
BLAM : A High-Performance Routing Algorithm for Virtual Cut-Through
Networks

Mithuna Thottethodi� Alvin R. Lebecky Shubhendu S. Mukherjeez

�School of Electrical and Computer Engineering

Purdue University

West Lafayette, IN 47907

mithuna@purdue.edu

yDepartment of Computer Science

Duke University

Durham, NC 27708-0129

alvy@cs.duke.edu

zIntel Corporation

Shrewsbury, MA

shubu.mukherjee@intel.com

Abstract

High performance, freedom from deadlocks, and freedom
from livelocks are desirable properties of interconnection
networks. Unfortunately, these can be conflicting goals be-
cause networks may either devote or under-utilize resources
to avoid deadlocks and livelocks. These resources could oth-
erwise be used to improve performance. For example, a min-
imal adaptive routing algorithm may forgo some routing op-
tions to ensure livelock-freedom but this hurts performance at
high loads. In contrast, Chaotic routing achieves higher per-
formance as it allows full-routing flexibility including mis-
routes (hops that take a packet farther from its destination)
and it is deadlock-free. Unfortunately, Chaotic routing only
provides probabilistic guarantees of livelock-freedom.

In this paper we propose a new routing algorithm called
BLAM (Bypass Buffers with Limited Adaptive lazy Misroutes)
which achieves Chaos-like performance, but guarantees free-
dom from both deadlocks and livelocks. BLAM achieves
Chaos-like performance by allowing packets to be ”lazily”
misrouted outside the minimal rectangle. Lazy misrouting
is critical to BLAM’s performance because eager misrout-
ing can misroute unnecessarily, thereby degrading perfor-
mance. To avoid deadlocks, BLAM uses a logically sepa-
rate deadlock-free network (like minimal, adaptive routing),
virtual cut-through, and the packet exchange protocol (like
Chaos). To avoid livelocks, unlike Chaos, BLAM limits the
number of times a packet is misrouted to a predefined thresh-
old. Beyond the threshold, stalled packets are routed by
the deadlock-free network to their destinations. Simulations
show that our BLAM implementation sustains high through-
put at heavy loads for a variety of network configurations and
communication patterns.

1 Introduction

The market for large-scale cache-coherent shared-
memory machines with 16 or more processors has tripled in
the past four years [4]. In 2001 this server market resulted
in an annual revenue of $9 billion. Roughly half of this rev-
enue resulted from large-scale machines with 32 or more pro-

cessors. Today most major vendors, such as IBM, HP, SGI
and Sun Microsystems offer machines that scale up to a large
number of processors (usually between 24 and 512) [4].

Demanding server applications require low latency and
high bandwidth communication from interconnection net-
works that connect processors and memory modules in such
large-scale multiprocessors. Unfortunately, network pack-
ets are often delayed due to transient network congestion.
Consequently, many interconnection networks employ vir-
tual cut-through and adaptive routing algorithms. Virtual
cut-through pipelines a packet among multiple routers and
buffers it entirely at a router when the packet header is
blocked due to congestion. This reduces congestion around a
router by removing packets from the network links. Adaptive
routing routes packets around congested spots in a network
(by adapting to the network state) to achieve higher through-
put from the network.

Unfortunately, fully adaptive routing algorithms, without
additional safeguards, are either deadlock-prone, livelock-
prone, or both. Existing solutions to make interconnection
networks with adaptive routing livelock-free and deadlock-
free reduce the performance benefits of adaptive routing al-
gorithms. This paper demonstrates a new adaptive routing
algorithm called BLAM–Bypass buffers with Limited Adap-
tive lazy Misroutes– that achieves the performance benefits
of adaptive routing without deadlocks or livelocks.

Adaptive routing algorithms can be deadlock-prone in net-
works, such as k-ary n-cube networks, that allow packets to
create a cyclic dependence. A deadlock occurs when packets
in a cyclic dependence chain cannot make forward progress
and hold on to resources, such as buffer space, that other
packets in the chain require to make forward progress. Some
solutions, such as partially adaptive routing [5, 13], trade per-
formance for deadlock freedom by limiting the algorithm’s
routing options to eliminate the possibility of deadlock cy-
cles. Other solutions, such as deadlock avoidance [10] and
deadlock recovery [18], can be thought of as consisting of
two logical networks: one fully adaptive network and an-
other deadlock-free network. Deadlock is not possible be-
cause stalled packets can always make forward progress on
the deadlock-free network.

Other solutions, such as the one used by Chaotic routing,

0

0.005

0.01

0.015

0.02

0.025

0.03

0.01 0.1A
cc

ep
te

d
T

ra
ffi

c
(P

ac
ke

ts
/n

od
e/

cy
cl

e)

Packet Injection Rate (Packets/node/cycle)

16-ary, 2-cube - Uniform Random Traffic Pattern

Minimal, Adaptive Routing w/ 3VC
Chaos Router

Figure 1. Minimal Adaptive Routing
w/deadlock recovery and Chaotic Routing

S

D Non−Minimal Routing Options

Minimal Routing Options

Minimum Rectangle

Figure 2. Routing Options Minimal vs. Non-
minimal

rely on the deflection principle and thepacket exchange pro-
tocol (see Section 2) to avoid deadlocks.

Adaptive routing algorithms can be livelock-prone if the
routing algorithm does not guarantee delivery of a packet
from source to destination within a finite number of hops.
Livelock can never occur in minimal adaptive routing, as
packets always reach their destination within a finite num-
ber of hops because every hop takes a packet closer to its
destination. In contrast, non-minimal adaptive routing, such
as the Chaos routing algorithm [17], is not provably livelock-
free, because it allows packets to be “misrouted” outside the
minimal rectangle at every hop. That is, it allows hops that
takes a packet farther from its destination and, hence, does
not guarantee delivery within a finite number of hops.

Interestingly, however, the Chaos routing algorithm per-
forms significantly better than a minimal adaptive routing
algorithm (Figure 1) at high offered loads. This is because
the Chaos routing algorithm offers greater routing freedom
compared to a minimal adaptive routing algorithm (Figure 2.)
The minimal adaptive routing algorithm we simulated (Fig-
ure 1) saturates and, thereby, causes the performance to de-
grade rapidly beyond a certain load.

Unfortunately, in spite of its high performance, to the best
of our knowledge no commercially available interconnection
network uses the Chaos routing algorithm, even though it has
been over a decade since the design was proposed. The pres-
ence of livelocks–however low its probability may be–causes
network designers to shy away from using such algorithms in

VC0

VC1

VC1

VC0

Main
XBar

VC0

VC1

Link
Injection

Link 1
Physical

Link 0
Physical

Link 0
Physical

Link 1
Physical

Link
Ejection

Routing and Arb. Unit

Figure 3. Base Minimal, Adaptive Router with
Multiple Virtual Channels

real products. The challenge is to develop a solution that has
the benefits of each of the two routing algorithms (minimal
adaptive and Chaos) without either technique’s pitfalls.

This paper proposes a new adaptive routing algorithm
called BLAM that achieves Chaos-like performance with-
out livelocks or deadlocks. BLAM has four salient features.
First, like Chaos, BLAM allows packets to be misrouted out-
side the minimal rectangle, thereby giving packets greater
routing freedom. Second, to avoid livelocks, BLAM limits
the number of times a packet is misrouted to a predefined
threshold. Third, BLAM uses “lazy” misrouting in which
packets are misrouted only after they fail consistently, over a
period of time, to route within the minimal rectangle. Finally,
BLAM uses “bypass buffers” at input ports to make sure that
packets that fail to route profitably do not block the paths of
other packets that follow.

The remainder of this paper is organized as follows. Sec-
tion 2 provides background information and discusses related
work. Section 3 studies the design space of routing tech-
niques and advocates one point in this space as an attrac-
tive routing algorithm called BLAM. Section 4 describes a
BLAM implementation. Section 5 and Section 6 present our
experimental methodology and simulation results, respec-
tively. Section 7 summarizes this paper.

2 Background and Related Work

High performance interconnection networks in tightly
coupled multiprocessors can be achieved by using wormhole
[8, 9] or virtual cut-through switching [15], adaptive rout-
ing [12], and multiple virtual channels [7]. Many commercial
machines [21, 24, 19] use a combination of these techniques
for their interconnection networks. In these systems commu-
nication occurs by sending packets of information that are
routed independently through the network. Each packet is
composed of flits (flow control units) that are transferred be-
tween network nodes.1

We can classify routers as minimal or non-minimal. A
minimal router offers only profitable routing options (hops

1For ease of exposition we assume each network node contains a proces-
sor, memory and a network router.

that take a packet closer to its destination) whereas a non-
minimal router may offer misrouting options (hops that take
a packet farther from its destination) as well.

Figure 3 shows the minimal, adaptive router we use as our
base case router in the rest of the paper. Each node has sev-
eral incoming and outgoing network physical links and injec-
tion and ejection channels through which packets enter and
exit the network. The physical channels are logically split
into multiple virtual channels, each with its own buffers. The
routing and arbitration unit sets up the crossbar connections
linking input buffers to output buffers. Flits deposited in the
output buffer are transferred across the physical link into the
corresponding input buffer at the neighboring node.

Our base router and the Chaotic router may be prone to
deadlocks because they use adaptive routing. Below, we dis-
cuss the two different approaches to deadlock handling that
differ in their performance under heavy load and in their
livelock-freedom guarantees.

One approach to handling deadlocks in adaptive chan-
nels is to guarantee that packets are able to make forward
progress on a logically separate subnetwork. Deadlock
avoidance [10] and deadlock recovery [18] are examples of
this approach. The only difference between deadlock avoid-
ance and deadlock recovery is that deadlock avoidance re-
serves per-channel resources for the deadlock-free subnet-
work whereas deadlock recovery uses a per-node central flit
buffer which is used only when packets are stalled.

In either deadlock avoidance or recovery, the frequency
of deadlocks in the adaptive channels increases dramatically
when the network reaches saturation [18]. When this oc-
curs, packets are delivered over the relatively limited es-
cape bandwidth available on the deadlock-free paths. This
causes a sudden, severe drop in throughput and correspond-
ing increase in packet latency. Several proposed schemes
prevent the performance degradation that accompanies satu-
ration by throttling packet injection when saturation is im-
minent [1, 16, 20, 25, 30]. Our approach goes further as
it increases the applied load at which saturation occursand
avoids throughput degradation at saturation without placing
limits on packet injection beyond those imposed by simple
back-pressure.

Deflection routing is another class of routing algorithms
that avoid deadlocks in virtual cut-through networks by en-
suring that no packets are blocked indefinitely. This tech-
nique works for networks where the number of input net-
work channels is equal to the number of output channels at
each node. This property makes it possible to match ev-
ery incoming packet to an output channel. However, such a
matching cannot guarantee that all matched pairs correspond
to profitable routes. In fact, using this approach to prevent
deadlocks requires an unlimited number of misroutes. This
approach eliminates the need for deadlock-free escape paths
but guarantees of livelock freedom are either weaker (prob-
abilistic) or they come at the cost of added complexity to
implement timestamping and router-wide priorities.

Synchronous deflection routers [14, 26] assume that all
packets arrive at an input port at the same time and they are
routed to the output ports in a single step. Non-synchronous
routers use the same principle of deflection routing but re-

lax the constraint of synchronous operation by adding buffers
that can hold incoming packets while waiting for output
channels to become free [22, 17]. Such routers need addi-
tional mechanisms like thepacket exchange protocol[22] to
prevent deadlocks. This protocol demands that if a nodea

sends a packet on a link to a neighboring nodeb, nodea
should also be prepared to accept a packet from nodeb.

In the above discussion, we outlined a design space of
routers with minimal adaptive routers – which disallow mis-
routes and thus eliminate livelocks – on one end, and chaotic
routing – which achieves high performance and deadlock
freedom by allowing unlimited, lazy misroutes but offers
only probabilistic guarantees of livelock-freedom – on the
other end. In the next section, we analyze this design space
of routers with respect to network performance, livelock-
freedom and deadlock-freedom guarantees. This analysis
provides the insight necessary to develop a routing algorithm
that has the best features of both classes of routers. In Sec-
tion 4, we discuss various implementation options for this
new design.

3 Design Space

This section examines the design space between minimal
adaptive routers and chaotic routers and isolates the the key
components of these routers. Section 3.1 discusses misroutes
and Section 3.2 discusses how we use bypass buffers to im-
plement lazy misrouting.

3.1 Misroutes

Minimal adaptive routers do not allow misroutes by def-
inition because this eliminates the possibility of livelock. A
packet is guaranteed to move closer to the destination in each
hop. Minimal routing, combined with deadlock-freedom,
guarantees that a packet will be delivered to its destination.
Another disincentive for the use of misroutes is that they may
waste network bandwidth since packets move farther from
their destinations.

However, there are three motivations to use misroutes.
First, misroutes can be used to avoid deadlocks in the adap-
tive channels. Chaos uses misroutes, in addition to the packet
exchange protocol, to avoid deadlocks. Chaos can, thereby,
avoid the use of a separate, logical deadlock-free network.
Second, by allowing non-minimal routing, they can provide
fault-tolerance by routing around faulty links. Third, again,
by non-minimal routing, misrouting can provide higher net-
work throughput by routing around congested areas in the
network.

To use misroutes, policies that answer the following ques-
tions must be in place.
� Should there be a limit on the number of misroutes?

Unlimited misroutes are fundamental to ensure deadlock-
freedom in chaotic routing, but this results in probabilistic
(i.e., not deterministic) livelock-freedom. Since our goal is to
have deterministic guarantees of livelock-freedom, we place
a limit on the number of misroutes a packet may take. The de-
cision to limit misroutes removes the guarantee of deadlock-

freedom on the adaptive channels. Therefore, we must in-
clude a deadlock handling mechanism.
� What should the misroute limit be?It is difficult (or

even impossible) to recommend a single number for this limit
without any information about the workload. Instead, we ex-
amine the tradeoffs involved if the limit is too high or too low.
The idea is to set the limit high enough to ensure that most
packets get delivered before they use all their misroutes. This
reduces the latency of packet delivery from the source to the
destination. In networks that have low-bandwidth deadlock-
free paths, a high enough limit also ensures that these paths
do not get unduly congested.
� When is a packet misrouted? Eagermisrouting is a pol-

icy that lets packets misroute on a free channel if they cannot
obtain a free profitable channel.Lazymisrouting policies im-
pose some other condition that delays using misroutes.

In general, the choice of when packets are misrouted de-
pends on the motivation for misroutes. When the purpose
for misroutes is fault tolerance, aneagermisrouting strategy
may be sufficient. (If the only profitable channels for a given
packet are known to be faulty, there is no point in delaying
the misroute.)

Our purpose is to achieve high performance and to avoid
deadlocks in adaptive channels. Anjan and Pinkston [25]
have shown that eager misrouting can hurt performance for
uniform traffic. As such, we want alazy misrouting strat-
egy that postpones misrouting until it is either hurting per-
formance because of packets stalling behind it or because
misrouting is mandated by the packet exchange protocol to
avoid deadlocks in adaptive channels. This lazy misrouting
strategy minimizes wasted network bandwidth. Note, Chaos
also uses lazy misrouting.

With a lazy misrouting strategy, it is important to ensure
that a blocked packet waiting to be misrouted does not block
other packets that could otherwise make forward progress.
We achieve this by using bypass buffers. Our experiments
show that lazy misrouting without bypass buffers decreases
performance.

3.2 Bypass buffers

We use bypass buffers to facilitate lazy misrouting. A by-
pass buffer allows a blocked packet to “step aside” from the
critical path of other packets by buffering the blocked packet
and releasing the input buffer. Once a packet enters a by-
pass buffer, packets behind it can use the free input buffer
and bypass the blocked packet if they find profitable chan-
nels. Packets resident in these bypass buffers are candidates
for lazy misrouting.

Bypass buffers have a secondary effect of increasing the
total amount of buffer space at an input port. This may help
improve performance. However, in our experience, if the
number of input buffers are chosen appropriately (perhaps
using Little’s Law), then additional buffering provides no or
marginal improvement in performance. We demonstrate this
effect in Section 6.3 by adding bypass buffers (but with no
misrouting) to a minimal adaptive routing algorithm.

Below, we examine the policies needed to manage bypass
buffers for lazy misrouting.

� When do packets enter the bypass buffers?Packets in
input buffers that are unable to make progress on profitable
channels move to bypass buffers when they have waited “suf-
ficiently long” or for implementing the packet exchange pro-
tocol. The Chaos router considers a packet to have waited
sufficiently long at a node if the whole packet (including the
tail flit) has arrived at that node. We use the same definition.

The packet exchange protocol dictates that if a node sends
a packet to a neighboring node, it should also be prepared to
accept a packet from that node. To this end, when a packet is
sent out on an output channel, an input channel in the reverse
direction (on the same physical link) should be made free in
anticipation of an incoming packet. To do so, we move any
packet that is in the input buffer to a bypass buffer.
� Should packets in the bypass buffers have priority?

If both the bypass buffer and its corresponding input buffer
have packets to nominate to a particular virtual channel, then
the routing algorithm must decide which packet to pick. One
policy is to use a fair-mechanism like round robin among all
input and bypass buffers. Another option is to give priority to
packets in the bypass buffers, since these packets are older.
Routing older packets first is a good heuristic to achieve bet-
ter performance. TheRotary Rulemode of the Alpha 21364
network uses a similar heuristic to assign higher priority to
packets arriving from a network link than to new packets try-
ing to enter the network [21].

Priorities for broad classes of packets (e.g., priority pack-
ets in bypass buffers over packets in input buffers, packets
arriving from network link over packets arriving from node,
coherence replies over requests, etc.) can be implemented in
simple and scalable ways. However, router-wide priorities
(e.g., priority for “oldest” packet) are not only more complex
designs, they also require central structures that can become
clock-scaling bottlenecks.

3.3 Summary

From the above discussion, we see that there exists a po-
tential design point between a minimal adaptive router and
the chaos router. This router usesBypass buffers, with
L imited, Adaptive, lazyM isroutes and deadlock handling
(BLAM). Limited misroutes gives BLAM three advantages:
livelock-freedom (compared to chaos), more routing flexi-
bility and reduced frequency of use of deadlock-free escape
paths (compared to the base router). Lazy misrouting with
bypassing is an important feature of BLAM that enables
chaos-like high performance.

4 A BLAM Implementation

In this section, we describe an implementation of BLAM
that uses distributed bypass buffers. We first examine the
implementation used in chaos and then suggest our own.

The originalChaosrouter design for two dimensional net-
works augments a basic router with an additional centralmul-
tiqueueto provide a central pool of bypass buffers (see Fig-
ure 4). This centralmultiqueuerequires additional routing
logic and a cross bar on the input side of the queue. Note,

Main
XBar

Queue
Input
XBarInjection Frame

+X Input Frame

−X Input Frame

+Y Input Frame

−Y Input Frame

−X Output Frame

Ejection Frame

MultiQueue

dec

inc

dec

inc
−Y Output Frame

+Y Output Frame

+X Output Frame

Q Slot 1

Q Slot 2

Q Slot 3

Q Slot 4

Q Slot 5

Figure 4. Central Bypass Buffers: Chaos

Figure 4 shows only the datapath of the two-dimensional
chaotic router. The routing and arbitration units for the two
crossbars are omitted. TheChaosrouter does not use multi-
ple virtual channels per physical channel. As such, the input
buffers (or frames) are associated with the physical channel.
The four network physical channels that connect to neighbor-
ing nodes are marked with labels that indicate the dimension
(X or Y) and direction (positive or negative) they traverse.
Each header contains the number of hops required in each
dimension to reach the destination. This header information
is modified (incremented or decremented) appropriately de-
pending on its output channel.

For our implementation (Figure 5), we use distributed by-
pass buffers rather than the centralized pool approach of the
Chaosrouter. Previous research [23, 27] has recommended
centralized buffer-pools over distributed buffers arguing that
dynamic sharing of the central buffer pool leads to more
efficient use of buffers. However, buffer efficiency is not
a critical concern when we consider on-chip routers (such
as the Alpha 21364 router [21]) where additional buffers
are cheap. With enough buffers, a shared buffer pool and
distributed buffers should be similar in performance. Fur-
ther, central structures (queues, implementation of router-
wide priorities, etc.) become bottlenecks for clock scaling.
Consequently, routers with distributed buffers are attractive
design points [21] and distributed bypass buffers are a natu-
ral fit for such designs.

Figure 5 shows the datapath of the BLAM router. Since
BLAM permits a finite number of misroutes for each packet,
the header maintains a count of the number of misroutes
taken. This is incremented (in theInc/Nopblock) each time
the packet is misrouted. No change is required for profitable
hops. We have an additional bypass-buffer associated with
each input buffer belonging to an adaptive virtual channel.
Bypass buffers are not associated with injection channels.
Note, Figure 5 assumes fully adaptive routing with the dead-
lock recovery scheme. Therefore, all virtual channels are
adaptive channels with associated bypass buffers. If dead-
lock avoidance is used, there are no bypass buffers associated
with the deadlock-free channels.

The operation of bypass buffers is similar to the chaotic
router implementation in some respects. Packets move from
the input buffers to the bypass buffers when the whole packet
has arrived at the node or when such a transfer is neces-
sary due to the packet exchange protocol. In the common

Inc/Nop

Inc/Nop

Inc/Nop

Inc/Nop

VC0

VC1

VC1

VC0

Bypass Buffer for PL0, VC0

Bypass Buffer for PL0, VC1

Main
XBar

VC0

VC1
Bypass Buffer for PL1, VC1

Bypass Buffer for PL1, VC0

Link
Injection

Link 1
Physical

Link 0
Physical

Link 0
Physical

Link 1
Physical

Link
Ejection

Figure 5. Distributed Bypass Buffers

case, when packets are making forward progress, the bypass
buffers are not on the critical path and packets go directly
from the input buffers to the output buffers. Packets in the
bypass buffers have priority over packets in the input buffers
when they compete for the same output channel. A packet
in a bypass buffer is misrouted when the corresponding input
buffer entry wants to enter the bypass buffer (either due to
stalling or due to the packet exchange mechanism.)

Unlike Chaos, BLAM’s one-to-one correspondence be-
tween adaptive virtual channel input buffers and bypass
buffers eliminates the need for the queue input cross bar
and associated routing logic. However, this approach re-
moves the element of randomization present in chaotic rout-
ing. In chaotic routing, when a packet needs to enter the
“multiqueue” (either due to stalling or due to the packet ex-
change protocol) and the “multiqueue” is full, one entry is
selected at random to be misrouted. This is fundamental to
the probabilistic guarantees of livelock-freedom. Since our
implementation allows a packet to move to only one possi-
ble bypass-buffer, the packet in that bypass buffer must be
selected for misrouting and there is no scope for randomiza-
tion. However, our design provides deterministic guarantees
of livelock-freedom without using randomization because of
the limit on the number of misroutes.

5 Evaluation Methodology

To evaluate the various routing schemes we use the
flexsim simulator [28] and the chaos simulator available
from the University of Washington [3]. The Chaos router is
simulated on the chaos simulator. We use theflexsim sim-
ulator for all other configurations. All simulations execute for
60,000 cycles. However, we ignore the first 10,000 cycles to
eliminate warm-up transients. We have verified, for a subset
of experiments, that longer simulations of 300,000 cycles do
not change the results significantly. (Bandwidth is within 2%
and latency is within 4% of the results from a 60,000 cycle
simulation.) We use an extension of theChaos Normal Form
(CNF) [2] standard for presenting our results. We present two
graphs (throughput vs. applied load and latency vs. applied
load) for each configuration. The injection/delivery rate axes
use absolute throughput values but there are additional lines
to show CNF’s definition of 100% throughput as well.

The offered load consists of each node generating 16-flit

packets at the same fixed rate for the duration of the simu-
lation. Our goal is to show that our results are valid for a
variety of loads. Ideally, we would like to measure intercon-
nect performance by using real communication workloads
from parallel applications. Unfortunately, due to inadequate
simulation infrastructure and problems associated with trace-
based simulation [6], it is the state-of-the-practice to evaluate
interconnection network performance with synthetic com-
munication workloads that are “difficult” (i.e., they increase
contention for resources, resulting in sub-optimal/worst-case
performance [31]) and/or “useful” (i.e., they correspond to
the communication pattern for various parallel numerical al-
gorithms [11]).

Apart from the widely used,uniform random traf-
fic pattern, we consider three synthetic communication
patterns, bit-reversal, perfect-shuffleand complementto
stress the network in non-uniform ways. The commu-
nication patterns differ in the way a destination node
is chosen for a given source node with bit co-ordinates
(an�1; an�2; : : : ; a1; a0). The bit co-ordinates for the
destination nodes are(an�2; an�3; : : : ; a0; an�1) for per-
fect shuffle, (an�1; an�2; : : : ; a1; a0) for complementand
(a0; a1; : : : ; an�2; an�1) for bit-reversal.

We use a minimal, fully-adaptive router (Figure 3) as
the base configuration. In this paper, we evaluate the base
(minimal, adaptive) and BLAM network configurations with
the Disha [18] progressive deadlock recovery scheme with
a time-out of 25 cycles. Also, in this paper, we present de-
tailed results and analysis for a 16-ary, 2-cube only. Results
for other configurations (deadlock avoidance) and network
sizes (8-ary, 3-cube and 32-ary, 2-cube) are not included in
this paper due to space limitations and have been reported
separately [29].

Each router has one injection channel (through which
packets sent by that node enter the network) and one delivery
channel (through which packets sent to that node exit the net-
work). The router’s source queue holds upto 1024 packets.
We use edge-buffers (buffers associated with virtual chan-
nels) that can hold an entire packet. There is a one cycle
arbitration delay and a one cycle routing delay per packet. It
takes one cycle per flit to traverse the cross-bar switch and
one cycle per flit to traverse a physical link. Each physical
link is full duplex. (Note, our configuration with full-duplex
links (i.e., two unidirectional links) between neighbors is not
the same configuration reported in some Chaos papers. They
use bi-directional links and hence the results are not compa-
rable.)

6 Simulation Results

This section presents our simulation results. We begin
by examining the overall performance of the BLAM router.
This is followed by a comparison of BLAM with three virtual
channels (i.e., three input and bypass buffers each per phys-
ical channel) against a minimal, adaptive router with six vir-
tual channels. We call this a ”resource-neutral” comparison,
because these two configurations have the same number of
buffers and crossbar inputs. Next, we evaluate the effects of

varying the maximum number of allowed misroutes. Finally,
we dissect BLAM performance by examining the effects of
addingeagermisroutes,lazy misroutesand bypass buffers,
in isolation, to the base router.

The primary conclusions from our simulations are: (1)The
BLAM router sustains near-Chaosthroughput for all con-
sidered communication patterns at high offered load levels
where the base case suffers a drop in throughput. (2)The
combined use of lazy misroutes and bypass buffers are nec-
essary for high performance. (3) We isolate the effects of
misroutes to validate and extend previous research findings
that misroutes alone, whethereageror lazy, decreases per-
formance.

6.1 Overall Performance

This section examines the performance of a complete
BLAM router implementation with a limit of 16 misroutes
on a 16-ary, 2-cube with 16-flit packets. Figure 6 shows the
bandwidth (left graph) and latency (right graph) for the four
communication patterns for base case and BLAM configu-
rations with deadlock-recovery. Note the logarithmic scale
used on the y-axis for the latency graphs.

The curve for the base router (Æ) in Figure 6 illustrates
the network saturation problem as described earlier. There
are two curves corresponding to the BLAM router: one for
the configuration with three virtual channels (3VC) per phys-
ical channel (� in Figure 6) and another for the configuration
with six virtual channels (6VC) per physical channel (4 in
Figure 6). Both curves show that our design is able to prevent
the drop in performance that occurs at high loads due to dead-
locks in adaptive channels. Furthermore, BLAM achieves
performance comparable or superior to chaos while provid-
ing deterministic guarantees.

Similarly, simulations with deadlock avoidance configu-
rations show that BLAM (on top of deadlock avoidance) out-
performs the base deadlock avoidance configuration [29].

6.1.1 Throughput/Latency Tradeoff

Figure 6 also demonstrates a throughput/latency tradeoff
based on the number of virtual channels. The 6VC config-
uration shows higher throughput than the 3VC configuration,
however this comes at the cost of higher latency. The reason
is the 6VC BLAM has a higher number of bypass-buffers,
and a packet is able to stay in a buffer for a longer period of
time. Recall, a packet is misrouted only when another packet
needs to enter the same bypass buffer. We verified this phe-
nomenon by measuring the amount of time a packet spends
in the bypass-buffers. For the six heaviest applied loads in
Figure 6, where the difference in latencies becomes obvious,
packets stay in the bypass buffers 35%, 77%, 55% and 48%
longer, on average, in the 6VC configuration than in the 3VC
configuration for theuniform random, perfect shuffle, com-
plementandbit reversaltraffic patterns, respectively. To bet-
ter understand this throughput/latency tradeoff, we compare
the bandwidth and latency of 6VC BLAM and 3VC BLAM
to the throughput and latency of Chaos for the six heaviest
applied loads.

Uniform Random Traffic

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.01 0.1

A
cc

ep
te

d
T

ra
ffi

c
(P

ac
ke

ts
/n

od
e/

cy
cl

e)

Packet Injection Rate (Packets/node/cycle)

100% (CNF)

Base
6VC BLAM (16 misroutes)
3VC BLAM (16 misroutes)

Original Chaos

10

100

1000

10000

100000

0.01 0.1

A
ve

ra
ge

 la
te

nc
y

(c
yc

le
s)

Packet Injection Rate (Packets/node/cycle)

Base
6VC BLAM (16 misroutes)
3VC BLAM (16 misroutes)

Original Chaos

(a) Delivered Throughput vs. Offered Load (b) Average Latency vs. Offered Load
Perfect Shuffle Communication Pattern

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.01 0.1

A
cc

ep
te

d
T

ra
ffi

c
(P

ac
ke

ts
/n

od
e/

cy
cl

e)

Packet Injection Rate (Packets/node/cycle)

100% (CNF) Base
6VC BLAM (16 misroutes)
3VC BLAM (16 misroutes)

Original Chaos

10

100

1000

10000

0.01 0.1

A
ve

ra
ge

 la
te

nc
y

(c
yc

le
s)

Packet Injection Rate (Packets/node/cycle)

Base
6VC BLAM (16 misroutes)
3VC BLAM (16 misroutes)

Original Chaos

(c) Delivered Throughput vs. Offered Load (d) Average Latency vs. Offered Load
Complement Communication Pattern

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.01 0.1

A
cc

ep
te

d
T

ra
ffi

c
(P

ac
ke

ts
/n

od
e/

cy
cl

e)

Packet Injection Rate (Packets/node/cycle)

100% (CNF) Base
6VC BLAM (16 misroutes)
3VC BLAM (16 misroutes)

Original Chaos

10

100

1000

10000

0.01 0.1

A
ve

ra
ge

 la
te

nc
y

(c
yc

le
s)

Packet Injection Rate (Packets/node/cycle)

Base
6VC BLAM (16 misroutes)
3VC BLAM (16 misroutes)

Original Chaos

(e) Delivered Throughput vs. Offered Load (f) Average Latency vs. Offered Load
Bit Reversal Communication Pattern

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.01 0.1

A
cc

ep
te

d
T

ra
ffi

c
(P

ac
ke

ts
/n

od
e/

cy
cl

e)

Packet Injection Rate (Packets/node/cycle)

100% (CNF) Base
6VC BLAM (16 misroutes)
3VC BLAM (16 misroutes)

Original Chaos

10

100

1000

10000

0.01 0.1

A
ve

ra
ge

 la
te

nc
y

(c
yc

le
s)

Packet Injection Rate (Packets/node/cycle)

Base
6VC BLAM (16 misroutes)
3VC BLAM (16 misroutes)

Original Chaos

(g) Delivered Throughput vs. Offered Load (h) Average Latency vs. Offered Load

Figure 6. Overall Performance w/ Deadlock Recovery

6VC BLAM achieves better throughputs thanchaosfor
three of the four communication patterns. The throughput
improves by as much as 56% (forbit-reversal) and is 5%
lower only in the case ofuniform randomtraffic. The be-
havior of 3VC BLAM is qualitatively similar with slightly
lower throughputs. For 3VC BLAM, the throughputs vary
from 10% lower to 48% higher thanchaos.

The latencies for 6VC BLAM are between 35% (forbit-
reversal) and 151% higher (forperfect shuffle) than Chaos
latencies, on average. A similar latency comparison for 3VC
BLAM shows that it achieves latencies varying from 22%
lower (for complement) to 42% higher (forperfect shuffle)
than Chaos latencies. In conclusion, we see that 6VC BLAM
suffers from increased latency to achieve better-than-chaos
throughput. In contrast, 3VC BLAM achieves much better
latencies than 6VC BLAM for a small penalty on throughput.

6.1.2 Resource-Neutral Comparison

Comparing the six virtual channel base case against the
BLAM router with six virtual channels is not a resource-
neutral comparison. This is because the BLAM requires ad-
ditional bypass buffers for each virtual channel, in this case
doubling the number of buffers. BLAM also requires a larger
crossbar with twice as many inputs: the base virtual channel
inputs and the bypass buffer inputs. A resource neutral com-
parison can be made between the six virtual channel minimal
adaptive router and the BLAM router with three virtual chan-
nels. From Figure 6 this resource neutral comparison reveals
that the 3VC BLAM router (�) outperforms the base router
(Æ) for all traffic patterns. The 3VC BLAM router maintains
high throughput at higher load levels whereas the 6VC base
router saturates.

Due to space limitations, in the remainder of this paper
we present results only for theuniform randomandperfect
shufflecommunication patterns. Results for the other two
patterns reveal similar conclusions.

6.2 Varying the Misroute Limit

The previous results use a BLAM router with up to 16
misroutes. In this subsection, we examine the trade-offs in-
volved in varying this limit. Figure 7 shows the performance
of 6VC BLAM as the misroute limit is increased progres-
sively from 3 to 8 to 16. In general, we see that increasing
the number of misroutes postpones saturation as packets can
use the adaptive channels for a longer period of time.

For uniform randomtraffic, a limit of three misroutes is
enough to prevent saturation. Increasing the number of mis-
routes beyond three does not change the behavior in any sig-
nificant manner. In contrast, theperfect-shufflecommuni-
cation pattern (see Figures 7c & 7d) shows well-separated
performance curves as we vary the misroute limit. This fa-
cilitates explanation of network behavior in response to vari-
ations in the misroute limit.

As the misroute limit increases, network saturation (and
the corresponding drop in performance) occurs at higher and
higher loads. We see that 3 misroutes prevents saturation
at certain loads. But at higher loads, the packets use up

all the allowed misroutes and are then constrained to route
only within the minimum rectangle. This increases the fre-
quency of deadlock cycles forming in the adaptive channels
and hence increases the frequency of deadlock-free channel
usage. Similarly, we see that 8 misroutes, while better than 3
misroutes, is unable to prevent saturation at the higher loads.

Note, 16 misroutes is high enough for all the loads and
communication patterns we considered. In general, the num-
ber of misroutes should be set to a value that is high enough
to reduce the probability of using the deadlock-free escape
paths for any workload that the network may handle. How-
ever, for some workloads the network could saturate but the
resulting behavior will be no worse than that of a minimal
adaptive router. Theoretically we may see high latencies if
the limit on misroutes is very high, because our implementa-
tion does not have the randomization property of theChaos
router which increases the probability of packet delivery with
increasing time. However, we have not seen this in practice.

6.3 Effect of Adding Bypass Buffers

The bypass buffers create additional buffering capacity in
each node which can break some hold-and-wait cycles, thus
improving performance over the base case. The curve for
zero misroutes (O) in Figure 7 isolates the effect of only
adding bypass buffers to the base router. We observe that
while there is some marginal improvement over the base
case, increasing network load eventually saturates the addi-
tional buffers.

6.4 M-misroute, Adaptive router

We now evaluate the effects of adding misroutes (both
eagerand lazy) without bypass buffers to the base router.
While we present simulation results for theeagermisroutes,
we qualitatively describe our experiment and results forlazy
misroutes.

EagerMisroutes: In this scheme misroutes are initiated
eagerly whenever a packet is unable to find a profitable route.
Figure 8 shows our results. From these simulations we see
that eager misrouting without bypass buffers is insufficient to
prevent saturation. In fact, eager misrouting consistently per-
forms worse than the base router, and increasing the misroute
limit further exacerbates saturation. This behavior matches
our expectations.

Previous research [18] shows that starting out with a min-
imal adaptive router (w/ wormhole routing and Disha dead-
lock recovery) and enabling a limited number of misroutes
does not improve performance for uniform random traffic.
Our experiments reproduce this result for virtual cut-through
switching and other traffic patterns. We do note, that the pre-
vious work did show that misroutes can be helpful in the case
of hot-spot traffic pattern (where one node is the destination
for packets coming from many source nodes.) We do not
model that specific pattern.

Lazymisroutes: Our BLAM results combine the effects
of bypassing andlazymisrouting. To separate the effects of
bypassing fromlazy misrouting we modified the eager mis-
routing technique to delay misrouting for a set number of

Uniform Random

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.01 0.1A
cc

ep
te

d
T

ra
ffi

c
(P

ac
ke

ts
/n

od
e/

cy
cl

e)

Packet Injection Rate (Packets/node/cycle)

Uniform Random Traffic Pattern

100% (CNF)

Base
6VC BLAM, 16 misroutes
6VC BLAM, 8 misroutes
6VC BLAM, 3 misroutes
6VC BLAM, 0 misroutes

10

100

1000

10000

100000

0.01 0.1

A
ve

ra
ge

 L
at

en
cy

 (
cy

cl
es

)

Packet Injection Rate (Packets/node/cycle)

Uniform Random Traffic Pattern

Base
6VC BLAM, 16 misroutes

6VC BLAM, 8 misroutes
6VC BLAM, 3 misroutes
6VC BLAM, 0 misroutes

(a) Delivered Throughput vs. Offered Load (b) Average Latency vs. Offered Load
Perfect Shuffle

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.01 0.1A
cc

ep
te

d
T

ra
ffi

c
(P

ac
ke

ts
/n

od
e/

cy
cl

e)

Packet Injection Rate (Packets/node/cycle)

Perfect Shuffle Traffic Pattern

100% (CNF) Base
6VC BLAM, 16 misroutes
6VC BLAM, 8 misroutes
6VC BLAM, 3 misroutes
6VC BLAM, 0 misroutes

10

100

1000

10000

0.01 0.1
A

ve
ra

ge
 L

at
en

cy
 (

cy
cl

es
)

Packet Injection Rate (Packets/node/cycle)

Perfect Shuffle Traffic Pattern

Base
6VC BLAM, 16 misroutes

6VC BLAM, 8 misroutes
6VC BLAM, 3 misroutes
6VC BLAM, 0 misroutes

(c) Delivered Throughput vs. Offered Load (d) Average Latency vs. Offered Load

Figure 7. Effects of Varying the Misroute Limit of BLAM

cycles—called spin-cycles. During this time the packet con-
tinues to try and obtain a profitable route but packets that
follow cannot bypass the stalled packet. Our results show
that whilelazymisrouting is better thaneagermisrouting, it
is still worse than the base case [29].

7 Conclusion

High performance, deadlock-freedom, and livelock-
freedom are all important for multiprocessor interconnec-
tion networks. Unfortunately, existing routing algorithms
trade off one property for others. Minimal, adaptive rout-
ing algorithms compromise performance at high loads to
guarantee deadlock-freedom and livelock-freedom. In con-
trast, Chaotic routing algorithms accept weaker, probabilis-
tic livelock-freedom guarantees to achieve high performance
and deadlock-freedom.

This paper proposes a new routing algorithm—called
BLAM (Bypass buffers with Limited Adaptive lazy
Misrouting)—which combines the best of minimal adaptive
routing and Chaotic routing to provide high performance
without sacrificing deadlock- or livelock-freedom. Like min-
imal adaptive routing algorithms, BLAM provides deadlock-
freedom by the use of a deadlock-free escape paths. Like
Chaos, it provides high performance via the use of lazy mis-
routing and thepacket exchange protocol. BLAM imple-
ments lazy misrouting via bypass buffers at the input ports.
However, unlike Chaos, BLAM limits the number of mis-
routes, thereby, providing livelock-freedom.

Using simulation of a variety of configurations and com-
munication patterns, we demonstrate that BLAM achieves
very high network performance, which is comparable to what
Chaos can achieve. Additionally, we demonstrate that com-
ponents of BLAM–bypass buffers and lazy misrouting–may
not necessarily improve performance individually. However,
when combined in BLAM, these techniques provide perfor-
mance similar to Chaotic routing algorithms, but with guar-
anteed livelock- and deadlock-freedom.

References

[1] E. Baydal, P. Lopez, and J. Duato. A Simple and Efficient Mechanism to Prevent
Saturation in Wormhole Networks. InProceedings. 14th International Parallel
and Distributed Processing Symposium, pages 617–622, 2000.

[2] The Chaotic Routing Project, Computer Science and Engineering Depart-
ment, University of Washington. Standard for Presentation of Results.
http://www.cs.washington.edu/research/projects/lis/chaos/www/presentation.html.

[3] The Chaotic Routing Project, Computer Science and Engineering Depart-
ment, University of Washington, Seattle. The Chaos Router Simulator.
http://www.cs.washington.edu/research/projects/lis/chaos/ www/simulator.html.

[4] A. Charlesworth. The Sun Fireplane Interconnect.IEEE Micro, 22(1):36–45,
January/February 2002.

[5] A. A. Chien and J. H. Kim. Planar-Adaptive Routing: Low-cost Adaptive Net-
works for Multiprocessors. InProceedings of the 19th Annual International Sym-
posium on Computer Architecture, pages 268–277, May 1992.

[6] A. A. Chien and M. Konstantinidou. Workloads and Performance Metrics for
Evaluating Parallel Interconnects.IEEE Computer Architecture Technical Com-
mittee Newsletter, pages 23–27, Summer-Fall 1994.

[7] W. J. Dally. Virtual-Channel Flow Control.IEEE Transactions on Parallel and
Distributed Systems, 3(2):194–205, March 1992.

Uniform Random

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.01 0.1A
cc

ep
te

d
T

ra
ffi

c
(P

ac
ke

ts
/n

od
e/

cy
cl

e)

Packet Injection Rate (Packets/node/cycle)

Uniform Random Traffic Pattern

100% (CNF)

Base
16 misroutes
8 misroutes
3 misroutes

10

100

1000

10000

100000

0.01 0.1

A
ve

ra
ge

 L
at

en
cy

 (
cy

cl
es

)

Packet Injection Rate (Packets/node/cycle)

Uniform Random Traffic Pattern

Base
16 misroutes

8 misroutes
3 misroutes

(a) Delivered Throughput vs. Offered Load (b) Average Latency vs. Offered Load
Perfect Shuffle

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.01 0.1A
cc

ep
te

d
T

ra
ffi

c
(P

ac
ke

ts
/n

od
e/

cy
cl

e)

Packet Injection Rate (Packets/node/cycle)

Perfect Shuffle Traffic Pattern

100% (CNF) Base
16 misroutes
8 misroutes
3 misroutes

10

100

1000

10000

0.01 0.1
A

ve
ra

ge
 L

at
en

cy
 (

cy
cl

es
)

Packet Injection Rate (Packets/node/cycle)

Perfect Shuffle Traffic Pattern

Base
16 misroutes

8 misroutes
3 misroutes

(c) Delivered Throughput vs. Offered Load (d) Average Latency vs. Offered Load

Figure 8. M -misroute, Adaptive Router

[8] W. J. Dally and C. L. Seitz. The TORUS routing chip.Journal of Distributed
Computing, 1(3):187–196, October 1986.

[9] W. J. Dally and C. L. Seitz. Deadlock-free message routing in multiprocessor
interconnection networks.IEEE Transactions on Computers, C-36(5):547–553,
May 1987.

[10] J. Duato. A New Theory of Deadlock-Free Adaptive Routing in Wormhole Net-
works. IEEE Transactions on Parallel and Distributed Systems, 4(12):1320–
1331, December 1993.

[11] J. Duato, S. Yalamanchili, and L. Ni.Interconnection Networks: An Engineering
Approach, page 405. IEEE Computer Society Press, 1997.

[12] P. T. Gaughan and S. Yalamanchili. Adaptive Routing Protocols for hypercube
Interconnection Networks.IEEE Computer, 46(2):12–22, 1997.

[13] C. J. Glass and L. M. Ni. The Turn Model for Adaptive Routing. InProceedings
of the 19th Annual International Symposium on Computer Architecture, pages
278–287, May 1992.

[14] A. G. Greenberg and B. Hajek. Deflection routing in hypercube networks.IEEE
Transactions on Communications, COM-40(6):1070–1081, June 1992.

[15] P. Kermani and L. Kleinrock. Virtual Cut-Through : A New Computer Commu-
nication Switching technique.Computer Networks, 3:267–286, 1979.

[16] J. H. Kim, Z. Liu, and A. A. Chien. Compressionless Routing: A Framework for
Adaptive and Fault-Tolerant Routing. InProceedings of the 21st International
Symposium on Computer Architecture, April 1994.

[17] S. Konstantinidou and L. Snyder. The Chaos Router.IEEE Transactions on
Computers, 43(12):1386–1397, December 1994.

[18] Anjan K.V. and T.M. Pinkston. An Efficient, Fully Adaptive Deadlock Recovery
Scheme : Disha. InProceedings of the 22nd Annual International Symposium on
Computer Architecture, pages 201–210, June 1995.

[19] J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA Highly Scalable Server.
In Proceedings of the 24th International Symposium on Computer Architecture,
pages 241–251, June 1997.

[20] P. Lopez, J. M. Martinez, J. Duato, and F. Petrini. On the Reduction of Deadlock
Frequency by Limiting Message Injection in Wormhole Networks. InProceed-
ings of Parallel Computer Routing and Communication Workshop, June 1997.

[21] S. S. Mukherjee, P. Bannon, S. Lang, A. Spink, and D. Webb. The 21364 Network
Architecture.IEEE Micro, 22(1):26–35, January/February 2002.

[22] J. Y. Ngai and C. L. Seitz. A Framework for Adaptive Routing in Multicom-
puter Networks. InProceedings of the 1st Annual ACM Symposium on Parallel
Algorithms and Architectures, pages 1–9, June 1989.

[23] A. G. Nowatzyk, M. C. Browne, E. J. Kelly, and M. Parkin. S-Connect: from
Networks of Workstations to Supercomputer Performance. InProceedings of the
22nd Annual International Symposium on Computer Architecture, pages 71–82,
June 1995.

[24] S. L. Scott. Synchronization and Communication in the T3E Multiprocessor. In
Proceedings of the Seventh Internation Conference on Architectural Support for
Programming Languages and Operating Systems, pages 26–36, October 1996.

[25] A. Smai and L. Thorelli. Global Reactive Congestion Control in Multicomputer
Networks. In5th International Conference on High Performance Computing,
pages 179–186, 1998.

[26] B. J. Smith. Architecture and Applications of the HEP Multiprocessor Computer
System. InProceedings of SPIE, pages 241–248, 1981.

[27] C. B. Stunkel, D. G. Shea, and B. Abali et al. The SP2 High Performance Switch.
IBM Systems Journal, 34(2):185–204, 1995.

[28] The Superior Multiprocessor ARchiTecture (SMART) Interconnects Group,
Electrical Engineering - Systems Department, University of Southern California.
FlexSim. http://www.usc.edu/dept/ceng/pinkston/tools.html.

[29] M. Thottethodi. Techniques for High Bandwidth, Low Latency Interconnection
Network Operation at High Offered Loads. PhD thesis, Duke University, Decem-
ber 2002.

[30] M. Thottethodi, A. R. Lebeck, and S. S. Mukherjee. Self-Tuned Congestion Con-
trol for Multiprocessor Networks. InProceedings of the Seventh International
Symposium on High Performance Computer Architecture (HPCA-7), pages 107–
118, January 2001.

[31] B. Towles and W. J. Dally. Worst-case Traffic for Oblivious Routing Functions.
Computer Architecture Letters, 1, February 2002.

