last quantum from the various daemons
running on the VMs of the customer.

The VPG leverages the fact that cloud
providers allow customers to launch instances pro-
grammatically using the the provider’s Application
Programming Interface(API) as well as return VMs
at the end of each quantum. However, the task of the
VPG is harder than it might seem primarily due to
the fact that customers have a coarse-grained con-
trol over the physical hardware on which the VM
instances are launched, i.e, the customers cannot
select the underlying physical hardware on which
on the VM should be hosted.

3.4 Collaboration Information Bank

The collaboration information bank is a centralized
repository of performance measurements that en-
able customers to simultaneously learn about the
distribution of VMs in the public cloud along with
ascertaining the performance difference between
the various instance types by taking the underlying
hardware into consideration. Performance monitor-
ing daemons running on the customer’s VMs will
feed back to the CIB the details of the hardware
on which their VM is running, along with the
measured values of the HL-SLAs at the end of each
quantum.

The details regarding how the various strate-
gies of VPG leverage the CIB are described in the
next section.



4 Core VM Placement Strategies:
4.1 Background

A placement strategy embodies a trade-off between
exploration and exploitation. The basis of exploita-
tion based strategies is to continue using a particular
VM that gives the required performance. On the
other hand, the basis of exploitation startegies is
to launch new VM instances with the hope of
discovering a better performing VM. Prior work [8]
in this domain have considered a restricted space of
placement strategies called (A,B)-strategies. These
run at least A servers in every quantum and launch
an additional B “exploratory” instances for one
quantum each at some point during the job exe-
cution. Two general mechanisms useful in building
(A, B)-strategies:

o Up-front exploration: aims to find high per-
forming VMs early so that they can be used
for a longer duration. An (A, B)-strategy
that uses up-front exploration launches all B
“exploratory” instances at the start of a job.
At the end of the first quantum, the highest
performing A instances are retained and the
remaining B instances are shut down.

o Opportunistic replacement: By migrating an
instance (shutting it down and replacing it by a
new one to continue its work) we can seek out
better performing instances or adapt to slow-
downs in performance. An (A, B)-strategy that
uses opportunistic replacement will retain any
VM that is deemed a high performer for a
given time quantum and migrate any VM that
is a low performer.

In the “CPU” strategy the high performing
instances are determined based on their processor
type. On the other hand, in the “PERF” strategy
the high performing instances are determined based
on VM performance that is measured. The above
strategies are extended to perform opportunistic
replacement by launching additional VMs in each
time quantum in order to find a better performing
VM instance. The extensions are abbrebriviated as
“CPU_OPREP” (CPU with opportunistic replace-
ment) and “PERF_OPREP” (PERF with oppor-
tunistic replacement).

4.2 Customer Collaboration

The strategies based on opportunistic replacement
proposed in [8] have been extended to leverage the
performance statistics present in the CIB. Specif-
ically, when the collaboration based strategies are
being executed by the VPG module, the module
has the ability to kill an allocated VM immediately
if the reported performance from the CIB does not
seem promising and launches a new VM instead.
However, the proposed strategy can have a nega-
tive impact on the customer if the strategy keeps
preemptively killing VMs and fails to find a better
VM. Reason being, the customer would be charged
even for the VMs that are being killed preemptively
by the VPG module. Thus, there is a need for a
mechanism by which customers can control the ag-
gressiveness of the collaboration based strategies so
that the customers do not incur additional costs. The
aggressiveness of the strategies can be controlled
manually by customers by setting two parameters
defined by us - thrift index and preemptive index.

Thrift index is defined as the minimum prob-
ability required for finding a VM that will be
hosted on the underlying hardware for which best
performance has been reported by other customers
using the CIB. A lower thrift index implies that
the customer is ready to take a higher risk in
anticipation for a better performing VM. On the
other hand, a higher thrift index corresponds to a
less aggressive strategy as the preemptive killing
of VMs would kick in only if there is a high
probability of finding a better performing VM.

Preemptive index is defined as the maximum
number of VMs that can be killed preemptively per
quantum in the hope of finding a better performing
VM. A higher preemptive index would imply a
more aggressive strategy whereas a lower value
would imply a relatively conservative strategy.

By incorporating the above two parameters
Jua gives a customer the flexibility to control the
aggressiveness of the collaboration based strategies.
Currently, the customers have to manually set the
value of these parameters based on their economic
constraints. We plan to come up with a module
in the future that would automatically tune these
parameters based on a customer’s desired monetary
budget.



4.3 Application-Level Metrics Monitoring
Support

Jua allows customers to specify multiple applica-
tion specific HL-SLAs that need to be satisfied
by VMs hosting the application. The strategies
implemented as a part of VPG take all the metrics
into account and make the scheduling decisions.
Jua achieves support for the same by launching
measurement daemons that give statistics corre-
sponding to the HL-SLAs on every active VM.
The main advantage of using HL-SLAs is that the
customers can immediately relate to the decision
taken by the strategy in action as opposed to a
scenario wherein the strategy bases its decisions
on lower-level metrics such as CPU performance,
bandwidth usage etc.

S EVALUATION

This section gives details regarding the evaluation
of the two main modules of Jua - VIS and VPG.

5.1 VM Instance Selector
5.1.1 Methodology

In order to evaluate the effectiveness of the VIS,
we took the example of web servers as an appli-
cation type. The customer’s HL-SLAs considered
corresponding to web servers are: time(s), requests
per second, time per request(ms) and transfer rate
(KBps). The VIS based on these HL-SLAs selects
the appropriate classifier that would choose the
appropriate VM instance type. The effectiveness
of a machine learning based classifier depends on
the data used to train the classifier. The collec-
tion of training data involved launching three web
servers - Apache [10], NGINX [12] and Lighttpd
[13], and benchmarking their performance using
ApacheBench requesting for a file of size 100 MB.
ApacheBench reported the results of benchmarking
in terms of the HL-SLAs selected.

More specifically, the three web servers were
launched on four different VM instance types
- t2.nano, t2.micro, t2.small and t2.large. Using
ApacheBench, we obtained a corpus of data with
which the accuracy of the VIS could be measured.

5.1.2 Accuracy

In order to select the best performing classifier,
we evaluated the classification performance of the
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Figure 4: Machine Learning Accuracy

following machine learning models: Random For-
est(RF), Multinomial Naive Bayes(MNB), Decision
Tree(DT), Linear Support Vector Cluster(LSVC),
and Support Vector Cluster(SVC). The training data
consists of data gotten from benchmarking Apache
and NGINX web servers whereas the data collected
from Lighttpd was used as the testing data. From
Figure 4, we can see that Random Forest gives the
best accuracy of 80% in comparison to the other
models considered.

5.2 VM Placement Gamer
5.2.1 Methodology

In order to evaluate the effectiveness of the various
strategies used in VPG, we developed a simulator
to quickly evaluate the performance of these strate-
gies under different cloud provider configurations.
A cloud provider configuration basically indicates
the distribution fraction of the different kinds of
machines along with their expected performance in
terms of a mean rate and the associated standard
deviation.

At the end of each quantum, when a VM
needs to be chosen, the simulator chooses an in-
stance randomly using the weights corresponding
to the distribution fraction of the various machines.
The VM’s per-quantum performance is selected as
an independent normal random variable with the
mean and standard deviation of the VM in question.
The input to the simulator consists of

e S - strategy to run

o T - total simulator execution time

e q - time quantum(in seconds)

e A - number of machines required to run the
job



e B - number of extra machines that can be used
by the placement gamer

e p - migration penalty (in seconds)

o tln - thrift index

e pln - preemptive index

The simulator calculates the total work done by
each strategy in the same way as proposed in [8].
The relative speedup of each strategy is calculated
by comparing its performance to the null strategy in
which the required number of VMs are randomly
chosen at the beginning of the first quantum and
used till the end of the job.

5.2.2 Synthetic Simulations

We have used three different synthetic cloud
provider configurations corresponding to the three
features of the cloud environment that play an
important role in determining the effectiveness of
the various placement strategies. The first synthetic
simulation evaluates the performance of the strate-
gies when the difference in performance between
machines is varied (architecture variation). The
next synthetic simulation examines the impact of
performance variability observed by the customers
(instance variation) on the various strategies. Lastly,
we examine the behavior of the various strategies
when the distribution of the different performing
machines in the cloud is varied (architecture mix).

To limit the scope of our parameter search,
we fixed the value of T to 24, A to 30 and B to 20
to indicate a workload that ran for 24 hours with
10 VMs computing at all times with the flexibility
of launching an additional 20 “exploratory” VMs
during the job run time for. For simplicity, we have
assumed the public cloud to consist of only two
types of machines, “good” machines and bad”
machines with an even likelihood of each, unless
mentioned otherwise.

As stated earlier, the effectiveness of the
collaboration strategies depends on the values of
the thrift index as well as the preemptive index.
We performed a parameter sweep of these two
parameters by varying the former from 0.1 to 1.0
and the latter from 1 to 10, and recording the
performance of the strategies in each case. The
preexisting strategies have been compared with the
collaboration strategies when the two parameters
have been set to maximize the performance.
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Figure 5: Observe performance improvement for
the simulation of architecture variation

Mean
Per(f?rB“;‘:‘l“ce E’;;it pIn_PERE pIn_CPU
Machine
5.0 0.25 9 10
6.0 0.25 3 10
7.0 0.25 8 10
8.0 0.25 2 7
9.0 0.25 8 6

Table 5. Optimal thrift index(tIn) and preemptive
index(pln) for simulation of varying architecture

Architecture variation. In this simulation,
we hold the performance variability (standard devi-
ation) steady at 5% of the average performance (a
number chosen to match the variation reported in
[8]) and evenly spread machines between the two
distributions. The performance gap between “good”
machines and “bad” machines was varied from 10%
to 50%.

As seen in Figure 5, the collaboration based
strategies (CPU_COLLAB and PERF_COLLAB)
consistently outperform the ones void of collabora-
tion. As the gap between the ”good” and ’bad” ma-
chines increases the performance benefits achieved
from collaboration also increase. This behavior is
consistent with our expectation. Reason being, the
collaboration based strategies strive to get hold
of the best performing VM and when the gap is
maximum, there is more benefit to migrate to a
”good” machine from a relatively “bad” machine.
The values for the thrift index and preemptive
index corresponding to the above measurements
have been presented in Table 5.

It mush be noted that the collaboration strate-
gies give little or no benefit when there is no
performance gap between the different machines.
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This is due to the fact that in such a scenario the
benefit of running on a better VM is outweighed
by the migration cost.

Instance variation. We then proceeded to
evaluate the collaboration based strategies on in-
stances with temporal heterogeneity. For this we en-
forced variability within a machine’s performance
by holding steady the average performance differ-
ence between “good” and “bad” instances at 30%
(again, a number reported in [8]) and instead vary-
ing the standard deviation of performance within
that instance type. We vary the standard deviation
from 2.5% up to 10%.

As seen in Figure 6, the collaboration based
strategies continue to outperform the other strate-
gies as the performance variability is varied. The
minimum percentage improvement across all values
of performance variability is 26% (when variability
is 2.5%). That said, even such a modest improve-
ment can ensure that customers get a better value
for the cost they incur. However, as one can notice,
the degree of variability does not have a significant
impact on the performance of the collaboration
based strategies. This is due to the fact that the
performance improvement achieved by using these
strategies largely depends on the benefit of migrat-
ing to a ”good” machine and the availability of
”good” machines. For the above mentioned per-
formance measurements, the thrift index was set
to 0.25 and the preemptive index was set to 2 as
this combination corresponds to when maximum
improvements were noticed.

Architecture Mix. Lastly, we look at how
the distribution of machines affect each strategy in
order to determine how each strategy fares when
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Figure 7: Observe performance improvement for
the simulation of architecture mix

Mean of .
good Thrift | PERF| pIn_CPU
. index

machines
0.1 0.05 2 1
0.2 0.1 4 4
0.3 0.15 4 10
0.4 0.2 4 2
0.5 0.25 6 10
0.6 0.25 5 5
0.7 0.35 10 4
0.8 0.4 8 6
0.9 0.45 3 6
1.0 0.5 3 7

Table 6. Optimal thrift index(tln) and preemptive
index(pIn) for simulation of architecture mix

the cards are stacked in its favor, or against it. The
performance gap between “good” and “bad” ma-
chines is set to 30% and the performance variability
is fixed at 5%.

As seen from Figure 7, we continue to ob-
serve the same trend of the collaboration based
strategies outperforming the other ones. When the
fraction of ”good” machines is 1.0 which basically
implies that all the machines in the public cloud
offer the same performance, none of the strategies
give a performance improvement as the customers
will incur unnecessary migration costs while the
performance they get remains the same. The values
for thrift index and preemptive index corresponding
to the above performance measurements have been
presented in Table 6.

Another trend observed is that initially
when the fraction of good machines is less,
PERF_COLLAB outperforms CPU_COLLAB.
However, when the fraction of good machines
is high (70% onwards), the CPU_COLLAB
performs better as the strategy makes decisions
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to preemptively kill VMs based on the CPU type
and not the performance observed in the previous
quantum. Preemptive killing of VMs based on
CPU types has greater benefits as compared to
PERF_COLLAB that does preemptive Kkilling
only if it observes a drop in performance, when
the fraction of finding the “good” machine is
high. Reason being, the latter may stick to a
comparatively less performing machine if there is
no significant drop in the observed performance.
On the other hand CPU_COLLAB always strives
for the best of the available machines.

From the above evaluation of Jua in ex-
haustive simulated cloud distribution scenarios it
is evident that the proposed collaboration based
strategies outperform the strategies mentioned in
[8]. A maximum performance improvement of 70%
is achieved.

5.2.3 Customer Collaboration

As stated before, the effectiveness of the collabora-
tion based strategies depends on the values of the
thrift index as well as the preemptive index set by
the customer. The main idea behind these strategies
is to get a VM whose underlying hardware has
given the best performance to previous customers.
In order to see the overhead involved in the these
strategies, we carried out a simple experiment to
see the number of migrations done when the col-
laboration strategy kicks in as compared to when it
is not in operation.

For this experiment, the probability of finding
a “good” machine was set to be equal to the
probability of finding a “bad” machine, i.e, the
fraction of each type in the public cloud was 0.5.
The preemptive index was set to 20 and the thrift

index was varied from 0.1 to 1.0. In such a setting,
preemptive killing of VMs is observed only when
the probability of finding a “good” machine was
greater than or equal to the customer specified thrift
index. On the other hand, no preemptive killing of
VMs is observed when the thrift index is higher
than the probability of finding a ”good” machine.
In such a scenario, the strategy just falls back to
the default strategy without any leveraging of the
CIB.

In terms of the overhead of the collaboration
based strategies, it can be seen from Figure 8
that the number of migrations are far lesser when
collaboration based strategies are operational (when
thrift index lies between 0.1 and 0.5) in comparison
to the migrations observed when the default strategy
is operational (when the thrift index in greater than
0.5). This simple experiment brings out the fact that
the collaboration based strategies perform better
when compared to the other strategies and also pro-
vide this improvement at a far lower cost due to the
reduced number of migrations involved. The main
reason for the reduced number of migrations is due
to the fact that the collaboration based strategies
preemptively keep migrating until the best of the
available VMs is assigned and post that it does not
carry out any migrations.

6 RELATED WORK

Public cloud providers present their clients with a
user-friendly billing model and a pre-defined set
of minimal primitives in-order to have autonomous
control over remote virtual machines(VMs). Due to
inter-architecture heterogeneity, intra-architecture
heterogeneity and temporal heterogeneity, VM in-
stances of the same configuration in a public
cloud environment do not guarantee identical per-
formance. Extensive prior work[14, 15, 16, 17, 18]
in this domain have addressed this as a resource
scheduling problem among virtual machines(VM)
in the cloud. Recent works[8, 19, 20] have fueled
research interest to guarantee homogeneous perfor-
mance across identical VM instances by incorpo-
rating scheduling mechanisms on client side.
Paragon [15] uses collaborative filtering tech-
niques to quickly and accurately classify an un-
known incoming application, by identifying simi-
larity to previously scheduled applications. Quasar



[16] on the other hand does not solely rely on user
specified resource reservations as that can lead to
under-utilization due to the fact that users are obliv-
ious to the actual workload requirements. Instead
Quasar uses classification techniques tailored to ap-
plication categories to perform resource allocation
and assignment. The VIS in Jua draws inspiration
from the above two ideologies and leverages appli-
cation specific machine learning classifiers to map
user defined service level agreements(SLA) to a
VM instance in the public cloud.

VM placement gaming policies proposed in
[8] use exploratory and exploitative placement
strategies. These strategies choose the next can-
didate VM based on either the CPU performance
or the system performance. The aim is to provide
the best user experience given a customer’s SLA.
However the work in [8] supported a single SLA
and no customer collaboration support. On the other
hand, Jua, supports multiple application centric
SLAs. In addition it also provides customers the
flexibility of collaborating among themselves in
order to obtain the best performance relative to the
cost they incur.

ClouDiA [19] is a client side deployment
advisor that selects application node deployments
which minimize either largest latency between ap-
plication nodes or the longest critical path among
all application nodes. Their search deployment se-
lects and allocates an instance VM based on the
nature of the path between the VM and the applica-
tion node. Jua, on the other hand selects an instance
VM based on the customer satisfaction quotient, i.e.
the number of customer provided HL-SLAs which
are fulfilled by an instance.

7 FUTURE WORK

Though Jua has been able to ensure customers
enjoy the benefits of considerable amount of per-
formance improvements, there are a number of
aspects of Jua that can be extended to ensure far
more benefits to the customer. Jua can be enhanced
through the following extensions -

o Automatic selection of thrift index as well as
preemptive index - Currently, the customers
are required to manually set these two param-
eters. However, as seen in the previous section
the performance benefits achieved heavily de-

pends on the values of these two parameters.
We plan to have a module that would perform
the task of setting the optimal values of these
parameters based on the customer’s cost bud-
get.

o VIS correction strategy - Currently, Jua as-
sumes that the instance type chosen by VIS is
always right. However, it may so happen that
the instance chosen by the VIS is wrong. We
plan to introduce a new strategy in the VPG
that would validate the correctness of the VIS
selection and may even go to the extent of
rectifying the mistake of VIS.

8 CONCLUSION

At present, customers get a raw deal when it
comes to using VMs in public clouds. Firstly, the
customers need to perform the non-trivial task of
choosing the VM instance type manually. Secondly,
the customers experience performance heterogene-
ity due to the fact that they cannot control the
underlying physical hardware on which the VMs
are hosted. We propose Jua, a customer facing sys-
tem to solve the above problems. Initial evaluation
of Jua confirms the viability of using a machine
learning approach to select a VM instance. Also,
the evaluation of Jua using a simulator shows a
maximum performance improvement of 70% for
the proposed collaboration based strategies. This
brings out the fact that the proposed extensions to
the placement strategies are indeed beneficial.
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