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Abstract 
Modern, deeply-pipelined, out-of-order, and speculative 
microprocessors are still plagued by the latency of load 
instructions.  This latency is dominated by the latencies to 
resolve the source operands of the load, to compute its 
effective address, and to fetch the load’s data from caches 
or main memory. This paper examines the performance 
potential of hiding a load’s data fetch latency using 
effective address prediction. By predicting the effective 
address of a load early in the pipeline, we can initiate the 
cache access early, thereby improving performance.  

The current generation of effective address predictors for a 
load instruction is based on either the history or the context 
of the specific load.  In addition, researchers have 
examined load-load dependence predictors to prefetch 
cache misses.  This paper examines the performance 
potential of using a load-load dependence predictor to 
predict effective addresses of load instructions and issue 
them early in the pipeline.  We call this predictor the DEAP 
predictor.  

We show that on average DEAP can improve the accuracy 
of effective address prediction by 28% over a perfect 
combination of last address, stride address, and context-
based address predictors across our seven benchmarks 
from the SPEC95 and Olden suite.  We find that an ideal 
hybrid of these four predictors—a predictor that always 
picks the right predictor for a load—can potentially achieve 
performance close to that of a Perfect predictor in most 
cases. 

We use an oracle-based simulation approach to evaluate 
our timing results.  This method allows us to measure the 
upper bound of the performance from effective address 
prediction using a mostly realistic pipeline.  However, our 
timing simulation method does not account for penalty due 
to mis-prediction of an effective address and assumes a 
zero-cycle latency from address prediction resolution to 
address predictor update.   

1 Introduction 
The latency of load instructions—from fetch to 
commit—continues to plague modern out-of-order 
and speculative microprocessor designs. A load’s 
latency is dominated by three components: effective 
address computation, store-load dependence 
resolution, and data fetch. We define effective address 
computation latency as the sum of the latency from 
the time a load is fetched until its source operands are 
ready and the latency to compute the effective address 

itself.  The store-load dependence resolution latency is 
the latency to determine whether a load depends on a 
prior uncommitted store.  Finally, data fetch latency is 
the latency to fetch the load’s data from caches or 
main memory.   

Unfortunately, a load’s effective address computation 
and data fetch latencies continue to be major problems 
in today’s microprocessors, even though recent 
memory disambiguation techniques (e.g., [1], [2]) 
have largely solved the store-dependence resolution 
problem. The effective address computation latency 
remains high because in many programs it takes a 
long time for a load’s source operands to become 
data-ready.  Pointer-chasing (via load-load 
dependence chains) is a classic example of such a 
code. Data fetch latency continues to be high for two 
reasons.  First, the gap between processor and DRAM 
performances continues to widen, which causes cache 
miss latency to appear significantly worse in each 
generation.  Second, the complexity of modern, wide-
issue, and out-of-order machines increases both the 
width and length of result buses from the data caches 
to the execution units.  This, in turn, increases the data 
fetch latency from L1 SRAM caches.  Thus, on 
modern microprocessors, the load-to-use latency on 
cache hits has increased to between three and five 
cycles [4]. 

This paper examines the performance potential of 
hiding a load’s data fetch latency, particularly on 
cache hits on L1 or L2 caches, using effective address 
prediction.  Modern microprocessors, in their quest for 
higher clock speeds and performance, have become 
deeply pipelined, with 20 or more pipeline stages 
(e.g., Intel Willamette [12]).   Because of such deep 
pipelining, we usually have a large number (five or 
more) of stages from the point an instruction is 
renamed until the instruction reaches the execution 
stage of the pipeline.  Such deep pipelining potentially 
opens up a window of opportunity in which we can 
predict a load’s effective address early in the pipeline, 
issue the load speculatively, and fetch the data from 
the data cache.  If the prediction is correct, then we 
can hide a load’s data fetch latency, particularly for 
cache hits. This allows instructions dependent on the 
load to issue earlier, thereby improving the number of 
instructions committed per cycle (IPC).  Figure 1 
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shows an example of such a pipeline in which we 
predict the effective address of loads and issue them 
via a bypass path to the memory system in the 
pipeline.  In this figure and throughout the rest of the 
paper, we assume that the bypass path for loads 
originates after the register rename stage.  This allows 
a load instruction to fetch its data directly into the 
correct physical register and not into an intermediate 
staging buffer.  

The performance potential of effective address 
prediction depends on two factors—the prediction 
accuracy of the effective address predictors and how 
the effective address predictors are integrated into the 
pipeline.   In this paper, we examine five effective 
address predictors—Perfect, LAP, SAP, CAP, and 
DEAP.  The Perfect (and perhaps non-implementable) 
predictor always predicts the correct effective address 
for a load.  LAP (Last Address Predictor) predicts that 
a load will use the same effective address that it had 
used the last time it executed [3][7]. SAP (Stride 
Address Predictor) predicts an effective address by 
using the load’s last address and a stride [8][9][10]. 
CAP (Context-based Address Predictor) predicts 
effective addresses based on the history of prior 
addresses encountered by a load [4]. Finally, DEAP 
(Dependence-based Address Predictor) is an effective 
address predictor that predicts effective addresses 
based on dependences between load instructions. 
DEAP is a variant of Roth, et al.’s load-load 
dependence predictor [5].   However, unlike the Roth, 
et al. work, which used the dependence predictor to 
prefetch cache misses, we use DEAP to issue loads 
early in the pipeline by predicting their effective 
addresses.  

To understand the performance potential of each of 
these predictors, we use a prediction from a predictor 
only when it is correct. We do not account for penalty 
for a mis-prediction of an effective address.  
Additionally, we assume a zero-cycle latency from 
address resolution to predictor update.  Such a method 
has both advantages and disadvantages.  This method 
allows us to study the performance potential (i.e., the 
upper bound of performance) of these predictors. This 
also frees us from worrying about the exact details and 
performance degradation due to the recovery 
mechanisms necessary when any of the predictors 
mispredicts.  However, this method also does not 
account for performance difference due to different 
recovery costs of the different predictors.  

We show that DEAP can improve the accuracy of 
effective address prediction by 28% over a perfect 
combination of LAP, SAP, and CAP across our seven 
benchmarks from the SPEC95 and Olden suites. 
Specifically, on our three pointer-intensive Olden 
benchmarks, between 19% – 49% of the dynamic 
loads’ effective addresses are correctly predicted only 
by DEAP, and not by any other predictor. 

We find that one or more of LAP, SAP, CAP, or 
DEAP predicts the majority of loads accurately. 
Across our seven benchmarks from the SPEC95 and 
Olden suites, the four effective address predictors 
make predictions on 64% – 99% of dynamically 
executed loads.  The predictors accurately predict 
between 73% and 95% of these loads.  

Additionally, we find that an ideal hybrid of LAP, 
SAP, CAP, and DEAP captures most of the 
performance benefit available from a Perfect 
predictor.  The Perfect predictor can boost 
performance between 7% and 244% in our seven 
benchmarks.  The ideal hybrid of LAP, SAP, CAP, 
and DEAP can capture 82% of the Perfect predictor’s 
performance improvement, except for compress.   
These predictors boost performance because they 
allow the pipeline to prefetch both L1 cache hits and 
L2 cache hits.  Unfortunately, for compress, these 
predictors are unable to predict the effective addresses 
of loads that miss frequently in the L1 data cache, but 
hit in the L2, and account for most of the performance 
degradation.   

 

 

 

 
 

 

 

 

 

Figure 1.  Effective address prediction and load 
issue via bypass path.  
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We use a method called Oracle Simulation for this 
study. Ideally, for upper bound studies, we would like 
to have all information about an instruction at the 
fetch stage itself.  For example, knowing the direction 
of a branch at the fetch stage would allow us study the 
performance benefit from a perfect branch predictor.  
Unfortunately, in a detailed simulation model of an 
out-of-order and speculative pipeline, such 
information is not available at the fetch stage because 
prior instructions that the branch may depend on may 
not have executed.   

Oracle simulation solves this problem.  With Oracle 
simulation, we run two simulations—one that models 
the detailed out-of-order, multi-stage pipeline and a 
second one that models a single-stage pipeline.  Every 
time the out-of-order pipe fetches an instruction, the 
corresponding single-stage pipe executes the 
instruction completely.  Thus, the second pipe has 
complete information about the instruction.  
Specifically, for our case, the second pipe can return 
the effective address of loads when they are at the 
fetch stage of the first pipe.  This helps us implement 
the Perfect effective address predictor as well as 
verify if the predictions from other predictors are 
correct.  

The rest of the paper is organized as follows. Section 
2 describes our four effective address predictors. 
Section 3 discusses our evaluation methodology.  
Section 4 discusses results.  Section  5 describes 
related work.  Finally, Section 6 presents our 
conclusions.  

2 Effective Address Predictors 
In this section we describe the four predictors: LAP, 
SAP, CAP, and DEAP.  We also simulate a Perfect 
Effective Address Predictor, which always returns the 
correct effective address of a load instruction.  Section 
3.2 describes how we implement these predictors in 
our simulator.  
2.1 LAP: Last Address Predictor 
A Last Address Predictor (LAP) [3][7] predicts that a 
load will reuse the same effective address that it used 
the last time it executed.  LAP works well for loads 
that access the same variables repeatedly (e.g., 
globals). In our evaluation LAP can accurately predict 
the effective addresses of almost 35% of the dynamic 
loads (averaged across our seven benchmarks) on 
which LAP makes a prediction. For our LAP 
implementation we use a direct-mapped, tagged 
cache, indexed by the PC of the load.  Each LAP entry 
contains a tag, the predicted address (i.e., last 

address), and a two-bit saturating counter.  LAP does 
not make a prediction if the PC does not exist in the 
tagged cache or until the saturating counter has not 
reached its maximum count.  
2.2 SAP: Stride Address Predictor 
A Stride Address Predictor (SAP) predicts that the 
effective  address of a load will be fixed offset (or 
stride) from the load’s effective address it produced 
the last time it executed.  SAP is well suited for array 
accesses in which a load sequences through different 
elements of an array.   Our SAP implementation 
accurately predicts 48% of dynamic loads (averaged 
across our seven benchmarks) that it makes 
predictions on.  

For our SAP implementation we use a direct-mapped, 
tagged cache, indexed by the PC of the load.  Each 
SAP entry contains a tag, the last address, the 
predicted stride, the last stride seen, and a confidence 
counter. The predicted address is the sum of the last 
address and the predicted stride.  The last stride seen 
is the difference between the last effective address and 
next-to-last effective address used by the load.  SAP 
changes the predicted stride only if it encounters the 
same stride twice in a row [9][10].  SAP makes a 
prediction only if the PC exists in the tagged cache 
and the confidence counter has reached its maximum 
count.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. A Context Address Predictor (CAP) 
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2.3 CAP: Context-based Address Predictor 
A Context-based Address Predictor (CAP) predicts a 
load’s effective address based on the history of prior 
addresses encountered by the load.  Loads often 
sequence through a fixed pattern of addresses, such as 
in recursive data structures.  CAP works well with 
such recursive data structures.  CAP can also capture 
some of the effective addresses that are accurately 
predicted by LAP and SAP.  This is because LAP is a 
degenerate case of CAP with no history.  Similarly, 
CAP can capture a sequence of strided addresses, if 
CAP’s history captures the sequence of strided 
addresses. Nevertheless, SAP is a more compact 
representation of strided addresses and, therefore, we 
expect SAP to have a higher accuracy for strided 
access patterns.  For our seven benchmarks, CAP 
accurately predicts 52% of the loads it makes 
predictions on.  

In this paper we use Bekerman et al.’s implementation 
of a CAP [4]1. This implementation of CAP uses two 
tables: the load buffer (LB) and the link table (LT), as 
shown in Figure 2.  The load buffer is a per-static-load 
table that maintains the recent history of effective 
addresses of the associated load.  The link table is a 
second-level table that provides the address used for 
effective address computation.  The load buffer is 
indexed by part of the load’s PC.  Each load buffer 
entry contains a tag (the rest of a load’s PC bits), a 
saturating counter, the load’s offset as found in the 
load instruction itself, and the history.  The saturating 
counter serves as a confidence estimator.  Thus, CAP 
will not return a prediction unless the value of the 

                                                      
1 We have validated our implementation against the prediction accuracy 
numbers in the Bekerman, et al. paper. 

counter is above a certain threshold.   The load buffer 
history bits contain the history of prior base addresses 
of a load instruction. We update the CAP history as 
follows: history = (history << m) XOR 
(new_base_address >> 2).   That is, the history is 
shifted left m bits and XOR-ed with the new base 
address shifted right by two.  We shift the new base 
address by two bits because the lower two bits do not 
matter except for unaligned accesses.   

We index the link table using the history bits of a load 
buffer entry. Because of this, CAP’s history maintains 
only base addresses, multiple load buffer entries may 
map into the same link table entry. To avoid 
destructive aliasing, the link table also contains a tag, 
which is the history of the load buffer entry itself. The 
link table contains the link, which is the base address 
of the predicted load.  To obtain the complete 
effective address, we must add the offset from the 
load buffer with the link address from the link table.  
Finally, a link table entry also contains a few 
pollution-free bits.  The pollution-free bits record a 
few bits of the base address of a probing load.  We 
update the link table entry when two consecutive 
accesses to the link table have the same pollution-free 
bits.  

Like the other predictors, CAP does not make a 
prediction if it does not find a matching PC in the load 
buffer or if there is tag mismatch in the link table. 
2.4 DEAP: Dependence-based Address Predictor 
Our Dependence-based Effective Address Predictor 
(DEAP) predicts effective addresses based on 
dependences between load instructions. Two load 
instructions are dependent if the first one (the 
producer load) loads a value that is the base address 
for the second load (the consumer load). DEAP 
recognizes such dependences and predicts the 
effective address of the consumer load based on the 
value loaded by the producer. DEAP is well suited for 

 

 

 

 

 

 

 

Figure 3.  DEAP configuration. PPC = Producer 
PC, CPC = Consumer PC.  

 

 

 

 

 

Figure 4.  Load-Load Dependence Across 
Iterations. 
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predicting effective addresses in pointer-chasing 
programs, which have such load-load dependence 
patterns. Of the three Olden benchmarks [11] we 
examine in this paper, DEAP can accurately predict 
59% of the total number of dynamically executed 
loads that it makes predictions on.  

We have derived DEAP from Roth, et al.’s load-load 
dependence predictor [5], which we refer to as the 
RMS2 predictor. The RMS predictor captures 
dependences between producer and consumer loads.  
However, the RMS predictor does not always capture 
the precise effective address of a specific instance of a 
consumer load. First, we describe the RMS predictor. 
Then, we show how we derive DEAP from the RMS 
predictor.  

2.4.1 The RMS Predictor 
The RMS predictor consists of two tables: the 
Potential Producer Window (PPW) and the 
Correlation Table (CT).  The PPW maintains a list of 
most recently loaded values and their corresponding 
instructions.  Thus, loads in the PPW are loads that 
can potentially be producer loads.   The CT maintains 
correlations or dependences between producer and 
consumer loads.   As a load completes, we enter its PC 
and loaded value into the PPW.  At the same time, we 
do an associative search of the PPW to find if a prior 
load produced this load’s base address.  If so, then this 
load is a consumer load of the prior load.  This 
establishes the load-load dependence template that we 
record in the CT.  Subsequently, when the producer 
load appears again, the RMS predictor will search the 
CT associatively for a match.  If there is a match, the 
RMS predictor will trigger a prefetch on the value 
(i.e., base address) loaded by the producer load + 
offset of the consumer load obtained from the CT.   

                                                      
2 The acronym RMS comes from the first letter of the authors’ last names: 
Roth, Moshovos, and Sohi.  

The RMS predictor works great for prefetching load 
misses, but may not be as precise for effective address 
prediction in a few cases.   Figure 4 shows such an 
example.  In this example, the RMS predictor 
establishes a dependence between PC1 and PC2.  
However, the real dependence exists between PC1 of 
the first iteration and PC2 of the second iteration.   
That is, PC1 of the first iteration loads the base 
address of PC2 of the second iteration.  Unfortunately, 
if we use the RMS predictor to predict effective 
addresses, then we would incorrectly predict that the 
effective address of PC2 in the first iteration is loaded 
by PC1 from the first iteration. This, however, works 
well for prefetching load misses—the purpose Roth, et 
al. originally designed the RMS predictor for.  This is 
because Roth, et al. trigger a prefetch using the base 
address (and adding in any necessary offset) loaded by 
the producer load from PC1 of the first iteration.   As 
long as this prefetch does not cause too much cache 
pollution, it is irrelevant whether PC2 from the first 
iteration or second iteration uses the prefetched cache 
block. However, we do not have this luxury for 
effective address prediction, which must precisely 
predict the addresses for PC2 in every iteration.  

2.4.2 Deriving DEAP from the RMS Predictor 
We construct DEAP by augmenting the RMS 
predictor with more precise dependence information 
(Figure 3). Like the RMS predictor, DEAP has the 
PPW and the CT.   Like RMS, DEAP’s PPW has two 
fields: PPC and Value.  The PPC is the potential 
producer PC and Value is the value (a potential base 
address of a subsequent load) loaded by the potential 

 

 

 

 

 

 

Table 1. Effective Address Predictor Configurations. 

CPU Model
128 entry instruction queue 
128K 2-way set-associative Level 1 instruction cache 

128K 2-way set-associative Level 1 write-through data 
A bigger and more powerful 21264-like branch 
predictor 
8 instructions maximum issued per cycle 

4 D-Cache Ports (any combination of loads and stores),  
2-cycle access 
8M Direct Mapped, Write-Back, Unified Second Level 
Cache, 12 cycle access 

Table 2. Base processor configuration used in all 
simulations.  Note that our results are independent 
of our choice of write-back or write-through 
cache.  

Predictor Total Bytes Configuration 

LAP 45K 4K-entry, 2-way table 

SAP 60K 4K-entry, 2-way, 2-delta, strided predictor 

CAP  70K 4K-entry, 2-way Load Buffer; 4K-entry, 
direct-mapped Link Table 

DEAP 3.8K 128-entry, depth=2, fully-associative CT; 
32-entry, fully-associative PPW 
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producer load.  Like the RMS predictor, DEAP’s CT 
maintains the PPC (producer PC), CPC (consumer 
PC), and offset of the consuming load.  Unlike, the 
RMS predictor, DEAP’s CT has several additional 
fields.  Each entry in DEAP’s CT can have one or 
more Value slots (Value1, Value2, ...) and a slot 
predictor.   Also, unlike the RMS predictor, we force 
DEAP to have only one entry corresponding to a 
consumer PC to simplify the implementation of 
DEAP.   We could have had multiple consumer PC 
entries like the RMS predictor, but that would have 
made the slot prediction more complicated.  

When a load commits, we take three update actions.  
First, as in the RMS predictor, we enter the load into 
the PPW.  Second, we associatively search the CT 
with the load’s PC for a match on the PPC field of the 
CT.   For every matching entry, we record the value 
read by the load into the entry.  We maintain the 
Value1, Value2, ... etc. fields as a circular queue, so 
this newly loaded value will remove the oldest value 
loaded in every matched CT entry.  Third, we 
associatively search the CT with this load’s PC for a 
match on the CPC field.   Since all CPC entries in 
DEAP are forced to be unique, this consumer load’s 
PC will match only one CT entry.  Then, we will 
search the Value slots in the CT entry for a match.  If 
there is a match, we update the slot predictor to point 
to this slot in the CT entry. 

The DEAP probe is simpler than the update.  We 
probe the CT with a load’s PC.  If the probe finds a 
CT entry with a CPC value that matches the load’s 
PC, we examine the slot predictor to obtain the 
specific slot to use in the prediction. We add the value 
(i.e., base address) from the predicted slot of the CT 
entry and the load’s offset to predict an effective 
address for the load.  However, DEAP does not make 

a prediction if there is no matching CPC entry in the 
CT.  

There is another subtle difference between RMS and 
DEAP.   The RMS predictor is probed by producer 
loads, so that the producer loads can trigger the 
prefetch of the corresponding consumer loads’ data.   
In contrast, the DEAP predictor is probed by 
consumer loads to obtain their own effective 
addresses.  This enables the pipeline to issue 
consumer loads early in the pipeline.  

3 Evaluation Methodology 
This section describes Asim—our simulator 
framework, the machine model we simulated using 
Asim, and the benchmarks we used for our evaluation.  
3.1 Asim 
Asim is a simulation framework developed by the 
VSSAD, Alpha Development Group, to rapidly 
prototype modern out-of-order and speculative 
microprocessors [16]. Asim is divided into two major 
components—a front-end instruction feeder and a 
back-end performance model.  The front-end feeder 
fetches, issues, and executes instructions as well as 
reads and writes memory under the control of the 
performance model, which can direct the feeder to go 
down and recover from wrong speculative paths.  This 
level of control allows us to perform detailed 
simulation of out-of-order and speculative 
microprocessors.  

We have structured Asim’s performance models as a 
bundle of modules and buffers.  Modules execute 
algorithms with almost no notion of time, while 
buffers connect modules and incorporate time in them.  
For example, a data cache could be a module.  A data 
cache probe would return the data via the result bus, 
which we model as an output buffer.  However, this 

 

 

 

 

 

Table 3 .  Benchmark Characterization.  We skipped between 30 million and two billion instructions to 
reach the interesting portion of each benchmark. M = one million.   K = one thousand. Warmup = number 
of instructions for which we warm up the simulator without collecting statistics.  Tot insts = total number 
of instructions simulated. 

B enchm ark S uite W arm up Tot Insts Loads S tores B ase IP C
com press S pecInt95 1M 30M 5.8M 1.7M 1.6
gcc S pecInt95 1M 30M 7.4M 3.3M 2.2
m 88ksim S pecInt95 1M 30M 4.1M 2.0M 2.2
m grid S pecFp95 1M 30M 10.8M 2.0M 6.1
em 3d O lden 1M 30M 10.6M 2.0M 1.9
health O lden 1M 30M 10.0M 4.0M 0.8
tsp O lden 1M 30M 7.7M 318K 1.5
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output buffer from the data cache module will capture 
both the time to run the data cache probe algorithm in 
hardware as well as the time on the result bus.   Such 
level of detail allows us to accurately prototype a 
modern microprocessor.   

Asim modules can be used in different contexts.  For 
example, they can work independently (and called 
Standalone Model) or within a timing framework 
(called Timing Model).   For example, the data cache 
module can run by itself and return cache hit or miss 
rates.  At the same time, we can plug in the same data 
cache module into a Timing Model to understand the 
behavior and timing of the data cache in a real 
pipeline model.  

In this paper, we use both the Standalone and Timing 
Models to understand the behavior of the five 
predictors.   The Standalone Model gives us the 
accuracy of our predictors, while the Timing Model 
shows the impact of effective address prediction in a 
real pipeline.  
3.2 Oracle Simulation 
Oracle simulation allows us to perform upper bound 
studies of realistic pipelines.  For example, in this 
paper using Oracle simulation, we study the upper 
bound of the performance of a Perfect effective 
address predictor with a modern, out-of-order, and 
speculative pipeline. Our Perfect predictor obtains the 
correct effective address for an instruction by 
querying the Oracle, which runs simultaneously with 
the main simulation thread.    Then, Perfect sends the 

predicted loads down a fast path to the memory 
system in the pipeline (Figure 1).   The entire pipeline 
remains unchanged except for the fast path and higher 
bandwidth to the memory system.  

We implement the Oracle using Asim’s multi-
threading support.  Normally, in Asim, each 
benchmark is run in two threads—the Feeder Thread 
and the Timing thread.  With Oracle simulation, each 
benchmark is run in three threads—the Feeder thread, 
the Timing thread, and the Oracle thread.  The Feeder 
thread feeds instructions to the Timing Thread. The 
Timing thread corresponds to the conventional 
detailed pipeline model simulation with out-of-order 
issue and speculative execution. The Oracle thread, 
however, fetches the same instruction stream as the 
Timing thread, but executes each instruction 
immediately upon fetching.3  

In Oracle mode, the simulator keeps track of the 
relationship between corresponding instructions in the 
Timing and Oracle threads. During the simulation we 
can find the Oracle thread counterpart to each 
instruction in the Timing thread. The simulator allows 
us to query this Oracle Instruction for its input values, 
computed output values, and internal state like branch 
direction and effective address. This query is possible 

                                                      
3 Unfortunately, we cannot run the Timing Thread in the same way—that 
is, execute an instruction completely on fetch—because we need to 
accurately model the relative occurrence of instruction-related events. For 
example, we cannot correctly model the impact of speculation and wrong-
path instructions without a detailed pipeline model.  

 L S C D LS LC LD SC SD CD LSC LSD LCD SCD LSCD None

Compress 0.0 12.1 0.2 0.3 0.1 0.0 0.0 0.1 0.0 0.0 57.9 0.0 0.0 0.0 2.4 26.8
Gcc 1.9 1.7 12.8 2.5 8.1 0.8 0.2 0.9 0.2 0.6 21.3 0.6 0.0 0.1 1.5 46.7
m88ksim 1.4 1.3 23.8 1.3 3.1 0.8 0.2 0.3 0.1 0.3 35.2 1.2 0.0 0.1 13.8 17.2
Mgrid 0.0 27.9 12.8 0.1 0.3 0.0 0.0 40.5 0.0 0.2 4.1 0.0 0.0 0.0 0.3 13.8
em3d 0.0 15.5 0.0 27.1 0.1 0.0 2.5 0.1 2.2 10.5 0.2 5.4 4.9 1.5 11.5 18.5
Health 0.8 0.7 12.5 49.1 3.1 3.4 0.3 0.1 0.2 1.2 15.5 3.2 0.0 0.1 2.6 7.1 
Tsp 0.2 0.2 4.9 19.4 3.9 0.2 0.1 0.1 0.1 32.8 30.9 0.4 0.0 0.0 0.4 6.4 

Table 4.  Breakdown of accurately predicted dynamic loads as a percentage of covered loads. L = % loads 
accurately predicted by LAP alone and no other predictor.  S = % loads accurately predicted by SAP 
alone. C = % loads accurately predicted by CAP alone. D = % loads accurately predicted by DEAP alone. 
LS = % load accurately predicted both by L and S, but not by L and S individually and not by another 
predictor either.  We define various combinations of L, S, C, D in a similar way. None = no predictor 
accurately predicted these loads. Figure 5 shows a Venn diagram that illustrates the breakdown of 
accurately predicted loads in this table. 
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even before the respective instruction in the Timing 
thread has issued, since the corresponding instruction 
in the Oracle thread has already executed with the 
correct input values and produced the correct output 
values. Note that the Oracle thread follows the Timing 
thread down all paths of execution, including 
speculative paths. In case of a misprediction recovery, 
both the Timing thread and the Oracle thread restore 
their state to the same point, i.e. the killed instruction, 
and continue to execute along the correct path.  

Although other researchers have used the separation 
of Feeder and Timing threads to model modern out-
of-order and speculative processors (e.g., Bechem, et 
al. [17]), we are not aware of any prior work that used 
Oracle threads for upper bound studies of the nature 
explored in this paper.  
3.3 Simulated Machine Model 
Table 1 shows the configurations of the four effective 
address predictors we implemented in Asim.  Table 2 
shows the base processor configuration we use in all 
our simulations. Figure 1 shows how we integrated 
our predictors with our realistic pipeline model.  All 
the five predictors—Perfect, LAP, SAP, CAP, and 
DEAP—make predictions right after the register 
rename stage of the pipeline.   However, to study the 
upper bound of performance available from effective 
address prediction with a realistic pipeline, we made 
the following assumptions: 

•  We probe and update the predictors in the same 
cycle.  Perfect is always correct, so it does not 
need to be updated.  However, we update the 
other four predictors using the correct effective 
address available from the Oracle.  Additionally, 
DEAP requires producer loads to update the 
DEAP tables with the value it loaded.  We assume 
that this update happens immediately in the same 
cycle, and not when the producer load commits. In 
a real implementation, such update may be 
delayed and must happen speculatively.  

•  We allow loads for which the predictor makes a 
correct prediction to go down a fast path. The fast 
path is a bypass from the front-end of the pipe 
(after the rename stage) to the memory access 
stage of the pipeline.   The fast path never stalls, 
so the fast path must provide 8 load ports (because 
we can issue up to 8 instructions, and hence 8 
loads, per cycle). 4 

                                                      
4 This increases the total number of load ports in our machine to 12 (4 in 
the regular path and 8 extra ports on the fast path).  However, our 

•  To avoid any unwanted interaction of store-load 
dependence predictor with our effective address 
predictors, we use a perfect memory dependence 
predictor for all our simulations.    

•  Finally, we have not implemented any recovery 
mechanism.  This allows us to study the upper 
bound of performance of effective address 
prediction without having to worry about quirks in 
individual recovery mechanisms for different 
predictors.  

3.4 Benchmarks 
We use a mix of seven benchmarks in our 
evaluation—three from SpecInt95, one from 
SpecFp95, and three from the Olden benchmark suite 
[11]. The SpecInt95 and SpecFp95 benchmarks are 
from the SPEC suite (http://www.spec.org), while the 
Olden benchmarks are pointer-intensive benchmarks 
from Princeton University.  We believe these provide 
a good mix of benchmarks because they represent 
programs from widely different application areas.    
We added Olden to our evaluation because the SPEC 
benchmarks are not particularly pointer-rich.  Table 3 
summarizes the characteristics of our seven 

                                                                                         
experiments, not shown here, reveal that our base machine model (with no 
fast path) has almost no performance gains with greater than 4 load ports 
on the seven benchmarks we evaluated in this paper.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.  Explanation of columns in Table 4.  
This Venn diagram shows how we break down 
the accurately predicted loads into different 
categories. 
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benchmarks.  Compress compresses large text files 
using adaptive Limpel-Ziv coding.  Gcc compiles pre-
processed source into optimized SPARC assembly 
code. M88ksim simulates the Motorola 88100 
processor running Dhrystone and a memory test 
program.  Mgrid calculates a 3D potential field. Em3d 
simulates the propagation of electro-magnetic waves 
in a 3D.   Health simulates the Columbian health care 
system. Finally, Tsp computes an estimate of the best 
hamiltonian circuit for the Traveling-salesman 
problem.  Em3d, health, and tsp use a variety of 
pointer-based data structures, such as lists, binary 
trees, and quadtrees.  

We compiled all the above benchmarks using the 
Compaq GEM compiler tuned for the Alpha 21264 
processor at peak optimization levels.  Also, we 
skipped between 30 million to two billion instructions 
to get to the interesting part of each benchmark.  

4 Results 
In this section, we discuss our results from the 
Standalone and Timing Models.  We also perform 
some sensitivity tests with the effective address 
predictors.  
4.1 Standalone Model Results 
Asim’s Standalone Models allow us to study the 
prediction coverage and accuracy of our effective 
address predictors.  Perfect is an ideal effective 
address predictor, whose coverage and accuracy is 

100% in the Standalone Model.5 Figure 7 shows the 
coverage and accuracy of the other four predictors—
LAP,  SAP, CAP, and DEAP. Figure 7a shows that a 
hybrid of the four predictors—LAP, SAP, CAP, and 
DEAP—could cover (i.e., make a prediction on) a 
large percentage of dynamically executed loads in our 
seven benchmarks.  Individually, the predictors have 
widely different coverage.  LAP, SAP, CAP, and 
DEAP cover 39%, 53%, 54%, and 32% respectively 
of all loads.  However, the hybrid predictor on average 
covers 85% of loads across the seven benchmarks.  

Figure 7b shows that an ideal hybrid, which can 
always pick the best predictor for each load, can 
                                                      
5 Perfect’s coverage is, however, not 100% in the Timing model because 
Perfect does not make a prediction on loads that depend on a recent prior 
uncommitted store.  In contrast, the Standalone model simply executes 
instructions without a pipeline model and, hence, Perfect makes 
predictions on, and therefore covers, all loads in the Standalone model.  

 

 

 

 

 

 

 

Figure 6. Potential IPC Improvement from 
Effective Address Predictors.  The vertical axis is 
% percentage improvement in IPC over the base 
IPCs reported in Table 3. Four bars that are cut-
off from the top are: compress-Perfect = 60%, 
health-DEAP = 218%, health-Hybrid = 234%, 
health-Perfect = 244%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. (a) % Dynamic loads covered by all 
predictors. (b) % Dynamic Loads predicted 
correctly by predictors. Hybrid means that at least 
one predictor tried to predict (for graph a) or 
predicted accurately (for graph b) the effective 
address of a dynamic load. 
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provide very high prediction accuracy.  Like the 
coverage results, the individual accuracy results vary 
between 29% - 52% across the predictors.  However, 
an ideal hybrid could correctly predict the effective 
addresses of 81% of dynamically executed loads that 
it makes predictions on.  

Table 4 explains why the ideal hybrid can predict the 
effective addresses with such high accuracy.  Table 4 
shows a breakdown of correctly predicted loads for 
each predictor and  

Figure 5 shows the corresponding Venn diagram of 
predictor coverage.  For example, the column S shows 
the percentage of loads that were correctly predicted 
only by SAP.  Similarly, the SC column shows the 
percentage of loads that were correctly predicted by 
both SAP and CAP, and not by any other predictor.  
The S number does not include the SC number.  

As Table 4 shows, SAP, CAP, and DEAP appear to 
accurately predict different loads. For example, only 
SAP correctly predicts the effective addresses of 
27.9% of the loads in mgrid, while CAP alone 
correctly predicts 23.8% of the loads in m88ksim.  On 
the other hand, only DEAP accurately predicts 
between 19% – 49% of the loads in the Olden 
benchmarks.   Thus, an ideal hybrid of these 
predictors can result in very high prediction accuracy.  
4.2 Timing Model Results 
Asim’s Timing Model combined with Oracle 
Simulation allows us to study the upper bound of the 
performance from effective address prediction. As 
Figure 6 shows, the potential performance 
improvement from effective address prediction varies 
widely among the benchmarks.   The potential 

performance improvement (as shown by the Perfect 
predictor) ranges from as low as 7% to as high as 
244%.  Interestingly, however, the ideal hybrid—the 
predictor that always picks the correct predictor for 
each load—performs very close the Perfect predictor 
for most benchmarks.   Individually, on average, LAP, 
SAP, CAP, and DEAP result in 3%, 7%, 8%, and 36% 
performance improvement respectively.  The ideal 
hybrid results in 44% improvement, while the Perfect 
predictor performs 58% better.  Note that the Perfect 
predictor makes predictions on all loads, except those 
that are dependent on recent prior stores in flight. 
Similarly, the other predictors do not make predictions 
on loads that depend on recent prior stores in flight.   

Several interesting results stand out: 

•  The ideal hybrid performs very well for all 
benchmarks, except compress.  This is because 
none of the predictors can accurately predict a 
large fraction (25%) of the dynamically executed 
loads in compress (Figure 9).  Thus, for the hybrid 
predictor, only 22% of all loads that miss in the 
L1 cache go down the fast path.  In contrast, the 
Perfect predictor, which can issue the loads that 
miss earlier in the pipe and thereby prefetch the 
L1 misses (and L2 hits) ahead of time, predicts 
accurately 97% of the loads.   

•  DEAP is extremely effective for the Olden 
benchmarks and provides a performance 
improvement between 49% - 63%.  This is 
because DEAP can predict loads that are in 
pointer-chasing codes, such as the Olden 
benchmarks.   This is because of two reasons.  
Like the RMS predictor, DEAP can prefetch L2 

 

 

 

 

 

 

 

 

 

Figure 8.  % Predicted Loads That Hit in L1. 

 

 

 

 

 

 

 

 

 

Figure 9. % Dynamic Loads Predicted Accurately 
in the Timing Runs. 
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hits that miss in the L1 cache.  However, more 
importantly, unlike the RMS predictor, DEAP 
helps prefetch L1 hits. This is critical to 
performance improvement because a large 
percentage of the predicted loads actually hit in 
the L1 cache (Figure 8).  

•  Finally, we found that increasing the DEAP size 
had very little impact on performance of these 
benchmarks.  Increasing the DEAP size by 
roughly seven times gave a performance 
improvement of less than 1%.   

5 Related work 
In this paper we draw upon a huge body of prior 
research on effective address prediction. The 
predictors LAP, SAP, and CAP are based on work in 
several papers, such as [4], [7], [8], [9], [10], [13], and 
[15].  Additionally, many papers, such as [3], [4], and 
[15], performed a comparative study of some of the 
predictors and their hybrids.  

We improve upon this prior body of research by 
evaluating DEAP and understanding its prediction 
rates and performance.   DEAP is variant of the RMS 
predictor [5].  However, unlike the RMS predictor, 
which was used by Roth, et al. to prefetch cache 
misses, we use DEAP to prefetch L1 cache hits and 
issue loads early in the pipeline.   We compare DEAP 
with LAP, SAP, and CAP in terms of their prediction 
rates and upper bound of performance achievable 
from these predictors.  We also show that on six of 
our seven benchmarks an ideal hybrid predictor, that 
picks the correct predictor for each load, can achieve 
performance close to a Perfect Effective Address 
Predictor.  

Although we focussed on effective address prediction, 
there are other ways to generate effective addresses 
earlier in the pipeline.  Austin and Sohi [14] proposed 
overlapping effective address computation with cache 
access with the help of special circuits and software 
support. Bekerman, et al. [6] proposed tracking certain 
registers and immediate values to calculate a load’s 
effective address earlier in the pipeline. We believe 
that a combination of these techniques along with the 
effective address predictors we studied in this paper 
will lead to good effective address prediction rates.  

6 Conclusions and Future Work 
Modern, deeply-pipelined, out-of-order, and 
speculative microprocessors continue to be plagued by 
the latency of load instructions.  This latency is 
dominated by the latencies to resolve the source 

operands of the load, to compute its effective address, 
and to fetch the load’s data from caches or main 
memory. This paper examined the performance 
potential of hiding a load’s data fetch latency using 
effective address prediction. By predicting the 
effective address of a load early in the pipeline, we 
could initiate the cache access early, thereby 
improving performance.  

The current generation of effective address predictors 
for a load instruction is based on either the history or 
the context of the specific load.  In addition, 
researchers had examined load-load dependence 
predictors to prefetch cache misses.  This paper 
examined the performance potential of using a load-
load dependence predictor to predict effective 
addresses of load instructions and issue them early in 
the pipeline.  We called this predictor the DEAP 
predictor.  

We showed that on average DEAP could improve the 
accuracy of effective address prediction by 28% over 
a perfect combination of last address, stride address, 
and context-based address predictors across our seven 
benchmarks from the SPEC95 and Olden suite.  We 
found that an ideal hybrid of these four predictors 
(including DEAP), which always picked the right 
predictor for a load, could potentially achieve 
performance close to that of a Perfect predictor in 
most cases. 

We used an oracle-based simulation approach to 
evaluate our timing results.  This method allowed us 
to measure the upper bound of the performance from 
effective address prediction using a mostly realistic 
pipeline.  However, our timing simulation method did 
not account for penalty due to mis-prediction of an 
effective address and assumed a zero-cycle latency 
from address prediction resolution to address predictor 
update.     

This work can be extended in several ways in future.  
To accurately reflect pipeline effects, one must model 
the penalty due to the mis-prediction of the various 
effective address predictors as well as realistic 
latencies for address prediction resolution to address 
predictor update.   Also, it will be interesting to 
understand the combined impact of load-load 
dependence prediction on cache misses (or 
prefetching) as well as cache hits (as studied in this 
paper) for long-latency pipelines.  An analytical 
model may help in this effort.  
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