
Appears in the 10th International Symposium on Pacific Rim Dependable Computing (PRDC), March 3-5, 2004

 1

ABSTRACT
Transient faults from neutron and alpha particle strikes in large
SRAM caches have become a major problem for microprocessor
designers. To protect these caches, designers often use error
correcting codes (ECC), which typically provide single-bit error
correction and double-bit error detection (SECDED). Unfortu-
nately, two separate strikes could still flip two different bits in the
same ECC-protected word. This we call a temporal double-bit
error. SECDED ECC can only detect—not correct—such errors.

This paper shows how to compute the mean time to failure for
temporal double-bit errors. Additionally, we show how fixed-
interval scrubbing—in which error checkers periodically access
cache blocks and remove single-bit errors—can mitigate such
errors in processor caches. Our analysis using current soft
error rates shows that only very large caches (e.g., hundreds of
megabytes to gigabytes) need scrubbing to reduce the temporal
double-bit error rate to a tolerable range.

1. INTRODUCTION
Transient faults have emerged as one of the key challenges
in microprocessor design today. These faults arise from
energetic particles—such as neutrons from cosmic rays
and alpha particles from packaging material—generating
electron-hole pairs as they pass through a semiconductor
device. Transistor source and diffusion nodes can collect
these charges. A sufficient amount of accumulated charge
may invert the state of a logic device—such as an SRAM
cell, a latch, or a gate—thereby introducing a logical fault
into the circuit’s operation. Because this type of fault does
not reflect a permanent failure of the device, it is termed
soft or transient.

SRAM caches (Figure 1) are some of the largest structures
in today’s microprocessors and, hence, are most vulnerable
to such transient faults. Caches are used heavily in
microprocessors because they keep data closer to computa-
tion units and thereby improve a microprocessor’s
performance. Caches are typically divided up into
numerous fixed-sized cache blocks containing the data,
with typical sizes ranging between 16 and 128 bytes for
each block. Additionally, each cache block has an
associated address and state information (e.g., whether the
block has been modified or is in read-only state).

Microprocessors typically have a hierarchy of caches, with
smaller and faster caches closer to the computation units.
Figure 1 shows a cache hierarchy with two levels of
caches. Aided by an exponential increase in on-die
transistor count, on-chip cache hierarchies have grown
dramatically in size, with up to three levels, the largest
being several megabytes in capacity [4]. The advent of
large on-chip multiprocessors and increasing levels of on-

chip multithreading [8] will make greater demands on the
memory system. Consequently, cache sizes will continue
to grow and approach several tens of megabytes in the near
future.

To protect caches from transient faults, designers typically
use a parity bit or SECDED (single-error correct, double-
error detect) ECC code [11] to protect a group of data bits.
Parity can detect single-bit errors and, depending on the
cache policy (e.g., write-through and inclusion with higher
levels), can even help recover the data transparently. In
contrast, SECDED ECC codes detect all double-bit errors
and always recover data transparently for single-bit errors.

The highest level of cache (e.g., the level 2 cache in Figure
1) typically uses ECC because it may hold modified data
for a finite time before writing it back to main memory.
Fortunately, most transient faults result in single-bit upsets
for which SECDED ECC codes provide adequate protec-
tion. Nevertheless, a single neutron or alpha strike could
still flip two bits located in close proximity. We call this a
spatial double-bit error. SECDED ECC would be able to
detect, but not correct, such a spatial double-bit error. To
recover from spatial double-bit errors, designers typically
interleave the ECC codes. That is, consecutive data bits
would be protected by different ECC codes and the

Cache Scrubbing in Microprocessors: Myth or Necessity?

Shubhendu S. Mukherjee1, Joel Emer1, Tryggve Fossum1, and Steven K. Reinhardt1,2

Figure 1. Memory hierarchy in a processor. The CPU accesses
memory via multiple levels of caches. If it cannot find the data from
the caches, then it sends a request to main memory to fetch the
memory location it needs.

 CPU

Level 1 Cache

MAIN MEMORY

 Level 2 Cache

Microprocessor

2 Advanced Computer Architecture Lab
EECS Department, University of Michigan
1301 Beal Avenue, Ann Arbor, MI 48109

1Massachusetts Microprocessor Design Center, Intel Corporation
334 South Street, Shrewsbury 01545, Massachusetts

Appears in the 10th International Symposium on Pacific Rim Dependable Computing (PRDC), March 3-5, 2004

 2

double-bit error would appear as individual single-bit
errors for the respective ECC codes, thereby allowing
transparent hardware recovery.

Unfortunately, SECDED ECC may not help a cache
recover from a temporal double-bit error, which is the
topic of this paper. A temporal double-bit error may occur
when two different bits of the same ECC-protected data or
code word are affected by single-bit errors at different
times. Contrary to expectation, in most current microproc-
essors, the first single-bit error may not be corrected by the
error checkers, unless the microprocessor reads the
corresponding bits out of the cache. Thus, single-bit errors
may accumulate in the cache and eventually develop into a
temporal double-bit error when a second error occurs in
the same set of data or code bits.

One solution to solving this problem is to use an ECC code
that can correct double-bit errors. Unfortunately, this
comes with a significant increase in the number of code
bits. For a 64-bit data word, a minimum of 7 additional
bits are required to correct all single-bit errors. SECDED
ECC schemes add an eighth bit to guarantee detection of
all double-bit errors. Correction of all double-bit errors
requires 12 code bits. Thus, the memory overhead
increases from 13% to 19%.

An alternate solution is to scrub the caches periodically
[1]. Scrubbing has been widely used in the past in large
main memories [12], which are typically protected with
SECDED ECC. Scrubbing involves reading the bits from
the cache, correcting any latent single-bit errors, recomput-
ing the ECC, and writing the bits back. The read operation
will provide the correct data even if a single-bit error is
present; the writeback with the recomputed ECC will
overwrite any existing single-bit error. If the scrubbing
interval is short enough, the opportunity for a temporal
double-bit error to arise is practically eliminated.

Scrubbing does, however, create extra overhead in terms
of software and/or hardware. A pure software implemen-
tation may incur significant overhead in scrubbing because
the software will have to access every block in a large
cache. In contrast, current processors with very high
memory bandwidths could potentially scrub in hardware
entire multi-megabyte caches in a few milliseconds or less.
Alternatively, if this is too high an overhead, then the
processors could scrub in a stealth mode, where they
incrementally scrub data blocks over time.

Interestingly, however, the size of a cache has a significant
impact on the scrubbing interval. The bigger a cache is,
the smaller the mean time to get a temporal double-bit
error, and hence the shorter the necessary scrubbing
interval. Conversely, smaller caches imply larger scrub-
bing intervals. In fact, if the mean time to get a double-bit
error is large enough, then a microprocessor designer may
choose to avoid scrubbing altogether.

This paper describes a method to determine how large a
cache may be before scrubbing becomes a necessity, and,
for a given cache size, what may constitute a reasonable

scrubbing interval. Our analysis using current soft error
rates for single-bit upsets shows that only systems with a
total cache size in the range of hundreds of megabytes to
gigabytes need to be scrubbed periodically. Current and
near-future single processor cache sizes range up to tens of
megabytes, so we would need a multiprocessor system
comprising hundreds of processors to attain such a large
total system cache size. Alternatively, in a few technology
generations, a single processor may be able to have
between 100 and 200 megabytes of L2 cache, which may
then require scrubbing. However, scrubbing may not be
justified for today’s uniprocessors and small-scale
multiprocessors.

The rest of the paper is organized as follows. Section 2
provides background on how we compute the soft error
rate of a microprocessor. Section 3 shows how to compute
the mean time to failure for a temporal double-bit error.
Section 4 shows how this mean time to failure can be
reduced using periodic scrubbing. Section 5 discusses
related work. And, finally, Section 6 presents our
conclusions.

2. BACKGROUND
Section 2.1 describes the failure metrics MTBF and FIT.
Section 2.2 describes vulnerability factors and their impact
on error detection and correction requirements.

2.1 MTTF and FIT

Vendors express a failure budget at a reference altitude in
terms of Meant Time to Failure (MTTF) or Mean Time
Between Failures (MTBF). MTBF equals the sum of
MTTF and the repair time, which is usually very small
compared to MTTF, if the repair is done in hardware. We
will use MTTF in this paper as our metric because it is
more appropriate for chip vendors, such as AMD or Intel®.

Failures are also often further classified as undetected or
detected. The former are typically referred to as silent
data corruption (SDC); we call the latter detected
unrecoverable errors (DUE), which are the focus of this
paper. Note that detected recoverable errors are not
failures. Adding error detection (but not correction) to a
structure eliminates SDC failures, converting those faults
to DUE failures. Full error correction is required to reduce
DUE errors. This paper focuses on DUE caused by
double-bit memory errors.

Companies usually have target SDC and DUE rates for
their microprocessors. For example, for its Power4
processor-based systems, IBM targets 1000 years system
MTBF for SDC failures, 25 years system MTBF for DUE
failures that result in a system crash, and 10 years system
MTBF for DUE failures that result in an application crash
[3]. Note that the processor MTBF must be significantly
higher than the system MTBF, particularly for large
multiprocessor systems.

Another commonly used unit for failure rates is FIT
(Failure in Time), which is inversely related to MTBF.
One FIT specifies one failure in a billion hours. Thus,

Appears in the 10th International Symposium on Pacific Rim Dependable Computing (PRDC), March 3-5, 2004

 3

1000 years MTBF equals 114 FIT (109 / (24∗365∗1000)).
A zero error rate corresponds to zero FIT and infinite
MTBF. Designers usually work with FIT because FIT is
additive, unlike MTBF. �

To evaluate whether a chip meets its soft error budget—
possibly via the use of error protection and mitigation
techniques—microprocessor designers use sophisticated
computer models to compute the FIT rate for every
device—RAM cells, latches, and logic gates—on the chip.
The result of this analysis is used to find the FIT rate of the
chip using the following equation:

FIT rate of a chip = �i over all devices in the chip (raw FIT rate of i

∗ vulnerability factor of i)

Current predictions show that typical FIT rate numbers for
latches and SRAM cells at sea level vary between 0.001 –
0.01 FIT/bit ([15],[10],[6],[5]). This FIT/bit also in-
creases with elevation. At 1.5km—altitude of Denver,
Colorado—the FIT/bit is about 3.5x higher than at sea
level. At 10km—typical altitudes for airplanes—the
FIT/bit is approximately 100x higher [17]. Interestingly,
however, the FIT/bit is projected to remain in this range or
decrease slightly for next several technology generations
[2][13], unless microprocessors aggressively lower the
supply voltage to reduce the overall power dissipation of
chip, thereby increasing FIT/bit, or move to fully-depleted
silicon-on-insulator technology, which can dramatically
decrease the FIT/bit of SRAM cells.

2.2 Vulnerability Factors

The effective FIT rate per bit is influenced by several
vulnerability factors (also known as derating factors or
soft error sensitivity factors). In general, a vulnerability
factor indicates that, given conditions sufficient to cause a
fault, there is a certain probability that an error will occur.
The architectural vulnerability factor (AVF) expresses the
probability that a visible system error will occur given a bit
flip in a storage cell. As another example, when a level-
sensitive latch is accepting data rather than holding data—
typically 50% of the time—a strike on its stored bit may
not result in an error, as the stored value will be overridden
by the (correct) input value. We call this the timing
vulnerability factor. The total vulnerability factor for a bit
is the product of the timing and architectural vulnerability
factors. For simplicity, we assume the timing vulnerabil-
ity factor is already incorporated in the raw device fault
rate. The computation of the device fault rate also includes
some circuit-level vulnerability factors, which are beyond
the scope of this paper.

The AVF can have a significant impact on the effective
failure rate of a processor. Prior studies with statistical
fault injection into RTL models have demonstrated AVFs
of 1%-10% for latches [1] and 0% - 100% across a range
of architectural and microarchitectural state bits [9].

For temporal double-bit errors in caches, there are two
phenomena that reduce the vulnerability factor. First, if a
block with a double-bit error is not in a modified state,

then the correct data can be re-fetched from a higher level
cache or from main memory. Note that the error must be
in the data portion of the block, not in the cache tag or
state, and that the cache control logic must support this
refetch operation. Second, a block with a double-bit error
may never be read by the processor. In this case, the block
will be overwritten before the double-bit error is detected.
In this latter case, cache scrubbing can be a detriment, as it
may expose a latent double-bit error before the block is
overwritten.

3. DUE RATE FROM TEMPORAL
DOUBLE-BIT ERRORS WITH NO
SCRUBBING

In this section we compute the FIT rate from temporal
double-bit errors in the absence of any scrubbing. We
assume that an 8-bit ECC code protects 64 bits of data,
which we call a quadword. A temporal double-bit error
occurs when two bits of this 72-bit protected quadword are
flipped by two separate neutron or alpha particle strikes.
We only concern ourselves with strikes in the data portion
of the cache blocks. First, we compute FIT rate from
temporal double-bit errors without the use of AVFs. Then,
we show the impact of AVFs on these numbers.

To compute the FIT contribution of temporal double-bit
errors, let us define the following terms:

• Q = number of quadwords in the cache memory. Each
quad-word consists of 64 bits of data and 8 bits of
ECC. Thus, we have a total of 72 bits per quadword.

• E = number of random single-bit errors that occur in
the population of Q quadwords.

Given E single-bit errors in Q different quadwords, the
probability that error E+1 will cause a double-bit error is
E/Q. Let Pd[n] = the probability that a sequence of n
strikes causes n-1 single-bit errors (but no double-bit
errors) followed by a double-bit error on the nth strike.
Clearly Pd[1] = 0. Pd[2] is the probability that the second
strike hits the same quadword as the first strike, or 1/Q.
Pd[3] is the probability that the first two strikes hit
different quadwords (i.e., 1-Pd[2]) times the probability
that the third strike hits either of the first two quadwords
that got struck (i.e., 2/Q). Following this formulation, we
get

• Pd[2] = 1 / Q

• Pd[3] = [(Q-1)/Q] * [2/Q]

• Pd[4] = [(Q-1)/Q] * [(Q-2)/Q] * [3/Q]

• …

• Pd[E] = [(Q-1)/Q] * [(Q-2)/Q] * [(Q-3)/Q] * … * [(Q-
E+2)/Q] * [(E-1)/Q]

Then, the probability of a double-bit error after a time
period T = � Pd[N] * P[N strikes in time T] for all N.
Using this equation, we can solve for the expected value of
T to derive the MTTF to a temporal double-bit error.

Appears in the 10th International Symposium on Pacific Rim Dependable Computing (PRDC), March 3-5, 2004

 4

Fortunately, there is an easier way to calculate this MTTF.
Assume that M is the mean number of single-bit errors
needed to get a double-bit error. Then, the MTTF for a
temporal double-bit error = M * MTTF of a single-bit
error. (Similarly, the FIT rate for a double-bit error = 1/M
* FIT rate for a single-bit error.) A simple computer
program can calculate M very easily as the expected value
of Pd[·].

As an example, consider a 32 megabyte data cache. This
cache has 222 quadwords. Let us assume that an SRAM
cell has an average FIT rate of 0.001. The single-bit FIT
rate for the entire cache is 0.001 * 222 * 72 = 3.02 * 105,
i.e. the MTTF is 109 / (3.02 * 105) = 3311 hours. Using a
computer program, we find that M = 2567. Then, the
MTTF to a double-bit error = 3311 * 2567 hours = 970
years.

Using a Poisson distribution, Saleh, et al. [12] came up
with a different method of computing such MTTFs for
main memory systems (not on-chip caches), but their
calculations match ours for large multi-megabyte memo-
ries. Saleh, et al.’s derivation shows that the MTTF for
such temporal double-bit errors is equal to [1 / (72 * f)] *
sqrt(pi / 2Q), where f = FIT rate of a single bit. Thus,
using Saleh, et al.’s method, we find that MTTF for
double-bit errors for a 32 MByte cache and FIT/bit of
0.001 (f) is 0.0085 * 109 hours or 970 years.

Figure 2 shows the MTTF (in years) for such double-bit
errors from two separate neutron or alpha particle strikes to
the same quadword in a cache. For small caches—
between 4 and 16 MB—the MTTF for temporal double-bit
errors ranges from 137 years to 2746 years, which is
significantly greater than the 10 years MTBF required for

IBM's DUE rate specification. Thus, for caches less than
16 MB, the contribution of temporal double-bit error
towards the whole DUE rate is minimal. Similarly, for
FIT/bit less than 0.003, the contribution of large caches in
the range of 64 to 256 MB is a small fraction of the total
DUE target rate of 10 years MTBF. However, when the
FIT/bit is greater than 0.003, the DUE contribution of
temporal double-bit errors could become significant. For
example, for a processor with 256 MB cache and a FIT/bit
of 0.01, the total contribution DUE contribution from
temporal double-bit errors is about 29% of a target DUE
rate of 10 years.

The above calculation does not factor in the reduced error
rates because of the architectural vulnerability factor
(Section 2.2). Prior studies [9][1] have shown that AVFs
of many structures are in the 10-30% range. Other studies
(e.g., [14], [7]) with small caches—holding tens of
kilobytes of data—with CPU95 benchmarks (see
http://www.spec.org) and other numerical applications
suggests that AVFs could range between 15 and 60% .
For larger multi-megabyte caches with lower average
utilization of cache blocks we expect the AVF to be in the
10-20% range. Nevertheless, the AVF is highly depend-
ent on specific applications and further work needs to be
done to validate the AVF numbers for large caches.

Figure 3 shows that for a 256 MB cache, 0.01 FIT/bit, and
AVF of 10%, the MTTF for a temporal double-bit error is
343 years, which makes it a very small fraction of a
possible target DUE rate of 10 years. Thus, for uniproces-
sor caches ranging from 4 MB to 256 MB, FIT/bit in the
range of 0.001 - 0.01 FIT/bit, and AVF of around 10%, our
DUE rate for temporal double-bit errors is sufficiently
small. Hence, the designer may choose not to scrub these
caches.

Nevertheless, large multiprocessor systems composed of
multiple uniprocessors—each with tens of megabytes of

Figure 2. MTTF to a temporal double-bit error for different
cache sizes (expressed in MB or megabytes).

Figure 3. MTTF to a temporal double-bit error for a 256 MB
cache for different AVF assumptions.

10

100

1000

10000

100000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

FIT/bit

M
T

T
F

 in
 y

ea
rs

AVF = 1% AVF = 10% AVF = 100%

10

100

1000

10000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

FIT/bit

M
T

T
F

 in
 y

ea
rs

4 MB 16 MB 64 MB 256 MB

Appears in the 10th International Symposium on Pacific Rim Dependable Computing (PRDC), March 3-5, 2004

 5

caches—may require scrubbing to reduce the DUE rate.
For example, a multiprocessor or cluster composed of 64
processors, each with 256 MB of cache, a FIT/bit of 0.01,
and AVF of 10%, would have a DUE rate of 4.3 years
from temporal double-bit errors. Designers may opt to
support cache scrubbing in such a system.

Interestingly, the MTTF contribution from double-bit
errors for a system with multiple chips cannot be computed
in the same way as we do for single-bit errors. If chip
failure rates are independent, then a system composed of
two chips, each with an MTTF of 100 years, has an overall
MTTF of 100 / 2 = 50 years. Unfortunately, double-bit
error rates are not independent, because the MTTF for a
double-bit error is not a linear function of the number of
bits. This is also evident in Saleh, et al.’s equation [12],
which shows the rate of such double-bit errors is inversely
proportional to the square root of the size of the cache.
Thus, quadrupling the cache size halves the MTTF for
double-bit errors, but does not reduce it by a factor of four.

4. DUE RATE FROM TEMPORAL
DOUBLE-BIT ERRORS WITH
SCRUBBING

Fixed-interval scrubbing can dramatically improve the
MTTF of the cache subsystem. By scrubbing a cache
block we mean that for each quadword of the block, we
read it, compute its ECC, and compare the computed code
with the existing ECC code. For a single-bit error, we
correct the error and rewrite the correct ECC code into the
cache. By fixed-interval scrubbing, we mean that all
cache blocks in the system are scrubbed at a fixed interval
rate, such as every year or every month. Scrubbing can
help improve the MTTF because it removes single-bit
errors from the cache system (protected with SECDED
ECC), thereby reducing the probability of a future
temporal double-bit error.

Even in systems without active scrubbing, single-bit errors
are effectively scrubbed whenever a quadword’s ECC is
recalculated and rewritten. This occurs when new data is
written to the cache, either because the cached location is
updated by the processor, or because the cached block is
replaced and overwritten with data from a different
memory location. In some systems, a single-bit error
detected on a read will also cause ECC to be recalculated
and rewritten. The key difference between these passive
updates and active scrubbing is that the former provides no
upper bound on the interval between ECC updates.

To compute the MTTF with scrubbing, let us define the
following terms:
• I = scrubbing interval

• N = number of scrubbing intervals to reach MTTF
(with scrubbing active at the end of each interval I)

• pf = probability of a double-bit error from temporally
separate neutron or alpha strikes in the interval I

Then, by definition, MTTF for a temporal double-bit error
= N * I. Assuming each such scrubbing interval is
independent, the probability that we have no double-bit
error in the first N intervals followed by a double-bit error
in the N+1th interval is (1-pf)N * pf. Thus, N is the
expected value of a random variable with probability
distribution function (1-pf)N * pf. So, given an interval I,
we compute the number of single-bit errors (say S) that
can occur in that interval. pf is equal to the sum of the
probabilities of a double-bit error, given 2, 3, 4, …, S
errors. This probability can be computed the same way as
described earlier for a system with no scrubbing (Section
3). Thus, given pf and I, we can easily compute N using
a simple computer program.

Figure 4 shows how scrubbing once a year, month, and
day can improve the MTTF numbers for a system config-
ured with 16 GBbyte of on-chip cache and assuming an
AVF of 100%. This could, for example, arise from 64
processor multiprocessor or cluster with each processor
having 256 MB of on-chip cache. Clearly, fixed interval
scrubbing can significantly improve the MTTF of a
processor and system’s cache subsystem. Thus, for
example, for a FIT/bit of 0.001, the MTTF for temporal
double-bit errors are 40 years, 2281 years, 28172 years,
and 959267 years, respectively, for a system with no
scrubbing, scrubbing once a year, scrubbing once a month,
and scrubbing once a day.

Our numbers come close to Saleh, et al.’ s [12] prediction
of MTTF for temporal double-bit errors with fixed-interval
scrubbing. Saleh, et al.,’ s closed form for this MTTF is 2 /
[Q * I * (f * 72)2]. With a FIT/bit (i.e., f) of 0.001, Saleh
et al., would predict MTTFs of 2341 years, 28484 years,
and 854515 years, respectively, for a system with scrub-
bing once a year, once a month, and once a day.

Figure 4. Impact on fixed-interval scrubbing (once a year, once a
week, and once a day) on the MTTF of temporal double-bit errors
for a system with 16 Gigabytes of on-chip cache.

1

10

100

1000

10000

100000

1000000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

FI T/ bi t

M
TT

F
in

 y
ea

rs

Scrub once a day Scrub once a month

Scrub once a year With no Scrubbing

Appears in the 10th International Symposium on Pacific Rim Dependable Computing (PRDC), March 3-5, 2004

 6

5. RELATED WORK
As discussed in Sections 3 and 4, Saleh, et al. [12] have
proposed closed form equations for the MTTF for a
temporal double-bit error. Our results validate Saleh, et
al.’s equations. However, unlike Saleh, et al.’s work, our
formulation is based on discrete probability distributions
and perhaps somewhat easier to understand and validate.

Further, we improve upon Saleh, et al.’s work by using
realistic FIT rates and AVFs for SRAM caches and
comparing the temporal double-bit error rate with target
DUE rate set by companies, such as IBM. Our results
show that only large caches—in the range of hundreds of
megabytes or gigabytes—would need scrubbing. In
contrast, Saleh, et al. evaluated their equations for DRAM
memories with a FIT/bit of 42, which is significantly
higher than current FIT/bit for SRAM caches. Clearly,
using such high FIT/bit numbers for SRAM caches would
lead to a conclusion different from ours.

6. CONCLUSIONS
Transient faults from neutron and alpha particle strikes
have become one of the key challenges in the microproces-
sor industry today. Because SRAM caches are some of
the largest structures in today’s microprocessors, they are
most prone to such strikes. Designers protect these caches
with SECDED (single error detect, double error correct)
ECC (error correcting codes). These codes comprise of 8
bits of code to protect every 64 bits of data. Unfortu-
nately, for very large caches, there is still a finite probabil-
ity that two separate neutron or alpha particles could strike
the same data word protected by the same ECC code. We
called this phenomenon a temporal double-bit error.

Currently, microprocessor vendors (e.g., AMD) scrub
caches to reduce the temporal double-bit error rate [1].
Scrubbing involves reading bits from the cache, computing
the ECC, checking the generated ECC against the stored
ECC, and correcting any existing single-bit errors. If the
scrubbing interval is shorter than the average duration
between two single-bit errors in the same set of data and
code bits, then this would potentially eliminate almost all
temporal double-bit errors.

In this paper, we developed a methodology to compute the
MTTF to such a temporal double-bit error. Our analysis
showed that small caches—less than tens of megabytes—
have a very low temporal double-bit error rate and, hence,
do not need to be scrubbed. In contrast, large caches—in
the range of hundreds of megabytes to gigabytes—may
need to be scrubbed to reduce the temporal double-bit error
rate to a tolerable range.

ACKNOWLEDGMENTS
We would like to thank Stephen Felix, who helped us
develop some of the equations in this paper. We would
also like to thank Geoff Lowney for feedback on initial
drafts of this paper.

REFERENCES
[1] AMD, “BIOS and Kernel Developer’s Guide for AMD

AthlonTM64 and AMD OpteronTM Processors,” Publication #
26094, Revision 3.04, Issue date July 2003,
http://www.amd.com/usen/assets/content_type/white_papers
_and_tech_docs/26094.PDF.

[2] Robert Baumann, “Soft Errors in Commercial Semiconduc-
tor Technology: Overview and Scaling Trends,” IEEE 2002
Reliability Physics Tutorial Notes, Reliability Fundamentals,
pp. 121_01.1 – 121_01.14, April 7, 2002.

[3] D.C.Bossen, “CMOS Soft Errors and Server Design,” IEEE
2002 Reliability Physics Tutorial Notes, Reliability Fundamen-
tals, pp. 121_07.1 – 121_07.6, April 7, 2002.

[4] L.Gwennap, “Alpha 21364 to Ease Memory Bottleneck,”
Microprocessor Report, 12(14): 12-15, October 26, 1998.

[5] S.Hareland, J. Maiz, M.Alavi, K.Mistry, S.Walstra, and
C.Dai, “ Impact of CMOS Scaling and SOI on soft error rates
of logic processes,” Symposium on VLSI Technology Digest
of Technical Papers, 2001.

[6] T.Karnik, B.Bloechel, K.Soumyanath, V.De, and S.Borkar,
“Scaling trends of Cosmic Rays induced Soft Errors in static
latches beyond 0.18� ,” Symposium on VLSI Circuits Digest of
Technical Papers, 2001.

[7] S.Kim and A.K.Somani, “Area Efficient Architectures for
Information Integrity in Cache Memories,” Proceedings of
the 26th Annual International Symposium on Computer Archi-
tecture (ISCA), pages 246 – 255, May, 1999.

[8] Kevin Krewell, “Sun Weaves Multithreaded Future,”
Microprocessor Report, Volume 17, Archive 4, April 2003.

[9] Shubhendu S. Mukherjee, Christopher Weaver, Joel Emer,
Steven K. Reinhardt, and Todd Austin, “A Systematic
Methodology to Computer the Architectural Vulnerability
Factors for a High-Performance Microprocessor,” 36th An-
nual International Symposium on Microarchitecture
(MICRO), December 2003.

[10] Eugene Normand, “Single Event Upset at Ground Level,”
IEEE Trans. on Nuclear Science, Vol. 43, No. 6, Dec. 1996.

[11] Dhiraj K. Pradhan, “Fault-Tolerant Computer System
Design,” Second print 2003, Computer Science Press.

[12] A.M.Saleh, J.J.Serrano, and J.H.Patel, “Reliability of
Scrubbing Recovery Techniques for Memory Systems,”
IEEE Transactions on Reliability, Vol.39, NO.1, April 1990.

[13] P.Shivakumar, M.Kistler, S.W.Keckler, D.Burger, and
L.Alvisi, “Modeling the Effect of Technology Trends on the
Soft Error Rate of Combinatorial Logic,” Dependable Sys-
tems and Networks, 2002.

[14] A.K.Somani and K. Trivedi, “A cache error propagation
model,” Proceedings of the International Symposium on Pacific
Rim Fault Tolerant Computing, pages 15 – 21, Dec. 1997.

[15] Y.Tosaka, S.Satoh, K.Suzuki, T.Suguii, H.Ehara,
G.A.Woffinden, and S.A.Wender, “ Impact of Cosmic Ray
Neutron Induced Soft Errors, on Advanced Submicron
CMOS circuits,” VLSI Symposium on VLSI Technology
Digest of Technical Papers, 1996.

[16] Nicholas Wang and Sanjay Patel, “Modeling the Effect of
Transient Errors on High Performance Microprocessors,”
Center for Circuits, Systems, and Software (C2S2),� 2nd An-
nual Review, Berkeley, March 18-19, 2003.

[17] J.F.Ziegler, “Terrestrial cosmic rays,” IBM J. of Research
and Development, pp. 19 – 39, Vol. 40, No. 1, Jan. 1996.

