
Appears in the 10th International Symposium on Pacific Rim Dependable Computing (PRDC), March 3-5, 2004  

                         1  

ABSTRACT 
Transient faults from neutron and alpha particle strikes in large 
SRAM caches have become a major problem for microprocessor 
designers.  To protect these caches, designers often use error 
correcting codes (ECC), which typically provide single-bit error 
correction and double-bit error detection (SECDED).   Unfortu-
nately, two separate strikes could still flip two different bits in the 
same ECC-protected word.  This we call a temporal double-bit 
error.  SECDED ECC can only detect—not correct—such errors.  

This paper shows how to compute the mean time to failure for 
temporal double-bit errors.  Additionally, we show how fixed-
interval scrubbing—in which error checkers periodically access 
cache blocks and remove single-bit errors—can mitigate such 
errors in processor caches.   Our analysis using current soft 
error rates shows that only very large caches (e.g., hundreds of 
megabytes to gigabytes) need scrubbing to reduce the temporal 
double-bit error rate to a tolerable range.   

1. INTRODUCTION 
Transient faults have emerged as one of the key challenges 
in microprocessor design today. These faults arise from 
energetic particles—such as neutrons from cosmic rays 
and alpha particles from packaging material—generating 
electron-hole pairs as they pass through a semiconductor 
device.  Transistor source and diffusion nodes can collect 
these charges.  A sufficient amount of accumulated charge 
may invert the state of a logic device—such as an SRAM 
cell, a latch, or a gate—thereby introducing a logical fault 
into the circuit’s operation.  Because this type of fault does 
not reflect a permanent failure of the device, it is termed 
soft or transient.    

SRAM caches (Figure 1) are some of the largest structures 
in today’s microprocessors and, hence, are most vulnerable 
to such transient faults.  Caches are used heavily in 
microprocessors because they keep data closer to computa-
tion units and thereby improve a microprocessor’s 
performance.   Caches are typically divided up into 
numerous fixed-sized cache blocks containing the data, 
with typical sizes ranging between 16 and 128 bytes for 
each block.  Additionally, each cache block has an 
associated address and state information (e.g., whether the 
block has been modified or is in read-only state).   

Microprocessors typically have a hierarchy of caches, with 
smaller and faster caches closer to the computation units.  
Figure 1 shows a cache hierarchy with two levels of 
caches.    Aided by an exponential increase in on-die 
transistor count, on-chip cache hierarchies have grown 
dramatically in size, with up to three levels, the largest 
being  several megabytes in capacity [4].   The advent of 
large on-chip multiprocessors and increasing levels of on-

chip multithreading [8] will make greater demands on the 
memory system.  Consequently, cache sizes will continue 
to grow and approach several tens of megabytes in the near 
future.  

To protect caches from transient faults, designers typically 
use a parity bit or SECDED (single-error correct, double-
error detect) ECC code [11] to protect a group of data bits.  
Parity can detect single-bit errors and, depending on the 
cache policy (e.g., write-through and inclusion with higher 
levels), can even help recover the data transparently.  In 
contrast, SECDED ECC codes detect all double-bit errors 
and always recover data transparently for single-bit errors.    

The highest level of cache (e.g., the level 2 cache in Figure 
1) typically uses ECC because it may hold modified data 
for a finite time before writing it back to main memory.    
Fortunately, most transient faults result in single-bit upsets 
for which SECDED ECC codes provide adequate protec-
tion.   Nevertheless, a single neutron or alpha strike could 
still flip two bits located in close proximity.  We call this a 
spatial double-bit error.  SECDED ECC would be able to 
detect, but not correct, such a spatial double-bit error.   To 
recover from spatial double-bit errors, designers typically 
interleave the ECC codes.    That is, consecutive data bits 
would be protected by different ECC codes and the 
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Figure 1.  Memory hierarchy in a processor.  The CPU accesses 
memory via multiple levels of caches.  If it cannot find the data from 
the caches, then it sends a request to main memory to fetch the 
memory location it needs.  
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double-bit error would appear as individual single-bit 
errors for the respective ECC codes, thereby allowing 
transparent hardware recovery.  

Unfortunately, SECDED ECC may not help a cache 
recover from a temporal double-bit error, which is the 
topic of this paper.  A temporal double-bit error may occur 
when two different bits of the same ECC-protected data or 
code word are affected by single-bit errors at different 
times.  Contrary to expectation, in most current microproc-
essors, the first single-bit error may not be corrected by the 
error checkers, unless the microprocessor reads the 
corresponding bits out of the cache.  Thus, single-bit errors 
may accumulate in the cache and eventually develop into a 
temporal double-bit error when a second error occurs in 
the same set of data or code bits.  

One solution to solving this problem is to use an ECC code 
that can correct double-bit errors.   Unfortunately, this 
comes with a significant increase in the number of code 
bits.   For a 64-bit data word, a minimum of 7 additional 
bits are required to correct all single-bit errors. SECDED 
ECC schemes add an eighth bit to guarantee detection of 
all double-bit errors.  Correction of all double-bit errors 
requires 12 code bits.  Thus, the memory overhead 
increases from 13% to 19%. 

An alternate solution is to scrub the caches periodically 
[1].    Scrubbing has been widely used in the past in large 
main memories [12], which are typically protected with 
SECDED ECC.  Scrubbing involves reading the bits from 
the cache, correcting any latent single-bit errors, recomput-
ing the ECC, and writing the bits back.  The read operation 
will provide the correct data even if a single-bit error is 
present; the writeback with the recomputed ECC will 
overwrite any existing single-bit error.   If the scrubbing 
interval is short enough, the opportunity for a temporal 
double-bit error to arise is practically eliminated.    

Scrubbing does, however, create extra overhead in terms 
of software and/or hardware.   A pure software implemen-
tation may incur significant overhead in scrubbing because 
the software will have to access every block in a large 
cache.   In contrast, current processors with very high 
memory bandwidths could potentially scrub in hardware 
entire multi-megabyte caches in a few milliseconds or less.   
Alternatively, if this is too high an overhead, then the 
processors could scrub in a stealth mode, where they 
incrementally scrub data blocks over time.     

Interestingly, however, the size of a cache has a significant 
impact on the scrubbing interval.  The bigger a cache is, 
the smaller the mean time to get a temporal double-bit 
error, and hence the shorter the necessary scrubbing 
interval.  Conversely, smaller caches imply larger scrub-
bing intervals.   In fact, if the mean time to get a double-bit 
error is large enough, then a microprocessor designer may 
choose to avoid scrubbing altogether.    

This paper describes a method to determine how large a 
cache may be before scrubbing becomes a necessity, and, 
for a given cache size, what may constitute a reasonable 

scrubbing interval.   Our analysis using current soft error 
rates for single-bit upsets shows that only systems with a 
total cache size in the range of hundreds of megabytes to 
gigabytes need to be scrubbed periodically.  Current and 
near-future single processor cache sizes range up to tens of 
megabytes, so we would need a multiprocessor system 
comprising hundreds of processors to attain such a large 
total system cache size.  Alternatively, in a few technology 
generations, a single processor may be able to have 
between 100 and 200 megabytes of L2 cache, which may 
then require scrubbing.   However, scrubbing may not be 
justified for today’s uniprocessors and small-scale 
multiprocessors.  

The rest of the paper is organized as follows.  Section 2 
provides background on how we compute the soft error 
rate of a microprocessor.  Section 3 shows how to compute 
the mean time to failure for a temporal double-bit error.   
Section 4 shows how this mean time to failure can be 
reduced using periodic scrubbing.  Section 5 discusses 
related work.  And, finally, Section 6 presents our 
conclusions.  

2. BACKGROUND  
Section 2.1 describes the failure metrics MTBF and FIT. 
Section 2.2 describes vulnerability factors and their impact 
on error detection and correction requirements. 

2.1 MTTF and FIT 

Vendors express a failure budget at a reference altitude in 
terms of Meant Time to Failure (MTTF) or Mean Time 
Between Failures (MTBF).  MTBF equals the sum of 
MTTF and the repair time, which is usually very small 
compared to MTTF, if the repair is done in hardware.  We 
will use MTTF in this paper as our metric because it is 
more appropriate for chip vendors, such as AMD or Intel®.  

Failures are also often further classified as undetected or 
detected.  The former are typically referred to as silent 
data corruption (SDC); we call the latter detected 
unrecoverable errors (DUE), which are the focus of this 
paper.  Note that detected recoverable errors are not 
failures. Adding error detection (but not correction) to a 
structure eliminates SDC failures, converting those faults 
to DUE failures.  Full error correction is required to reduce 
DUE errors.  This paper focuses on DUE caused by 
double-bit memory errors. 

Companies usually have target SDC and DUE rates for 
their microprocessors.   For example, for its Power4 
processor-based systems, IBM targets 1000 years system 
MTBF for SDC failures, 25 years system MTBF for DUE 
failures that result in a system crash, and 10 years system 
MTBF for DUE failures that result in an application crash 
[3].   Note that the processor MTBF must be significantly 
higher than the system MTBF, particularly for large 
multiprocessor systems.  

Another commonly used unit for failure rates is FIT 
(Failure in Time), which is inversely related to MTBF.  
One FIT specifies one failure in a billion hours.   Thus, 
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1000 years MTBF equals 114 FIT (109 / (24∗365∗1000)).   
A zero error rate corresponds to zero FIT and infinite 
MTBF.  Designers usually work with FIT because FIT is 
additive, unlike MTBF. �

To evaluate whether a chip meets its soft error budget—
possibly via the use of error protection and mitigation 
techniques—microprocessor designers use sophisticated 
computer models to compute the FIT rate for every 
device—RAM cells, latches, and logic gates—on the chip.   
The result of this analysis is used to find the FIT rate of the 
chip using the following equation:  

FIT rate of a chip = �i over all devices in the chip (raw FIT rate of i 

∗ vulnerability factor of i) 

Current predictions show that typical FIT rate numbers for 
latches and SRAM cells at sea level vary between 0.001 – 
0.01 FIT/bit  ([15],[10],[6],[5]).  This FIT/bit also in-
creases with elevation.  At 1.5km—altitude of Denver, 
Colorado—the FIT/bit is about 3.5x higher than at sea 
level.   At 10km—typical altitudes for airplanes—the 
FIT/bit is approximately 100x higher [17].  Interestingly, 
however, the FIT/bit is projected to remain in this range or 
decrease slightly for next several technology generations 
[2][13], unless microprocessors aggressively lower the 
supply voltage to reduce the overall power dissipation of 
chip, thereby increasing FIT/bit, or move to fully-depleted 
silicon-on-insulator technology, which can dramatically 
decrease the FIT/bit of SRAM cells.  

2.2 Vulnerability Factors 

The effective FIT rate per bit is influenced by several 
vulnerability factors (also known as derating factors or 
soft error sensitivity factors).  In general, a vulnerability 
factor indicates that, given conditions sufficient to cause a 
fault, there is a certain probability that an error will occur.  
The architectural vulnerability factor (AVF) expresses the 
probability that a visible system error will occur given a bit 
flip in a storage cell.  As another example, when a level-
sensitive latch is accepting data rather than holding data—
typically 50% of the time—a strike on its stored bit may 
not result in an error, as the stored value will be overridden 
by the (correct) input value.   We call this the timing 
vulnerability factor.  The total vulnerability factor for a bit 
is the product of the timing and architectural vulnerability 
factors.   For simplicity, we assume the timing vulnerabil-
ity factor is already incorporated in the raw device fault 
rate.  The computation of the device fault rate also includes 
some circuit-level vulnerability factors, which are beyond 
the scope of this paper.  

The AVF can have a significant impact on the effective 
failure rate of a processor.  Prior studies with statistical 
fault injection into RTL models have demonstrated AVFs 
of 1%-10% for latches [1] and 0% - 100% across a range 
of architectural and microarchitectural state bits [9]. 

For temporal double-bit errors in caches, there are two 
phenomena that reduce the vulnerability factor. First, if a 
block with a double-bit error is not in a modified state, 

then the correct data can be re-fetched from a higher level 
cache or from main memory.  Note that the error must be 
in the data portion of the block, not in the cache tag or 
state, and that the cache control logic must support this 
refetch operation.  Second, a block with a double-bit error 
may never be read by the processor.  In this case, the block 
will be overwritten before the double-bit error is detected.  
In this latter case, cache scrubbing can be a detriment, as it 
may expose a latent double-bit error before the block is 
overwritten. 

3. DUE RATE FROM TEMPORAL 
DOUBLE-BIT ERRORS WITH NO 
SCRUBBING 

In this section we compute the FIT rate from temporal 
double-bit errors in the absence of any scrubbing.   We 
assume that an 8-bit ECC code protects 64 bits of data, 
which we call a quadword.  A temporal double-bit error 
occurs when two bits of this 72-bit protected quadword are 
flipped by two separate neutron or alpha particle strikes.   
We only concern ourselves with strikes in the data portion 
of the cache blocks. First, we compute FIT rate from 
temporal double-bit errors without the use of AVFs.  Then, 
we show the impact of AVFs on these numbers.  

To compute the FIT contribution of temporal double-bit 
errors, let us define the following terms: 

• Q = number of quadwords in the cache memory.  Each 
quad-word consists of 64 bits of data and 8 bits of 
ECC.  Thus, we have a total of 72 bits per quadword.    

• E = number of random single-bit errors that occur in 
the population of Q quadwords.  

Given E single-bit errors in Q different quadwords, the 
probability that error E+1 will cause a double-bit error is 
E/Q.   Let Pd[n] = the probability that a sequence of n 
strikes causes n-1 single-bit errors (but no double-bit 
errors) followed by a double-bit error on the nth strike.  
Clearly Pd[1] = 0.  Pd[2] is the probability that the second 
strike hits the same quadword as the first strike, or 1/Q.   
Pd[3] is the probability that the first two strikes hit 
different quadwords (i.e., 1-Pd[2]) times the probability 
that the third strike hits either of the first two quadwords 
that got struck (i.e., 2/Q).   Following this formulation, we 
get  

• Pd[2] = 1 / Q 

• Pd[3] = [(Q-1)/Q] * [2/Q]  

• Pd[4] = [(Q-1)/Q] * [(Q-2)/Q] *  [3/Q] 

• … 

• Pd[E] = [(Q-1)/Q] * [(Q-2)/Q] * [(Q-3)/Q] * … * [(Q-
E+2)/Q] * [(E-1)/Q] 

Then, the probability of a double-bit error after a time 
period T = � Pd[N] *  P[N strikes in time T] for all N.   
Using this equation, we can solve for the expected value of 
T to derive the MTTF to a temporal double-bit error. 
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Fortunately, there is an easier way to calculate this MTTF.   
Assume that M is the mean number of single-bit errors 
needed to get a double-bit error.  Then, the MTTF for a 
temporal double-bit error = M *  MTTF of a single-bit 
error.   (Similarly, the FIT rate for a double-bit error = 1/M 
*  FIT rate for a single-bit error.)  A simple computer 
program can calculate M very easily as the expected value 
of Pd[·].   

As an example, consider a 32 megabyte data cache.  This 
cache has 222 quadwords.  Let us assume that an SRAM 
cell has an average FIT rate of 0.001.   The single-bit FIT 
rate for the entire cache is 0.001 * 222 *  72 = 3.02 * 105, 
i.e. the MTTF is 109 / (3.02 * 105) = 3311 hours.   Using a 
computer program, we find that M = 2567.  Then, the 
MTTF to a double-bit error = 3311 * 2567 hours = 970 
years.   

Using a Poisson distribution, Saleh, et al. [12] came up 
with a different method of computing such MTTFs for 
main memory systems (not on-chip caches), but their 
calculations match ours for large multi-megabyte memo-
ries.  Saleh, et al.’s derivation shows that the MTTF for 
such temporal double-bit errors is equal to [1 / (72 * f)] *  
sqrt(pi / 2Q), where f = FIT rate of a single bit.   Thus, 
using Saleh, et al.’s method, we find that MTTF for 
double-bit errors for a 32 MByte cache and FIT/bit of 
0.001 (f) is 0.0085 * 109 hours or 970 years.  

Figure 2 shows the MTTF (in years) for such double-bit 
errors from two separate neutron or alpha particle strikes to 
the same quadword in a cache.     For small caches—
between 4 and 16 MB—the MTTF for temporal double-bit 
errors ranges from 137 years to 2746 years, which is 
significantly greater than the 10 years MTBF required for 

IBM's DUE rate specification.   Thus, for caches less than 
16 MB, the contribution of temporal double-bit error 
towards the whole DUE rate is minimal.    Similarly, for 
FIT/bit less than 0.003, the contribution of large caches in 
the range of 64 to 256 MB is a small fraction of the total 
DUE target rate of 10 years MTBF.     However, when the 
FIT/bit is greater than 0.003, the DUE contribution of 
temporal double-bit errors could become significant.  For 
example, for a processor with 256 MB cache and a FIT/bit 
of 0.01, the total contribution DUE contribution from 
temporal double-bit errors is about 29% of a target DUE 
rate of 10 years.   

The above calculation does not factor in the reduced error 
rates because of the architectural vulnerability factor 
(Section 2.2).   Prior studies [9][1] have shown that AVFs 
of many structures are in the 10-30% range.  Other  studies 
(e.g., [14], [7]) with small caches—holding tens of 
kilobytes of data—with CPU95 benchmarks (see 
http://www.spec.org) and other numerical applications 
suggests that AVFs could range between 15 and 60% .   
For larger multi-megabyte caches with lower average 
utilization of cache blocks we expect the AVF to be in the 
10-20% range.    Nevertheless, the AVF is highly depend-
ent on specific applications and further work needs to be 
done to validate the AVF numbers for large caches.  

Figure 3 shows that for a 256 MB cache, 0.01 FIT/bit, and 
AVF of 10%, the MTTF for a temporal double-bit error is 
343 years, which makes it a very small fraction of a 
possible target DUE rate of 10 years.   Thus, for uniproces-
sor caches ranging from 4 MB to 256 MB, FIT/bit in the 
range of 0.001 - 0.01 FIT/bit, and AVF of around 10%, our 
DUE rate for temporal double-bit errors is sufficiently 
small.  Hence, the designer may choose not to scrub these 
caches.    

Nevertheless, large multiprocessor systems composed of 
multiple uniprocessors—each with tens of megabytes of 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Figure 2.  MTTF to a temporal double-bit error for different 
cache sizes (expressed in MB or megabytes).   

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Figure 3. MTTF to a temporal double-bit error for a 256 MB 
cache for different AVF assumptions.  
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caches—may require scrubbing to reduce the DUE rate.  
For example, a multiprocessor or cluster composed of 64 
processors, each with 256 MB of cache, a FIT/bit of 0.01, 
and AVF of 10%, would have a DUE rate of 4.3 years 
from temporal double-bit errors.  Designers may opt to 
support cache scrubbing in such a system. 

Interestingly, the MTTF contribution from double-bit 
errors for a system with multiple chips cannot be computed 
in the same way as we do for single-bit errors.   If chip 
failure rates are independent, then a system composed of 
two chips, each with an MTTF of 100 years, has an overall 
MTTF of 100 / 2 = 50 years. Unfortunately, double-bit 
error rates are not independent, because the MTTF for a 
double-bit error is not a linear function of the number of 
bits.    This is also evident in Saleh, et al.’s equation [12], 
which shows the rate of such double-bit errors is inversely 
proportional to the square root of the size of the cache.   
Thus, quadrupling the cache size halves the MTTF for 
double-bit errors, but does not reduce it by a factor of four.  

4. DUE RATE FROM TEMPORAL 
DOUBLE-BIT ERRORS WITH 
SCRUBBING  

Fixed-interval scrubbing can dramatically improve the 
MTTF of the cache subsystem.  By scrubbing a cache 
block we mean that for each quadword of the block, we 
read it, compute its ECC, and compare the computed code 
with the existing ECC code.  For a single-bit error, we 
correct the error and rewrite the correct ECC code into the 
cache.   By fixed-interval scrubbing, we mean that all 
cache blocks in the system are scrubbed at a fixed interval 
rate, such as every year or every month.  Scrubbing can 
help improve the MTTF because it removes single-bit 
errors from the cache system (protected with SECDED 
ECC), thereby reducing the probability of a future 
temporal double-bit error. 

Even in systems without active scrubbing, single-bit errors 
are effectively scrubbed whenever a quadword’s ECC is 
recalculated and rewritten.  This occurs when new data is 
written to the cache, either because the cached location is 
updated by the processor, or because the cached block  is 
replaced and overwritten with data from a different 
memory location.  In some systems, a single-bit error 
detected on a read will also cause ECC to be recalculated 
and rewritten.  The key difference between these passive 
updates and active scrubbing is that the former provides no 
upper bound on the interval between ECC updates. 

To compute the MTTF with scrubbing, let us define the 
following terms: 
• I = scrubbing interval 

• N = number of scrubbing intervals to reach MTTF 
(with scrubbing active at the end of each interval I) 

• pf = probability of a double-bit error from temporally 
separate neutron or alpha strikes in the interval I 

Then, by definition, MTTF for a temporal double-bit error 
= N * I.  Assuming each such scrubbing interval is 
independent, the probability that we have no double-bit 
error in the first N intervals followed by a double-bit error 
in the N+1th interval is (1-pf)N *  pf.   Thus, N is the 
expected value of a random variable with probability 
distribution function (1-pf)N *  pf.   So, given an interval I, 
we compute the number of single-bit errors (say S) that 
can occur in that interval.   pf is equal to the sum of the 
probabilities of a double-bit error, given 2, 3, 4, …, S 
errors.   This probability can be computed the same way as 
described earlier for a system with no scrubbing (Section 
3).    Thus, given pf and I, we can easily compute N using 
a simple computer program.   

Figure 4 shows how scrubbing once a year, month, and 
day can improve the MTTF numbers for a system config-
ured with 16 GBbyte of on-chip cache and assuming an 
AVF of 100%.  This could, for example, arise from 64 
processor multiprocessor or cluster with each processor 
having 256 MB of on-chip cache.   Clearly, fixed interval 
scrubbing can significantly improve the MTTF of a 
processor and system’s cache subsystem.    Thus, for 
example, for a FIT/bit of 0.001, the MTTF for temporal 
double-bit errors are 40 years, 2281 years, 28172 years, 
and 959267 years, respectively, for a system with no 
scrubbing, scrubbing once a year, scrubbing once a month, 
and scrubbing once a day.  

Our numbers come close to Saleh, et al.’ s [12] prediction 
of MTTF for temporal double-bit errors with fixed-interval 
scrubbing.  Saleh, et al.,’ s closed form for this MTTF is 2 / 
[Q * I *  (f *  72)2].   With a FIT/bit (i.e., f) of 0.001, Saleh 
et al., would predict MTTFs of 2341 years, 28484 years, 
and 854515 years, respectively, for a system with scrub-
bing once a year, once a month, and once a day.    

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Figure 4. Impact on fixed-interval scrubbing (once a year, once a 
week, and once a day) on the MTTF of temporal double-bit errors 
for a system with 16 Gigabytes of on-chip cache. 
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5. RELATED WORK 
As discussed in Sections 3 and 4, Saleh, et al. [12] have 
proposed closed form equations for the MTTF for a 
temporal double-bit error.   Our results validate Saleh, et 
al.’s equations.   However, unlike Saleh, et al.’s work, our 
formulation is based on discrete probability distributions 
and perhaps somewhat easier to understand and validate.  

Further, we improve upon Saleh, et al.’s work by using 
realistic FIT rates and AVFs for SRAM caches and 
comparing the temporal double-bit error rate with target 
DUE rate set by companies, such as IBM.  Our results 
show that only large caches—in the range of hundreds of 
megabytes or gigabytes—would need scrubbing.  In 
contrast, Saleh, et al. evaluated their equations for DRAM 
memories with a FIT/bit of 42, which is significantly 
higher than current FIT/bit for SRAM caches.   Clearly, 
using such high FIT/bit numbers for SRAM caches would 
lead to a conclusion different from ours.  

6. CONCLUSIONS 
Transient faults from neutron and alpha particle strikes 
have become one of the key challenges in the microproces-
sor industry today.   Because SRAM caches are some of 
the largest structures in today’s microprocessors, they are 
most prone to such strikes.   Designers protect these caches 
with SECDED (single error detect, double error correct) 
ECC (error correcting codes).   These codes comprise of 8 
bits of code to protect every 64 bits of data.   Unfortu-
nately, for very large caches, there is still a finite probabil-
ity that two separate neutron or alpha particles could strike 
the same data word protected by the same ECC code.   We 
called this phenomenon a temporal double-bit error.    

Currently, microprocessor vendors (e.g., AMD) scrub 
caches to reduce the temporal double-bit error rate [1]. 
Scrubbing involves reading bits from the cache, computing 
the ECC, checking the generated ECC against the stored 
ECC, and correcting any existing single-bit errors.   If the 
scrubbing interval is shorter than the average duration 
between two single-bit errors in the same set of data and 
code bits, then this would potentially eliminate almost all 
temporal double-bit errors.    

In this paper, we developed a methodology to compute the 
MTTF to such a temporal double-bit error.  Our analysis 
showed that small caches—less than tens of megabytes—
have a very low temporal double-bit error rate and, hence, 
do not need to be scrubbed.  In contrast, large caches—in 
the range of hundreds of megabytes to gigabytes—may 
need to be scrubbed to reduce the temporal double-bit error 
rate to a tolerable range.  
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