
Transient Fault Detection via Simultaneous Multithreading
Steven K. Reinhardt

EECS Department
University of Michigan, Ann Arbor

1301 Beal Avenue
Ann Arbor, MI 48109-2122

stever@eecs.umich.edu

Shubhendu S. Mukherjee
VSSAD, Alpha Technology Group
Compaq Computer Corporation

334 South Street, Mail Stop SHR3-2E/R28
Shrewsbury, MA 01545

Shubhendu.Mukherjee@compaq.com

ABSTRACT
Smaller feature sizes, reduced voltage levels, higher transistor

counts, and reduced noise margins make future generations of
microprocessors increasingly prone to transient hardware faults.
Most commercial fault-tolerant computers use fully replicated
hardware components to detect microprocessor faults. The
components are lockstepped (cycle-by-cycle synchronized) to
ensure that, in each cycle, they perform the same operation on the
same inputs, producing the same outputs in the absence of faults.
Unfortunately, for a given hardware budget, full replication
reduces performance by statically partitioning resources among
redundant operations.

We demonstrate that a Simultaneous and Redundantly Threaded
(SRT) processor—derived from a Simultaneous Multithreaded
(SMT) processor—provides transient fault coverage with
significantly higher performance. An SRT processor provides
transient fault coverage by running identical copies of the same
program simultaneously as independent threads. An SRT
processor provides higher performance because it dynamically
schedules its hardware resources among the redundant copies.
However, dynamic scheduling makes it difficult to implement
lockstepping, because corresponding instructions from redundant
threads may not execute in the same cycle or in the same order.

This paper makes four contributions to the design of SRT
processors. First, we introduce the concept of the sphere of
replication, which abstracts both the physical redundancy of a
lockstepped system and the logical redundancy of an SRT
processor. This framework aids in identifying the scope of fault
coverage and the input and output values requiring special
handling. Second, we identify two viable spheres of replication in
an SRT processor, and show that one of them provides fault
detection while checking only committed stores and uncached
loads. Third, we identify the need for consistent replication of load
values, and propose and evaluate two new mechanisms for
satisfying this requirement. Finally, we propose and evaluate two

mechanisms—slack fetch and branch outcome queue—that
enhance the performance of an SRT processor by allowing one
thread to prefetch cache misses and branch results for the other
thread. Our results with 11 SPEC95 benchmarks show that an
SRT processor can outperform an equivalently sized, on-chip,
hardware-replicated solution by 16% on average, with a
maximum benefit of up to 29%.

1. INTRODUCTION
Modern microprocessors are susceptible to transient hardware

faults. For example, cosmic rays can alter the voltage levels that
represent data values in microprocessor chips. The energy flux of
these rays can be reduced to acceptable levels with six feet or
more of concrete. Unfortunately, this width is significantly greater
than normal computer room roofs or walls. Currently, the
frequency of such transient faults is low—typically less than one
fault per year per thousand computers [20]—making fault-tolerant
computers attractive only for mission-critical applications, such as
online transaction processing and space programs. However,
future microprocessors will be more prone to transient faults due
to their smaller feature sizes, reduced voltage levels, higher
transistor counts, and reduced noise margins. Hence, in the future,
even low-end personal computing systems may need support for
fault detection, if not for recovery.

Current fault-tolerant commercial systems, such as the Compaq
NonStop Himalaya [20] and the IBM S/390 [13] systems, detect
hardware faults using a combination of space redundancy
(execution on replicated hardware) and information redundancy
(e.g., ECC or parity). For example, Compaq Himalaya systems
detect microprocessor faults by running identical copies of the
same program on two identical lockstepped (cycle-synchronized)
microprocessors. In each cycle, both processors are fed identical
inputs, and a checker circuit compares their outputs. On an output
mismatch, the checker flags an error and initiates a software
recovery sequence.

In this paper, we investigate the use of simultaneous
multithreading as a hardware mechanism to detect transient
hardware faults. Simultaneous multithreading (SMT) [18][19][21]
is a novel technique to improve the performance of a superscalar
microprocessor. An SMT machine allows multiple independent
threads to execute simultaneously—that is, in the same cycle—in
different functional units. For example, the Alpha 21464 [3]
implements a four-threaded SMT machine that can issue up to
eight instructions per cycle from one or more threads.

As noted previously by Rotenberg [11], an SMT processor is
attractive for fault detection because it can provide redundancy by
running two copies of the same program simultaneously. Such a
simultaneous and redundantly threaded (SRT) processor provides
three advantages over conventional hardware replication. First, an
SRT processor may require less hardware because it can use time

Steven K. Reinhardt is supported by a National Science
Foundation CAREER award (CCR-9734026), a grant from
Compaq, and gifts from Intel and IBM.

and information redundancy in places where space redundancy is
not critical. For example, an SRT processor can have an
unreplicated datapath protected by ECC or parity and shared
between redundant threads. Second, an SRT processor can
potentially provide performance superior to an equivalently sized
hardware-replicated solution because it partitions resources among
execution copies dynamically rather than statically. Third, SRT
processors may be more economically viable, since it should be
feasible to design a single processor that can be configured in
either SRT or SMT mode depending on the target system. This
merged design would enjoy the combined market volume of both
high-reliability and high-throughput processors.

Unfortunately, an SRT processor poses two critical design
challenges. First, lockstepping—that is, cycle-by-cycle output
comparison and input replication—is inappropriate for a
dynamically-scheduled SRT processor. An instruction in one
thread is likely to execute in a different cycle than its equivalent in
the other thread, and in a different order with respect to other
instructions from the same thread. Due to speculation, one thread
may even execute instructions that have no equivalent in the other
thread. Consequently, more sophisticated techniques are required
to compare outputs and replicate inputs.

Second, redundant thread interactions in an SRT processor must
be orchestrated to provide peak efficiency. For example, if both
threads encounter a cache miss or branch misprediction
simultaneously, both threads will stall or misspeculate at the same
time, reducing the benefit of dynamic resource sharing.

This paper makes four contributions in identifying and
evaluating key mechanisms to solve the above problems.

First, we introduce the concept of the sphere of replication
(Figure 1), the logical domain of redundant execution. The sphere
of replication abstracts both the physical redundancy of a
lockstepped system and the logical redundancy of an SRT
processor. Components inside the sphere of replication enjoy fault
coverage due to redundant execution, while components outside
the sphere do not (and hence must be covered by other techniques,
such as ECC). Values that enter and exit the sphere are the inputs
and outputs that require replication and comparison, respectively.
Correctly identifying a system’s sphere of replication aids in
determining a set of replication and comparison mechanisms that
are sufficient but not superfluous. By varying the extent of the
sphere of replication, an SRT processor designer can influence this
set, affecting the complexity and cost of the required hardware.

Our second contribution applies the sphere of replication
framework to identify two viable design alternatives for output
comparison in SRT processors: checking memory accesses only

(stores and uncached loads), or checking memory accesses and
register updates. Our results indicate that either technique can be
implemented with almost no performance penalty, but checking
memory accesses only incurs less hardware overhead.

Our third contribution is to identify the need for consistent
replication of memory inputs (load values), and to propose and
evaluate two new mechanisms for load value replication in SRT
processors, namely the Active Load Address Buffer (ALAB) and
the Load Value Queue (LVQ). The ALAB allows corresponding
cached loads from both replicated threads to receive the same
value in the presence of out-of-order and speculative execution of
either thread, cache replacements, and multiprocessor cache
invalidations. In contrast, the LVQ uses a single cache access to
satisfy both threads, forwarding the (pre-designated) leading
thread’s committed load addresses and values to the trailing
thread. The trailing thread derives all its load values from the LVQ
instead of the data cache. Our results show that both techniques
incur very little hardware overhead and almost no performance
penalty, but the LVQ is a much simpler design.

Our fourth contribution is to propose and evaluate two
techniques that enhance performance in an SRT processor: slack
fetch and branch outcome queue. Slack fetch is a new mechanism
that tries to maintain a constant slack of instructions between the
two replicated threads. This slack allows one thread to “warm up”
the caches and branch predictor for the other thread, thereby
improving the trailing thread’s performance. The branch outcome
queue improves upon the slack fetch mechanism by forwarding
correct branch outcomes (branch target addresses) from one thread
to the other. The trailing thread executes a branch only when its
outcome is available from the branch outcome queue.
Consequently, the trailing thread never misspeculates on branches.

Overall, our results—with 11 benchmarks from the SPEC95
suite—show that an SRT processor can outperform an
equivalently sized on-chip hardware-replicated solution by 16%
on average, with a maximum benefit of up to 29%. An SRT
processor shows superior performance due to the combination of
SMT’s dynamic resource scheduling and our performance-
enhancing techniques (slack fetch and branch outcome queue).
Furthermore, the performance impact of our output comparison
and input replication techniques is negligible.

The rest of the paper is organized as follows. Section 2.1
discusses current solutions for transient fault detection. Section 2.2
describes the basics of Simultaneous Multithreading. Section 3
describes the design space of SRT processors and our proposals
for output comparison, input replication, and performance
enhancement. Section 4 describes our evaluation methodology and
Section 5 discusses our results. Section 6 discusses further
techniques to improve fault coverage in an SRT processor. Section
7 discusses related work, including the AR-SMT design [11], an
independently developed example of an SRT processor. Finally,
Section 8 presents our conclusions.

2. BACKGROUND
This section provides background on the two areas we combine

in this paper: transient fault detection and simultaneous
multithreading.

2.1 Hardware Detection of Transient Faults
Fault tolerance requires at least two basic mechanisms: fault

detection and recovery. Fault detection enables the construction of
fail-stop components: components that, in the case of failure, halt
before they propagate erroneous outputs. Given fail-stop
components, designers can employ several well-known recovery

Figure 1. Sphere of Replication (a) General (b) Compaq
NonStop Himalaya system.

Sphere of Replication

Output
Comparison

Input
Replication

Memory covered by ECC
RAID array covered by parity

Sphere of Replication

Output
Comparison

Input
Replication

Execution
Copy 1

Execution
Copy 2

Rest of System

Micro-
processor

(a) (b)

Micro-
processor

techniques such as checkpoint/restart or failover to construct
highly reliable systems [12]. We focus on fault detection
mechanisms; fault recovery schemes are beyond the scope of this
paper. More specifically, we concentrate on mechanisms to detect
transient faults, which persist for only a short duration. Complete
coverage for permanent faults often requires careful analysis of a
specific processor implementation. Nevertheless, Section 6
discusses extensions to SRT processors that increase the coverage
of permanent faults through redundant execution.

Most fault-tolerant computers, such as the IBM S/390 G5 [13]
and NonStop Himalaya systems [12], detect hardware faults in
hardware (as opposed to software). Fault detection in hardware is
critical for two reasons. First, hardware fault detection allows a
fault-tolerant computer to catch faults rapidly; in contrast,
software fault detection typically incurs higher latency from fault
to detection, which results in a much larger window of
vulnerability in which an error can propagate to other components
in a system. Second, hardware fault detection usually incurs lower
performance overhead, resulting in less performance degradation
due to the fault detection mechanism.

Hardware fault detection usually involves a combination of
information redundancy (e.g., ECC, parity, etc.), time redundancy
(e.g., executing the same instruction twice in the same functional
unit, but at different times), and space redundancy (e.g., executing
the same instruction in different functional units). Information
redundancy techniques can efficiently detect faults on data that is
stored or transmitted, such as in memory or on busses or networks.
However, information redundancy techniques for covering control
logic and computation units, such as self-checking circuits [12],
may be more difficult to design. Time redundancy can more
effectively detect faults in computation or control logic, but with a
potentially high performance overhead (theoretically, up to 100%).
As a result, space redundancy has become a common performance
optimization for hardware fault detection.

Both the IBM S/390 G5 and Compaq NonStop Himalaya
systems use space-redundant hardware to optimize performance,
except where the cost of space redundancy is high. The IBM G5
microprocessor replicates the fetch, decode, and execution units of
the pipeline on a single chip. In contrast, the Compaq Himalaya
system achieves space redundancy using a pair of off-the-shelf
microprocessors (e.g., the MIPS R10000). Both systems detect
faults using lockstepping: in each cycle, the replicated components
receive the same inputs, and their outputs are compared using
custom circuitry. A mismatch implies that one of the components
encountered a fault, and both components are halted before the
offending output can propagate to the rest of the system. To
reduce hardware cost, however, neither system replicates large
components such as main memory; instead, both use ECC to cover
memory faults.

2.2 Simultaneous Multithreading (SMT)
Simultaneous Multithreading (SMT) [18][19][21] is a technique

that allows fine-grained resource sharing among multiple threads
in a dynamically scheduled superscalar processor. An SMT
processor extends a standard superscalar pipeline to execute
instructions from multiple threads, possibly in the same cycle.

Although our SRT techniques could apply to any SMT
processor, we will use the CPU model shown in Figure 2 for
illustration and evaluation. Our base processor design is inherited
from the SimpleScalar “sim-outorder” code [2], from which our
simulator is derived. In our SMT version of this machine, the fetch
stage feeds instructions from multiple threads (one thread per
cycle) to a simple fetch/decode queue. The decode stage picks

instructions from this queue, decodes them, locates their source
operands, and places them into the Register Update Unit (RUU)
[16]. The RUU serves as a combination of global reservation
station pool, rename register file, and reorder buffer. Loads and
stores are broken into an address generation and a memory
reference. The address generation portion is placed in the RUU,
while the memory reference portion is placed into a similar
structure, the Load/Store Queue (LSQ) (not shown in Figure 2).

Figure 2 shows instructions from two threads sharing the RUU.
Multiple instructions per cycle are issued from the RUU to the
execution units and written back to the RUU without regard to
thread identity. The processor provides precise exceptions by
committing results for each thread from the RUU to the register
files in program order. Tullsen, et al. [19] showed that optimizing
the fetch policy—the policy that determines which thread to fetch
instructions from in each cycle—can improve the performance of
an SMT processor. The best-performing policy they examined was
named ICount. The ICount policy counts the number of
instructions from active threads that are currently in the instruction
buffers and fetches instructions from the thread that has the fewest
instructions. The assumption is that this thread is moving
instructions through the processor quickly, and hence, making the
most efficient use of the pipeline. Our base SMT machine uses the
ICount policy. In Section 3.4, we will show how to modify this
fetch policy to improve the performance of an SRT processor.

3. SRT DESIGN SPACE
We modify an SMT processor to detect faults by executing two

redundant copies of each thread in separate thread contexts.
Unlike true SMT threads, each redundant thread pair appears to
the operating system as a single thread. All replication and
checking are performed transparently in hardware. In this paper,
we focus on extending an SMT processor with two thread contexts
to support a single-visible-thread SRT-only device. Nevertheless,
we can easily extend our design to support two OS-visible threads
on an SMT machine with four thread contexts.

This section explores the SRT design space. Section 3.1
describes the sphere of replication concept, which helps to identify
the scope of fault coverage in an SRT design and the output and
input values requiring comparison and replication. This section
also identifies two spheres of replication for SRT processors that
we will analyze in the rest of this paper. Section 3.2 describes
output comparison techniques, while section 3.3 describes input
replication techniques. Finally, Section 3.4 describes two
techniques to improve performance in an SRT processor.

Figure 2. Sharing of RUU between two threads in our SMT
processor model.

Fetch PC

Instruction Cache

Decode Register
Rename

Fp
Regs

Int.
Regs

Fp
Units

Ld/St
Units

Data
Cache

Int.
Units

Thread 0

Thread 1

R1 ← (R2)

R1 ←(R2)
R3 = R1 + R7

R8 = R7 * 2

RUU

3.1 Sphere of Replication
Three key design questions for SRT processors are:
• For which components will the redundant execution mechanism

detect faults? Components not covered by redundant execution
must employ alternative techniques, such as ECC.

• Which outputs must be compared? Failing to compare critical
values compromises fault coverage. On the other hand, needless
comparisons increase overhead and complexity without
improving coverage.

• Which inputs must be replicated? Failure to correctly replicate
inputs can result in the redundant threads following divergent
execution paths.
In a lockstepped, physically-replicated design, answers to these

questions are clear. Redundant execution captures faults within the
physically replicated components. Outputs and inputs requiring
comparison and replication are the values on the physical wires
leading into and out of these components.

The answers to these questions are less obvious in an SRT
design. To aid our analysis, we introduce the concept of the sphere
of replication (Figure 1a), the logical extent of redundant
execution. The sphere of replication abstracts both the physical
redundancy of a lockstepped system and the logical redundancy of
an SRT processor. All activity and state within the sphere is
replicated, either in time or in space. Values that cross the
boundary of the sphere of replication are the outputs and inputs
that require comparison and replication, respectively.

Figure 1b shows how the sphere of replication applies to a
Compaq Himalaya system. The entire microprocessor is within the
sphere of replication and is space-replicated, i.e., there are two
physical copies. Output comparison is performed by dedicated
hardware that compares the signals on corresponding pairs of
output pins in every cycle. Input replication is achieved simply by
sending the same signals to corresponding pairs of input pins. As
indicated in Figure 1b, system components outside the sphere rely
on other techniques for fault coverage. The use of other fault
detection techniques inside the sphere—e.g., ECC or parity in on-
chip caches—is not strictly necessary.

In the IBM G5, the sphere of replication comprises of fetch,
decode, and execution units. Output comparison involves checking
register writeback values and memory store values. Because the
register file is outside the sphere, output comparison must be done
before values reach the registers, and the register file cannot rely
on replication for fault coverage (the G5 uses ECC). Input

replication consists of sending the same instructions and register
values to both datapaths

As these two examples demonstrate, the extent of the sphere of
replication impacts a number of system parameters. A larger
sphere typically replicates more state (e.g., register file and cache
contents). However, moving state into the sphere means that
updates to that state occur independently in each execution copy.
Thus, a larger sphere tends to decrease the bandwidth required for
output comparison and input replication, potentially simplifying
the comparator and replicator circuits. .

The sphere of replication in an SRT processor is physically less
distinct because replication occurs through time redundancy as
well as space redundancy. For example, the corresponding
instructions from redundant threads may occupy the same RUU
slot in different cycles (time redundancy), different RUU slots in
the same cycle (space redundancy), or different slots in different
cycles (both).

In this paper, we evaluate the two spheres of replication shown
in Figure 3. Given the size and fraction of die area devoted to on-
chip caches, and the ease with which these can be protected using
parity or ECC, we assume that it is not effective to replicate them.
Our first sphere of replication (Figure 3a) comprises the entire
processor excluding caches. Our second sphere of replication
(Figure 3b) is similar, but also excludes the architectural register
file (as in the G5). Sections 3.2 and 3.3 describe how we perform
output comparison and input replication for these spheres.

3.2 Output Comparison in an SRT Processor
Like conventional fault-tolerant systems, SRT processors detect

faults by comparing outputs of redundant executions. The sphere
of replication determines which values need to be compared.
When the register file lies inside the sphere (Figure 3a), there are
three types of values that exit the sphere:
• Stores. The checker must verify the address and data of every

committed store before it forwards them outside the sphere of
replication. We use an ordered, non-coalescing store buffer
shared between the redundant threads to synchronize and verify
store values as they retire in program order from the RUU/LSQ.
Each thread has an independent tail pointer into the buffer. If a
thread finds its tail entry uninitialized, it writes the address and
data value of its store into the entry. The second thread will find
this entry initialized, so it will compare its address and data with
the existing values. On a match, the entry is marked as verified
and issued to the data cache. A mismatch indicates a fault.

Figure 3. Two Spheres of Replication for an SRT processor. The shaded box in (a) shows a sphere of replication that includes the
entire SMT pipeline shown in Figure 2, except the first level data and instruction caches. The shaded box in (b) shows a sphere of
replication that excludes the architectural register file, the first-level data cache, and the first-level instruction cache.

Fetch PC

Instruction
 Cache

Decode Register
Rename

Fp
Regs

Int .
Regs

Fp
Units

Ld /St
Units

Int .
Units

Thread 0

Thread 1

R1 ← (R2)

R1 ← (R2)
R3 = R1 + R7

R8 = R7 * 2

RUU

(a)

Fetch PC

Instruction
Cache

Decode Register
Rename

Fp
Regs

Int .
Regs

Fp
Units

Ld /St
Units

Int .
Units

Thread 0

Thread 1

R1 <- (R2)

R1 <- (R2)
R3 = R1 + R7

R8 = R7 * 2

RUU

(b)

D
ata C

ache

D
ata C

ache

Misspeculated stores never send their data outside the sphere of
replication, so they do not need checking. To provide each
thread with a consistent view of memory, the store buffer
forwards data to subsequent loads only if the store has retired in
the thread issuing the load.

• Cached load addresses. Although cached data and instruction
fetch addresses leave the sphere of execution, they do not affect
the architectural state of the machine, so they do not require
checking. If a faulty address leads to an incorrect load value or
instruction, any resulting error will be detected via other output
comparison checks before affecting architectural state outside
the sphere. Section 5.2 will show that allowing one thread to
issue cache fetches early (and without output comparison),
effectively prefetching for the other thread, is critical to
efficiency in SRT processors.

• Uncached load addresses. Unlike cached loads, uncached loads
typically have side effects in I/O devices outside the sphere of
replication, so these addresses must be checked. However,
unlike stores, uncached load addresses must be compared before
the load commits. Fortunately, in most processors, uncached
loads issue non-speculatively, and only after all prior loads and
stores commit. Also, no load or store after the uncached load in
program order can issue until the uncached load commits. Thus
an uncached load can simply stall in the execute stage until the
corresponding instruction for the other thread arrives, at which
point the addresses can be compared.
An undetected fault could occur if an uncached load address was

erroneously classified as cached and allowed to proceed without
being checked. We assume that adequate precautions are taken to
prevent this specific case, such as additional physical-address
cacheability checks. The detailed design of these checks is
implementation-dependent.

The second sphere of replication (Figure 3b) does not contain
the register file, so it requires output comparison on values sent to
the register file—i.e., on register writebacks of committed
instructions. As with stores, both the address (register index) and
value must be verified.

Register writeback comparison could be done as instructions
retire from the RUU. However, forcing every instruction to wait
for its equivalent from the other thread significantly increases
RUU occupancy. Since the RUU is a precious resource, we use a
register check buffer, similar to the store buffer, to hold results
from retired but unmatched instructions. The first instance of an
instruction records its result in the buffer. When the corresponding
instruction from the other thread leaves the RUU, the index and
value are compared and, if they match, the register file is updated.

As with the store buffer, results in the register check buffer must
be forwarded to subsequent instructions in the same thread to
provide a consistent view of the register file. We can avoid
complex forwarding logic by using the separate per-thread register
files of the SMT architecture as “future files” [14]. That is, as each
instruction retires from the RUU, it updates the appropriate per-
thread register file, as in a standard SMT processor. This register
file then reflects the up-to-date but unverified register contents for
that redundant thread. As register updates are verified and
removed from the register check buffer, they are sent to a third
register file, which holds the protected, verified architectural state
for the user-visible thread.

Having a protected copy of the architectural register file outside
the sphere of replication simplifies fault recovery on an output
mismatch, as the program can be restarted from the known good
contents of the register file (as in the IBM G5 microprocessor

[13]). However, this benefit requires the additional costs of
verifying register updates and protecting the register file with ECC
or similar coverage. Although the register check buffer is
conceptually similar to our store buffer, it must be significantly
larger (see Section 5.3) and must sustain higher bandwidth in
updates per cycle to avoid degrading performance. Our larger
sphere of replication shows that fault detection can be achieved
without these costs.

3.3 Input Replication in an SRT Processor
Inputs to the sphere of replication must be handled carefully to

guarantee that both execution copies follow precisely the same
path. Specifically, corresponding operations that input data from
outside the sphere must return the same data values in both
redundant threads. Otherwise, the threads may follow divergent
execution paths, leading to differing outputs that will be detected
and handled as if a hardware fault occurred.1

As with output comparison, the sphere of replication identifies
values that must be considered for input replication: those that
cross the boundary into the sphere. For the first sphere of
replication (Figure 3a), four kinds of inputs enter the sphere:
• Instructions. We assume that the contents of the instruction

space do not vary with time, so that unsynchronized accesses
from redundant threads to the same instruction address will
return the same instruction without additional mechanisms.
Updates to the instruction space require thread synchronization,
but these updates already involve system-specific operations to
maintain instruction-cache consistency in current CPUs. We
believe these operations can be extended to enforce a consistent
view of the instruction space across redundant threads.

• Cached load data. Corresponding cached loads from replicated
threads must return the same value to each thread. Unlike
instructions, data values may be updated by other processors or
by DMA I/O devices between load accesses. To make matters
worse, an out-of-order SRT processor may issue corresponding
loads from different threads in a different order and in different
cycles. Because of speculation, the threads may even issue
different numbers of loads. In Section 3.3.1 we introduce two
new mechanisms—Active Load Address Buffer and Load Value
Queue—for input replication of cached load data.

• Uncached load data. As with cached load data, corresponding
loads must return the same value to both threads. Because
corresponding uncached loads must synchronize to compare
addresses before being issued outside the sphere of replication, it
is straightforward to maintain synchronization until the load data
returns, then replicate that value for both threads. Other
instructions that access non-replicated, time-varying state, such
as the Alpha rpcc instruction that reads the cycle counter, are
handled similarly.

• External interrupts. Interrupts must be delivered to both threads
at precisely the same point in their execution. We envision two
potential solutions. The first solution forces the threads to the
same execution point by stalling the leading thread until the
trailing thread catches up, then delivers the interrupt
synchronously to both threads. (If the register file is outside the
sphere of replication, then we could alternatively roll both
threads back to the point of the last committed register write.)

1 If fault recovery is rapid (e.g., done in hardware) and input replication

failures are rare, these false faults may not affect performance
significantly. However, if input replication is performed correctly, the
need for rapid fault recovery is reduced.

The second solution delivers the interrupt to the leading thread,
records the execution point at which it is delivered (e.g., in
committed instructions since the last context switch), then
delivers the interrupt to the trailing thread when it reaches the
identical execution point.
As with output comparison, moving the register file outside the

sphere means that additional values cross the sphere boundary. In
the case of input replication, it is the register read values that
require further consideration. However, each thread’s register read
values are produced by its own register writes, so corresponding
instructions will receive the same source register values in both
threads in the absence of faults (and assuming that all other inputs
are replicated correctly). In fact, many source register values are
obtained not from the register file, but by forwarding the results of
earlier uncommitted instructions from the RUU (or from the
“future file” as discussed in the previous section). Thus input
replication of register values requires no special mechanisms even
when the register file is outside the sphere of replication.

3.3.1 Input Replication of Cached Load Data
Input replication of cached load data is problematic because data

values can be modified from outside the processor. For example,
consider a program waiting in a spin loop on a cached
synchronization flag to be updated by another processor. The
program may count the number of loop iterations in order to
profile wait times or adaptively switch synchronization
algorithms. To prevent redundant threads from diverging, both
threads must spin for an identical number of iterations. That is, the
update of the flag must appear to occur in the same loop iteration
in each thread, even if these corresponding iterations are widely
separated in time. Simply invalidating or updating the cache will
likely cause the leading thread to execute more loop iterations than
the trailing thread.

We propose two mechanisms to input replication of cached load
data: the Active Load Address Buffer (ALAB) and the Load Value
Queue (LVQ). We describe these in the subsections below.

3.3.1.1 Active Load Address Buffer (ALAB)
The ALAB provides correct input replication of cached load

data by guaranteeing that corresponding loads from redundant
threads will return the same value from the data cache. To provide
this guarantee, the ALAB delays a cache block’s replacement or
invalidation after the execution of a load in the leading thread until
the retirement of the corresponding load in the trailing thread.

The ALAB itself comprises a collection of identical entries, each
containing an address tag, a counter, and a pending-invalidate bit.
When a leading thread’s load executes, the ALAB is searched for
an entry whose tag matches the load’s effective address; if none is
found, a new entry is allocated.2 Finally, the entry’s counter is
incremented to indicate an outstanding load to the block. When a
trailing thread’s load retires, the ALAB is again searched and the
matching entry’s counter is decremented.3

When a cache block is about to be replaced or invalidated, the
ALAB is searched for an entry matching the block’s address. If a

2 The ALAB may be direct-mapped, set-associative, or fully associative.
3 In the absence of address corruption, the trailing thread is guaranteed to

find a matching entry because non-zero ALAB entries cannot be
replaced. A corrupted address will be detected as the absence of a match
at this point or as a deadlock condition later (if a spurious match occurs
and the wrong entry is incremented/decremented). In any case, the fault
will be caught by an output comparison mechanism before it propagates
outside the sphere of replication.

matching entry with a non-zero count is found, the block cannot
be replaced or invalidated until all of the trailing thread’s
outstanding accesses to the block have completed. At this point,
the counter will be zero and the block can be released. (An
invalidation request may be acknowledged immediately; however,
depending on the memory consistency model, the processor may
have to stall other memory requests until the ALAB counter
reaches zero.) To guarantee that the counter eventually reaches
zero, the cache sets the ALAB entry’s pending-invalidate bit to
indicate that it is waiting; leading thread loads that attempt to
increment an entry with a set pending-invalidate bit are stalled.
Because the trailing thread can always make forward progress, the
outstanding loads will eventually complete.

Because the ALAB must reliably track every outstanding load,
non-zero ALAB entries cannot be evicted. A leading-thread load
must stall if it cannot allocate a new entry due to ALAB mapping
conflicts, or if it would increment the entry’s counter beyond the
maximum value. Because loads are executed out of order, it is
possible that a leading-thread load will be forced to stall because
loads that follow it in program order have saturated the counter or
acquired all the conflicting entries in an ALAB set. The processor
can detect this deadlock condition by recognizing when (1) the
trailing thread has caught up to the leading thread and (2) the
leading thread’s oldest instruction is a load stalled because it
cannot perform its ALAB increment. In this case, the processor
must flush the leading thread from the pipeline (as on a
misspeculation), decrementing the ALAB counters corresponding
to executed but squashed loads. The stalled load can then reissue;
because the trailing thread has committed all outstanding loads, it
is guaranteed not to stall on the ALAB increment. Our results
show that a 64-entry fully associative ALAB with 7-bit counters
avoids this deadlock entirely across all of our benchmarks, while a
32-entry buffer encounters it rarely (thirty-five times out of the 2.2
billion instructions simulated across our eleven benchmarks).

3.3.1.2 Load Value Queue (LVQ)
The Load Value Queue (LVQ) is an alternate mechanism to

implement input replication of cached load values. Compared to
the ALAB, the LVQ is much simpler to implement. In this
mechanism, we explicitly designate one of the redundant threads
as a leading thread and the other one as a trailing thread. Only the
leading thread issues cached loads to the data cache outside the
sphere of replication. When a cached load commits, the leading
thread sends the load’s address and value to the trailing thread via
the Load Value Queue (LVQ), which is a first-in first-out buffer
protected by ECC. The trailing thread performs loads in program
order and non-speculatively. The loads in the trailing thread
proceed through the regular processor pipeline. However, instead
of probing the data cache, the trailing thread waits for its
corresponding load address and value from the leading thread to
show up at the head of the LVQ. Input replication is guaranteed
because the trailing thread receives the same value for the load
that the leading thread used. Our results show that the LVQ
performs input replication of cached load data with almost no
performance penalty.

The LVQ provides a couple of additional advantages. The LVQ
reduces the pressure on the data cache ports because, unlike the
ALAB design, only one thread probes the data cache.
Additionally, the LVQ can accelerate fault detection of faulty
addresses by comparing the effective address of the leading thread
from the LVQ with the effective address of the trailing thread.
However, the LVQ constrains the scheduling of trailing-thread
loads, as each load must occur in program order with respect to
other trailing-thread loads and after the corresponding leading-
thread load to retrieve correct values from the queue.

3.4 Two Techniques to Enhance Performance
An SRT processor can improve its performance using one thread

to improve cache and branch prediction behavior for the other
thread. In this paper, we evaluate two such mechanisms—slack
fetch and branch outcome queue—that allow the trailing thread to
benefit from the first thread’s execution.

The slack fetch mechanism tries to maintain a constant slack of
instructions between the leading and trailing thread. Ideally,
branches from the trailing thread should probe the branch
predictor after the corresponding branch from the leading thread
has executed and updated the predictor. Similarly, accesses from
the trailing thread should probe the instruction and data caches
after the corresponding accesses from the leading thread have
incurred any misses and brought in the cache blocks. The slack
fetch mechanism relies on a signed counter that is decremented
when the (pre-designated) leading thread commits an instruction
and incremented when the (pre-designated) trailing thread
commits an instruction. The counter is initialized at reset to the
target slack. By adding the counter’s value in each cycle to the
trailing thread’s instruction count, the ICount fetch policy (see
Section 2.2) favors the leading thread until the target slack is
reached, automatically guiding the fetch stage to maintain the
desired slack.

The branch outcome queue reduces misspeculation more
directly and effectively than the slack fetch mechanism. This
technique uses a hardware queue to deliver the leading thread’s
committed branch outcomes (branch PCs and target addresses) to
the trailing thread. In the fetch stage, the trailing thread uses the
head of the queue much like a branch target buffer, reliably
directing the thread down the same path as the leading thread.
Consequently, in the absence of faults, the trailing thread’s
branches never misfetch or mispredict and the trailing thread never
misspeculates. To keep the threads in sync, the leading thread

stalls in the commit stage if it cannot retire a branch because the
queue is full, and the trailing thread stalls in the fetch stage if the
queue becomes empty.

Our results show that slack fetch and branch outcome queue
improve performance by 10% and 14% on our benchmarks,
respectively. The combination of the two improves performance
by as much as 27% (15% on average).

4. EVALUATION METHODOLOGY
In this section, we describe our simulator, baseline SMT

architecture, and benchmarks. Our simulator is a modified version
of the “sim-outorder” simulator from the Simplescalar tool set [2].
We extended the original simulator by replicating the necessary
machine context for SMT, adding support for multiple address
spaces, and increasing the coverage and types of collected
statistics.

Our baseline SMT architecture is an aggressive, out-of-order,
and speculative processor. Table 1 summarizes key parameters of
the processor. We simulate a pipeline with a long front-end
pipeline to account for overhead due to SMT, complexity of an
out-of-order machine, and wire delays in future high-frequency
microprocessors. To approximate the performance of a processor
employing a trace cache [9], we fetch up to three basic blocks (up
to a maximum of eight instructions) per cycle regardless of
location.

We evaluated our ideas using 11 SPEC95 benchmarks [17]
shown in Table 2. We compiled all benchmarks for the
SimpleScalar PISA instruction set using gcc 2.6 with full
optimization. We ran all benchmarks for 200 million instructions
using inputs from the SPEC reference data set. Table 2 shows the
number of initial instructions skipped (using SimpleScalar 3’s
checkpointing mechanism), the number of executed loads and
stores, single-thread IPC, the average number of entries in the
instruction window (RUU), and the branch predictor accuracy for
each benchmark.

5. RESULTS
This section studies an SRT processor’s performance in the

absence of transient hardware faults. This analysis helps us
understand the performance impact of constraints introduced by
output comparison and input replication. However, we do not
examine an SRT processor’s performance in the presence of faults
because that depends on the specific fault recovery scheme, which
is beyond the scope of this paper. Also, because faults are
relatively infrequent, the performance of an SRT processor is
determined predominantly by times when there are no faults.

Table 1. Simulated Processor Configuration.
L1 Instruction Cache 64K bytes, 4-way associative, 32-byte

blocks, single ported
L1 Data Cache 64K bytes, 4-way associative, 32-byte

blocks, four read/write ports
Unified L2 Cache 1M bytes, 4-way associative, 64-byte

blocks
Branch predictor Hybrid local/global (like 21264): 13-bit

global history register indexing 8K-
entry global PHT and 8K-entry choice
table; 2K 11-bit local history regs
indexing 2K local PHT; 4K-entry BTB,
16-entry RAS (per thread)

Fetch/Decode/Issue/Com
mit Width

8 instructions/cycle

Function Units 6 Int ALU, 2 Int Multiply, 4 FP Add, 2
FP Multiply

Fetch to Decode Latency 5 cycles
Decode to Execution
Latency

10 cycles

Table 2. Benchmark Statistics for Baseline Architecture. (inst
= instructions, ld = load, st = store, B = billion, M = million,
Occ = occupancy, Acc = accuracy)
Bench-
mark

Input inst
skip-

ped
(B)

ld
(M)

st
(M)

Base
IPC

RUU
Occ

Br
Pred
Acc
(%)

compress ref 10 56.7 32.7 2.33 133 93.6
fpppp ref 20 76.9 26.6 4.46 167 98.0
gcc amptjp.i 0.3 64.6 31.7 1.64 73 92.2
go 9stone21 10 58.7 21.0 1.19 78 77.2
hydro2d ref 20 39.9 8.9 2.53 229 99.8
ijpeg penguin 10 38.2 17.7 3.02 140 91.0
li ref 10 69.7 35.6 2.55 107 96.8
m88ksim ref 10 47.1 30.7 3.33 120 97.1
perl primes 10 68.7 43.5 2.19 65 100
tomcatv ref 20 41.0 10.4 3.46 221 98.9
vortex ref 20 65.8 36.6 4.05 174 99.6

We first present results of our baseline architectures against
which we will compare our SRT results (Section 5.1). Then, we
show that, in the absence of any constraints of output comparison
and input replication, our two performance enhancement
techniques—slack fetch and branch outcome queue—significantly
boost an SRT processor’s performance (Section 5.2). Section 5.3
and Section 5.4 will add the constraints of output comparison and
input replication, respectively, to the results in Section 5.2 and
show that neither our output comparison techniques nor our input
replication techniques adversely affect performance. Finally,
Section 5.5 summarizes our overall results.

5.1 Baseline Characterization
This section compares the baseline IPCs of our three base

machines: SMT-Single, ORH-Dual, and SMT-Dual. SMT-Single
is our base SMT machine running one thread, whereas SMT-Dual
is the same machine running two copies of the same program
simultaneously. SMT-Dual’s replicated threads run in the same
address space; however, SMT-Dual does not have any fault
detection hardware. SMT-Dual helps us understand the
performance of two copies of the same thread running on our SMT
machine without any output comparison, input replication, or
performance enhancement techniques. In the next three sections,
we will develop the SMT-Dual machine into an SRT processor.

ORH-Dual is a processor with two pipelines, each of which runs
a copy of the same program. One or more checkers check the
pipeline outputs for faults. We assume that ORH-Dual’s checker
executes in zero cycles and incurs no performance penalty, even
though in practice a checker could take multiple cycles to compare
outputs from the replicated threads in ORH-Dual. We assume that
instructions are replicated in the fetch stage, so (like SMT-Single)
up to eight instructions can be fetched per cycle and forwarded to
both pipelines. We configured each of ORH-Dual’s execution
pipelines to have half the resources of the SMT pipeline: half the
RUU and LSQ slots and half the function units and data cache
ports. This allows us to compare the performance of an on-chip
hardware-replicated solution (such as the IBM G5 microprocessor)
against an SRT processor. Because ORH-Dual does not replicate
the fetch stage, its branch predictor is identical to the one in our
SMT machine.

Figure 4 shows that on average ORH-Dual and SMT-Dual have
roughly the same performance. However, both are 32% slower on
average than SMT-Single. Note that for perl, SMT-Dual is slightly
faster than ORH-Dual. In this case, SMT-Dual’s branch target
buffer (BTB) delivers around 2% more good branch target address
predictions than ORH-Dual’s BTB, possibly because one thread
prefetches BTB entries for the other. In Section 5.2, we explore

the slack fetch and branch outcome queue optimizations that seek
to exploit such effects further.

5.2 Slack Fetch and Branch Outcome Queue
In this section we examine the performance of slack fetch and

branch outcome queue for an SMT-Dual machine. Slack fetch
tries to maintain a constant difference between the number of
instructions fetched from the leading and trailing thread, hoping to
maximize implicit prefetching effects in the caches and branch
prediction structures. The branch outcome queue explicitly feeds
the leading thread’s branch outcomes to the trailing thread; in the
absence of faults, the trailing thread never misspeculates.

Figure 5 shows that with a slack of 256 instructions between the
leading and trailing thread, slack fetch improves the IPC of the
SMT-Dual machine by 10% (averaged across 11 benchmarks). A
128-entry branch outcome queue improves performance by 14%
on average. Finally, slack fetch and the branch outcome queue
together provide a performance boost of 15%.

Both techniques improve performance for the same two reasons.
First, both significantly reduce the amount of memory stalls seen
by the trailing thread, because the leading thread prefetches cache
misses for the trailing thread. The branch outcome queue prevents
the trailing thread from fetching past a branch instruction until
after the leading thread commits the corresponding dynamic
branch, forcing a time delay between the threads even without the
slack fetch mechanism. On average across all benchmarks, the
leading thread was 107 instructions ahead of the trailing thread for
boq128, compared with 179 for sl256 and 162 for sf256+boq128.
As a result, sf256, boq128, and sf256+boq128 reduce the dispatch
to retire latency of loads from the trailing thread by 17%, 25%,
and 25% respectively (averaged across all loads in the trailing
thread). Thus the second thread sees significantly reduced memory
stall times, even though it does not necessarily see fewer cache
misses.

Second, both techniques reduce the amount of misspeculation
due to branch mispredictions and branch target buffer misses.
With slack fetch, branches from the trailing thread encounter
fewer branch mispredictions because corresponding branches from
the leading thread have enough time to execute and update the
branch predictor and branch target buffer. Thus, sf256 reduces the
number of instructions squashed due to mis-speculation by 50%
on average. In contrast, the branch outcome queue eliminates all
misspeculation from the trailing thread by design, which typically
leads to better performance. Note that in the cases of perl and

Figure 4. Baseline IPC of SMT-Single, ORH-Dual, and
SMT-Dual. Figure 5. Impact of Slack Fetch and Branch Outcome Queue

on SMT-Dual. sf256 = Slack Fetch with a slack of 256
instructions, boq128 = Branch Outcome Queue with 128 entries,
sf256+boq128 = combination of the two.

1.00

1.05

1.10

1.15

1.20

1.25

1.30

co
m

pr
es

s
gc

c go
ijp

eg li

m88
ks

im pe
rl

vo
rte

x

hy
dr

o2
d
fp

pp
p

to
mca

tv

S
pe

ed
up

 o
ve

r
S

M
T

-D
ua

l

sf256
boq128
sf256+boq128

0

1

2

3

4

5

co
m

pr
es

s
gc

c go
ijp

eg li

m
88

ks
im pe

rl

vo
rte

x

hy
dr

o2
d
fp

pp
p

to
mca

tv

IP
C

SMT-Single
ORH-Dual
SMT-Dual

vortex, sf256 performs better than boq128 because sf256 allows
branches to execute out of order and speculatively in the trailing
thread, making more effective use of available processor
resources.

Finally, we found that slack length and branch outcome queue
size have a secondary effect on performance. Slack fetch with
slack of 256 instructions improves performance over slack of 32
and 128 instructions by 8% and 3% respectively. Increasing the
target slack further does not affect performance significantly. For
slack values up to 4096 instructions, performance changes less
than 5% for each benchmark (improving for some, degrading for
others) relative to a 256-instruction slack. The branch outcome
queue could be made as small as 32 entries without affecting
performance. Nevertheless, we chose a branch outcome queue of
128 entries for our subsequent experiments in Section 5.3 and
Section 5.4 to avoid stalls due to full conditions in the branch
outcome queue. Also, the branch outcome queue with 128 entries
would occupy roughly 1K bytes, with each entry having 4 bytes
for the PC and 4 bytes for the branch address.4 Clearly, a 128-
entry branch outcome queue is quite small and will not stress a
microprocessor’s transistor budget.

5.3 Output Comparison
In this section, we study the performance degradation due to

output comparison of stores and register writebacks in our two
spheres of replication (Section 3.2). In this section we assume that
inputs are replicated by an oracle. In the next section, we will
study the performance impact of input replication. Figure 6 shows
the slowdown due to output comparison of stores from our first
sphere of replication. We assume a base machine with slack fetch
(slack length = 256 fetched instructions) and branch outcome
queue (queue size = 128 entries). We perform output comparison
of stores in a non-coalescing store buffer, which is shared between
the two replicated threads. Stores from the leading thread are
appended to the buffer as they retire from the RUU. Trailing-
thread stores enter the same store buffer on retirement and are
compared with the corresponding store that must already be
present. A single store is then issued to the cache and retired from
the buffer when completed. Thus, the leading thread may stall if it
runs out of store buffer entries, while the trailing thread tries to

4 Because the BOQ is merely a performance optimization, fault protection

is not required, although it would be simple to add.

catch up and retire corresponding stores from the store buffer.
However, Figure 6 shows that a 64-entry store buffer eliminates
almost all such stalls. Even a 32-entry store buffer is sufficient in
most cases; across all our benchmarks, it slows down the machine
by only 1% on average.

Figure 7 shows the performance degradation for our second
sphere of replication. The base machine assumes slack fetch (slack
length = 256 fetched instructions), branch outcome queue (with
128 entries) and a 64-entry store buffer. Output comparison of
register writebacks can stall the leading thread and degrade
performance, if the register check buffer fills up frequently and the
trailing thread tries to catch up with the leading thread. The figure
shows that performance degradation is eliminated with a register
check buffer size of 256 entries. In contrast, 32-entry, 64-entry,
and 128-entry register check buffers degrade performance by 27%,
6%, and 1% respectively (on average). This result follows from
the fact that the slack fetch mechanism is trying to maintain a 256-
instruction separation between the threads.

Thus, in our simulated machine, a 64-entry store buffer and a
256-entry register check buffer eliminate all performance
degradation due to output comparison in both spheres of
replication.

5.4 Input Replication
In this section we study the impact of performance degradation

due to the active load address buffer (ALAB) and load value
queue (LVQ) (Section 5.4). In this section, we assume that output
replication is performed by an oracle. In Section 5.5, we will show
our overall results with both output comparison and input
replication.

Figure 8 shows that both an ALAB with 64 entries and an LVQ
with 64 entries pay almost no performance penalty due to input
replication. The load scheduling restrictions of the LVQ do not
appear to have significant impact. However, typically, benchmarks
with a higher fraction of loads (e.g., li) have a higher performance
degradation with a 16-entry ALAB or a 16-entry LVQ. On
average a 16-entry ALAB and a 16-entry LVQ degrade
performance by 8% and 5% respectively.

5.5 Overall Results
Finally, Figure 9 shows the overall improvement of an SRT

processor with slack fetch (with slack of 256 instructions), branch
outcome queue (with 128 entries), store output comparison (with a
64-entry store buffer), and load value queue (with 64 entries). This
figure shows that such an SRT processor improves performance

Figure 6. Slowdown due to Output Comparison of Stores.
This figure shows the slowdown due to output comparison of
stores in our first sphere of replication (Section 3.2) over
sf256+boq128 (Figure 5). Sb32 = sf256+boq128 with 32 store
buffer entries. Sb64 = sf256+boq128 with 64 store buffer
entries.

Figure 7. Slowdown due to Output Comparison of Register
Writebacks. The vertical axis shows the relative IPC of adding a
register check buffer with N entries (rcN) to a base configuration
of sf256+boq128+sb64 (Figure 6).

0.0

0.2

0.4

0.6

0.8

1.0

1.2

co
m

pr
es

s
gc

c go
ijp

eg li

m
88

ks
im pe

rl

vo
rte

x

hy
dr

o2
d

fp
pp

p

to
m

ca
tvS

lo
w

do
w

n
ov

er
 s

f2
56

+
bo

q1
28

+
sb

64

rc32
rc64
rc128
rc256

0.0

0.2

0.4

0.6

0.8

1.0

1.2

co
m

pr
es

s
gc

c go
ijp

eg li

m
88

ks
im pe

rl

vo
rte

x

hy
dr

o2
d
fp

pp
p

to
m

ca
tv

S
lo

w
do

w
n

ov
er

 s
f2

56
+

bo
q1

28

sb32
sb64

over ORH-Dual—an on-chip hardware-replicated solution that
detects hardware faults via cycle-by-cycle lockstepping—by 16%
on average, with a maximum improvement of up to 29%. The case
in which the SRT processor has the smallest advantage, fpppp, is a
program that has a low branch misprediction and cache miss rates,
and in fact is primarily limited by the number of floating-point
function units even in the SMT-Single case. In general, an SRT
processor provides significantly better performance than an
equivalently sized on-chip, hardware-replicated solution.

6. IMPROVING COVERAGE OF
MULTI-CYCLE FAULTS

Thus far, we have assumed that transient faults are of very short
duration, so that simple time redundancy is as effective as space
redundancy for fault detection. However, some faults may persist
for multiple cycles, such that two redundant operations could pass
through the same hardware during the duration of the fault and
experience the same error. In this case, output comparison would
not detect the fault, and it would be silently propagated outside the
sphere of replication, potentially causing a loss of data integrity.
We briefly note three techniques for improving the ability of an
SRT processor to detect multi-cycle transient and some permanent
faults.

First, the slack fetch mechanism can be used to control the time
between corresponding instructions from the redundant threads.
Increasing the slack between threads increases the time between
corresponding instructions, reducing the probability that these
instructions will encounter the same transient fault. The
quantitative effect of varying the target slack on fault coverage is
an area of future work.

Second, we can increase the spatial redundancy of an SRT
processor by statically partitioning function units into two groups
and guaranteeing that corresponding instructions from redundant
threads are executed in opposite groups. For example, we can take
the least-significant bit of each instruction’s program counter
value (e.g., bit 2 for a machine with 32-bit instructions) and
exclusive-or it with the thread ID (0 or 1 for the two redundant
threads). Based on this bit value, we can assign the instruction to
one of two clusters of execution units. Corresponding instructions
will thus be assigned to opposite clusters, providing detection of
any transient or permanent fault that is confined to one cluster.
Applying this technique to our (otherwise unmodified) final SRT
configuration from the previous section caused a performance loss
of less than 2% across all but one of the benchmarks. The

exception, hydro2d, apparently has an imbalanced distribution of
instruction types among “even” and “odd” PCs, and its
performance dropped by 15%. We were able to reduce its
performance loss to under 2% by using the parity of the five least-
significant PC bits instead of a single PC bit to determine each
instruction’s placement.

Finally, we can apply the technique of shifted operands [7] to
force corresponding operations through different bit lanes of
busses and function units. For example, busses and logic could be
65 bits wide, with operands of one thread using bits 0-64 and
operands of the other bits 1-65. Even if corresponding redundant
instructions experienced the same fault, it would very likely affect
different bits of the result, leading to a detectable fault.

7. RELATED WORK
Rotenberg’s AR-SMT design [11] was the first to use

simultaneous multithreading to detect transient hardware faults.
AR-SMT incorporates two redundant threads: the “active”, or A-
thread, and the “redundant”, or R-thread. Committed register
writebacks and load values from the A-thread are placed in a delay
buffer, where they serve as the alternate execution stream against
which R-thread results are checked and predictions to eliminate
speculation on the R-thread. Thus the delay buffer combines our
register check buffer and branch outcome queue. In addition,
unlike our designs, the R-thread uses the delay buffer as a source
of value predictions to speculate past data dependencies.

AR-SMT is one point in the SRT design space; its sphere of
replication is similar to our second sphere in which the register file
resides outside. In AR-SMT, the R-thread register file serves as
the architectural file: register writeback values are verified before
updating the R-thread registers, and the R-thread file is considered
to be a valid checkpoint for fault recovery. As with the register
files in our second sphere, the A-thread register file serves only to
bypass uncommitted register updates still in the delay buffer. Thus
replication does not provide fault coverage for the R-thread
register file, so this register file must be augmented with an
alternate coverage technique, such as ECC. Otherwise, a fault in
an R-thread register value would lead to a mismatch in A-thread
and R-thread results. AR-SMT would correctly detect this fault,
but may improperly recover by restarting from the corrupted R-
thread register file contents.

Our first sphere of replication shows that, unlike AR-SMT, fault
detection can be achieved in SRT processors without checking the
result of every instruction, although at the loss of a protected
architectural register file that can be used for fast recovery.

AR-SMT varies significantly from our SRT designs in that all of
main memory is inside the sphere of replication. This scheme

Figure 8. Slowdown due to Input Replication. alabN =
sf256+boq128 with an active load buffer with N entries, lvqN =
sf256+boq128 with a load value queue with N entries.

Figure 9. Speedup of sf256+boq128+sb64+lvq64 over ORH-
Dual.

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

co
m

pr
es

s
gcc go

ijp
eg li

m
88

ks
im pe

rl

vo
rte

x

hy
dr

o2
d
fp

pp
p

to
m

ca
tv

S
pe

ed
up

 o
ve

r
O

R
H

-D
ua

l

0.0

0.2

0.4

0.6

0.8

1.0

1.2

co
mpr

es
s

gc
c go

ijp
eg li

m88
ks

im pe
rl

vo
rte

x

hy
dr

o2
d
fpp

pp

tom
ca

tv

S
lo

w
do

w
n

ov
er

 s
f2

56
+b

oq
12

8

alab16
alab64
lvq16
lvq64

provides better memory fault detection than ECC. Nevertheless,
doubling the physical memory of a system can be very expensive.
This technique also halves effective cache capacities. As a result,
most commercial systems protect the memory system with ECC.
We demonstrate that SRT processors can use the same solution.

AR-SMT does not deal with input replication or output
comparison for values that enter or exit the sphere of replication
via uncached accesses or via main memory through DMA I/O or
multiprocessor accesses. Failure to properly replicate inputs could
cause divergent execution leading to false faults, while failure to
compare I/O outputs could allow corrupted data to leave the
system.

AR-SMT also requires operating system modifications to
manage the additional address mappings needed to replicate the
address space. The design disables redundant threading on OS
calls, leaving kernel code vulnerable to transient hardware faults.
In contrast, our SRT designs perform replication in hardware,
providing transparent and continuous fault coverage.

Finally, our performance evaluation complements Rotenberg’s,
as he used a trace processor model [10] while we based ours on a
more conventional superscalar design.

Recently, Austin proposed a novel fault detection architecture
called DIVA [1]. DIVA uses a very simple in-order processor as a
checker for a larger out-of-order, speculative processor. The
DIVA architecture has both advantages and disadvantages
compared to SRT processors. Unlike an SRT thread, DIVA’s
checker is a completely separate processor. Consequently, DIVA’s
checker can detect permanent faults and design errors in the main
processor as well as transient faults. Additionally, unlike SRT
processors, the DIVA architecture does not require an SMT
architecture for fault detection.

On the other hand, SRT processors have three advantages over
the DIVA architecture. First, unlike DIVA, which requires
designing the checker from scratch, an SRT processor requires
modest hardware modification over an SMT processor, such as the
Alpha 21464 [3]. Thus, an SRT processor can leverage existing
SMT designs. A single device may even be configurable as an
SRT or SMT processor, trading fault tolerance for throughput
depending on the target market.

Second, in the presence of DMA I/O devices or multiple
processors, the DIVA architecture, like AR-SMT, can detect false
transient faults due to external memory writes (see Section 3.3.1).
We believe that the DIVA architecture could be augmented with
either an ALAB or LVQ to avoid this problem.

Third, to guarantee forward progress in the presence of
permanent faults in the main processor, DIVA assumes that the
checker is always correct, and proceeds using the checker’s result
in the case of a mismatch. As a result, faults in the checker itself—
including transient faults—must be detected or avoided through
alternative techniques. (For example, Austin suggests that design
errors could be avoided by formally verifying the checker.)
Although SRT processors cannot detect design faults, transient
faults in either thread will be detected. Fault detection in checking
logic itself still requires additional techniques, but we believe the
amount of SRT checking logic would be much more limited than
the DIVA checker.

All three fault detection architectures—AR-SMT, DIVA, and
SRT—are specific implementations of a more general concept
called watchdog processors [6]. A watchdog processor is one that
runs concurrently with the main processor, observes the main
processor’s outputs and inputs, and compares its own outputs
(either pre-computed or concurrently computed) with the main

processor’s outputs. For DIVA, the checker is the watchdog
processor. For AR-SMT and SRT, one of the redundant threads
serves as the watchdog processor.

As we discussed earlier, the Compaq NonStop Himalaya [20]
and IBM S/390 G5 microprocessor [13] are commercial fault-
tolerant computers that employ cycle-by-cycle lockstepping to
detect hardware faults. In this paper, we demonstrate that an SRT
processor can provide similar transient fault coverage, but with
superior performance.

Finally, there is a rich body of research (e.g.,
[6][4][8][7][15][5]) that examines fault detection using time or
space redundancy of functional units. We improve upon this work
in two ways. First, our definition of the sphere of replication
allows an SRT processor to perform output comparison of selected
instructions in the committed instruction stream. Further, an SRT
processor does not perform output comparison of speculative
instructions that get squashed. In contrast, time- or space-
redundant functional units must typically check every instruction
that passes through them for faults. Second, we can perform
performance optimizations, such as slack fetch and branch
outcome queue, because an SRT processor employs thread-level
fault detection, as opposed to operation-level fault detection.

8. CONCLUSION
Future processors will be increasingly prone to transient

hardware faults due to smaller feature sizes, reduced voltage
levels, higher transistor counts, and reduced noise margins. Most
commercial fault-tolerant computers use hardware replication and
lockstepping to detect such hardware faults in microprocessors.
Unfortunately, this static partitioning of hardware resources
among replicated components is a source of inefficiency.

In this paper, we demonstrated that a Simultaneous and
Redundantly Threaded (SRT) processor—derived from a
Simultaneous Multithreaded (SMT) processor—provides similar
levels of transient fault coverage with significantly higher
performance than static physical replication. An SRT processor
provides transient fault coverage by running identical copies of the
same program simultaneously. An SRT processor can provide
higher performance because it can dynamically schedule its
hardware resources among the redundant copies. Unfortunately,
dynamic scheduling of hardware resources also makes it
impossible to use lockstepping in an SRT processor because the
same instructions from redundant threads may not execute in the
same cycle or in the same order.

This paper makes four contributions to the design of SRT
processors. First, we introduced the sphere of replication, which
abstracts both the physical redundancy of a lockstepped system
and the logical redundancy of an SRT processor. This framework
aids in identifying the scope of fault coverage and the output and
input values requiring special handling. Second, we identified two
viable spheres of replication in an SRT processor, one of which
provides complete fault detection while checking only committed
stores and uncached loads (but not every instruction result). Third,
we identified the need for consistent replication of load values,
and proposed and evaluated two new mechanisms—the active
load address buffer and the load value queue—for satisfying this
requirement. Finally, we proposed and evaluated two
mechanisms—slack fetch and branch outcome queue—that
enhance the performance of an SRT processor by allowing one
thread to benefit from the prior execution of the other thread. Our
results with 11 SPEC95 benchmarks show that an SRT processor
can outperform an equivalently sized, on-chip, hardware-

replicated solution by 16% on average, with a maximum benefit of
up to 29%.

ACKNOWLEDGMENTS
We thank Bob Jardine and Alan Wood from Compaq’s Tandem

Division for our numerous discussions with them on fault
tolerance and their encouragement to pursue this research. We
thank Steven E. Raasch for developing the SMT version of
Simplescalar on which this work is based. We thank Bill Bowhill,
Joel Emer, Roger Espasa, Tryggve Fossum, Mark Hill, Toni Juan,
Rick Kessler, Geoff Lowney, Todd Mowry, Andre Seznec, Jim
Smullen, and our anonymous referees for their insightful
comments on different drafts of this paper.
REFERENCES
[1] Todd M. Austin, “DIVA: A Reliable Substrate for Deep Submicron

Microarchitecture Design,” Proceedings of the 32nd Annual
International Symposium on Microarchitecture, November 1999.

[2] D. A. Burger and T. M. Austin, “The SimpleScalar Tool Set, Version
2.0,” Technical Report #1342, University of Wisconsin-Madison,
Computer Sciences Department, June 1997.

[3] Joel S. Emer, “Simultaneous Multithreading: Multiplying Alpha
Performance,” Microprocessor Forum, October, 1999.

[4] Manoj Franklin, “Incorporating Fault Tolerance in Superscalar
Processors,” Proceedings of High Performance Computing,
December, 1996.

[5] John G. Holm and Prithviraj Banerjee, “Low Cost Concurrent Error
Detection in a VLIW Architecture Using Replicated Instructions,”
Proceedings of the International Conference on Parallel Processing,
1992.

[6] A. Mahmood and E. J. McCluskey, “Concurrent Error Detection
Using Watchdog Processors—A Survey,” IEEE Trans. on
Computers, 37(2):160–174, February 1988.

[7] Janak H. Patel and Leona Y. Fung, “Concurrent Error Detection in
ALU’s by Recomputing with Shifted Operands,” IEEE Trans. on
Computers, 31(7):589–595, July 1982.

[8] Dennis A. Reynolds and Gernot Metze, “Fault Detection Capabilities
of Alternating Logic,” IEEE Trans. on Computers, 27(12):1093–
1098, December, 1978.

[9] Eric Rotenberg, Steve Bennett, and James E. Smith, “Trace Cache: a
Low Latency Approach to High Bandwidth Instruction Fetching,"
Proceedings of the 29th Annual International Symposium on
Microarchitecture, pp 24–34, December 1996.

[10] Eric Rotenberg, Quinn Jacobson, Yiannakis Sazeides, and Jim Smith,
“Trace Processors,” 30th Annual International Symposium on
Microarchitecture (MICRO-30), Dec 1997.

[11] Eric Rotenberg, “AR-SMT: A Microarchitectural Approach to Fault
Tolerance in Microprocessor,” Proceedings of Fault-Tolerant
Computing Systems (FTCS), 1999.

[12] Daniel P. Siewiorek and Robert S. Swarz, “Reliable Computer
Systems: Design and Evaluation,” A.K. Peters Ltd, October 1998.

[13] T.J.Slegel, et al., “IBM’s S/390 G5 Microprocessor Design,” IEEE
Micro, pp 12–23, March/April, 1999.

[14] J. E. Smith and A. R. Pleszkun, “Implementing Precise Interrupts in
Pipelined Processors,” IEEE Trans. on Computers, 37(5):562–573,
May 1988.

[15] G. S. Sohi, M. Franklin, and K. K. Saluja, “A Study of Time-
Redundant Fault Tolerance Techniques for High-Performance
Pipelined Computers,” Digest of Papers, 19th International
Symposium on Fault-Tolerant Computing, pp. 436–443, 1989.

[16] G. S. Sohi, “Instruction Issue Logic for High-Performance,
Interruptible, Multiple Functional Unit, Pipelined Computers,” IEEE
Transactions on Computers, 39(3):349–359, March 1990.

[17] SPEC newsletter. Fairfax, Virginia, September 1995.
[18] Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy,

“Simultaneous Multithreading: Maximizing On-Chip Parallelism,”
Proceedings of the 22nd Annual International Symposium on
Computer Architecture, Italy, June 1995.

[19] Dean M. Tullsen, Susan J. Eggers, Joel S. Emer, Henry M. Levy,
Jack L. Lo, and Rebecca L. Stamm, “Exploiting Choice: Instruction
Fetch and Issue on an Implementable Simultaneous Multithreading
Processor,” Proceedings of the 23rd Annual International Symposium
on Computer Architecture (ISCA), May, 1996.

[20] Alan Wood, “Data Integrity Concepts, Features, and Technology,”
White paper, Tandem Division, Compaq Computer Corporation.

[21] Wayne Yamamoto and Mario Nemirovsky, “Increasing Superscalar
Performance Through Multistreaming,” Proceedings of the IFIP
WG10.3 Working Conference on Parallel Architectures and
Compilation Techniques (PACT), pp 49–58, June 1995.

