

1

Abstract
Modern, deeply-pipelined, out-of-order, and speculative
microprocessors are still plagued by the latency of load
instructions. This latency is dominated by the latencies to
resolve the source operands of the load, to compute its
effective address, and to fetch the load’s data from caches
or main memory. This paper examines the performance
potential of hiding a load’s data fetch latency using
effective address prediction. By predicting the effective
address of a load early in the pipeline, we can initiate the
cache access early, thereby improving performance.

The current generation of effective address predictors for a
load instruction is based on either the history or the context
of the specific load. In addition, researchers have
examined load-load dependence predictors to prefetch
cache misses. This paper examines the performance
potential of using a load-load dependence predictor to
predict effective addresses of load instructions and issue
them early in the pipeline. We call this predictor the DEAP
predictor.

We show that on average DEAP can improve the accuracy
of effective address prediction by 28% over a perfect
combination of last address, stride address, and context-
based address predictors across our seven benchmarks
from the SPEC95 and Olden suite. We find that an ideal
hybrid of these four predictors—a predictor that always
picks the right predictor for a load—can potentially achieve
performance close to that of a Perfect predictor in most
cases.

We use an oracle-based simulation approach to evaluate
our timing results. This method allows us to measure the
upper bound of the performance from effective address
prediction using a mostly realistic pipeline. However, our
timing simulation method does not account for penalty due
to mis-prediction of an effective address and assumes a
zero-cycle latency from address prediction resolution to
address predictor update.

1 Introduction
The latency of load instructions—from fetch to
commit—continues to plague modern out-of-order
and speculative microprocessor designs. A load’s
latency is dominated by three components: effective
address computation, store-load dependence
resolution, and data fetch. We define effective address
computation latency as the sum of the latency from
the time a load is fetched until its source operands are
ready and the latency to compute the effective address

itself. The store-load dependence resolution latency is
the latency to determine whether a load depends on a
prior uncommitted store. Finally, data fetch latency is
the latency to fetch the load’s data from caches or
main memory.

Unfortunately, a load’s effective address computation
and data fetch latencies continue to be major problems
in today’s microprocessors, even though recent
memory disambiguation techniques (e.g., [1], [2])
have largely solved the store-dependence resolution
problem. The effective address computation latency
remains high because in many programs it takes a
long time for a load’s source operands to become
data-ready. Pointer-chasing (via load-load
dependence chains) is a classic example of such a
code. Data fetch latency continues to be high for two
reasons. First, the gap between processor and DRAM
performances continues to widen, which causes cache
miss latency to appear significantly worse in each
generation. Second, the complexity of modern, wide-
issue, and out-of-order machines increases both the
width and length of result buses from the data caches
to the execution units. This, in turn, increases the data
fetch latency from L1 SRAM caches. Thus, on
modern microprocessors, the load-to-use latency on
cache hits has increased to between three and five
cycles [4].

This paper examines the performance potential of
hiding a load’s data fetch latency, particularly on
cache hits on L1 or L2 caches, using effective address
prediction. Modern microprocessors, in their quest for
higher clock speeds and performance, have become
deeply pipelined, with 20 or more pipeline stages
(e.g., Intel Willamette [12]). Because of such deep
pipelining, we usually have a large number (five or
more) of stages from the point an instruction is
renamed until the instruction reaches the execution
stage of the pipeline. Such deep pipelining potentially
opens up a window of opportunity in which we can
predict a load’s effective address early in the pipeline,
issue the load speculatively, and fetch the data from
the data cache. If the prediction is correct, then we
can hide a load’s data fetch latency, particularly for
cache hits. This allows instructions dependent on the
load to issue earlier, thereby improving the number of
instructions committed per cycle (IPC). Figure 1

+ Performance Potential of Effective Address Prediction of Load Instructions
Pritpal S. Ahuja, Joel Emer, Artur Klauser, and Shubhendu S. Mukherjee

VSSAD, Alpha Development Group
Compaq Computer Corporation,

Shrewsbury, Massachusetts

2

shows an example of such a pipeline in which we
predict the effective address of loads and issue them
via a bypass path to the memory system in the
pipeline. In this figure and throughout the rest of the
paper, we assume that the bypass path for loads
originates after the register rename stage. This allows
a load instruction to fetch its data directly into the
correct physical register and not into an intermediate
staging buffer.

The performance potential of effective address
prediction depends on two factors—the prediction
accuracy of the effective address predictors and how
the effective address predictors are integrated into the
pipeline. In this paper, we examine five effective
address predictors—Perfect, LAP, SAP, CAP, and
DEAP. The Perfect (and perhaps non-implementable)
predictor always predicts the correct effective address
for a load. LAP (Last Address Predictor) predicts that
a load will use the same effective address that it had
used the last time it executed [3][7]. SAP (Stride
Address Predictor) predicts an effective address by
using the load’s last address and a stride [8][9][10].
CAP (Context-based Address Predictor) predicts
effective addresses based on the history of prior
addresses encountered by a load [4]. Finally, DEAP
(Dependence-based Address Predictor) is an effective
address predictor that predicts effective addresses
based on dependences between load instructions.
DEAP is a variant of Roth, et al.’s load-load
dependence predictor [5]. However, unlike the Roth,
et al. work, which used the dependence predictor to
prefetch cache misses, we use DEAP to issue loads
early in the pipeline by predicting their effective
addresses.

To understand the performance potential of each of
these predictors, we use a prediction from a predictor
only when it is correct. We do not account for penalty
for a mis-prediction of an effective address.
Additionally, we assume a zero-cycle latency from
address resolution to predictor update. Such a method
has both advantages and disadvantages. This method
allows us to study the performance potential (i.e., the
upper bound of performance) of these predictors. This
also frees us from worrying about the exact details and
performance degradation due to the recovery
mechanisms necessary when any of the predictors
mispredicts. However, this method also does not
account for performance difference due to different
recovery costs of the different predictors.

We show that DEAP can improve the accuracy of
effective address prediction by 28% over a perfect
combination of LAP, SAP, and CAP across our seven
benchmarks from the SPEC95 and Olden suites.
Specifically, on our three pointer-intensive Olden
benchmarks, between 19% – 49% of the dynamic
loads’ effective addresses are correctly predicted only
by DEAP, and not by any other predictor.

We find that one or more of LAP, SAP, CAP, or
DEAP predicts the majority of loads accurately.
Across our seven benchmarks from the SPEC95 and
Olden suites, the four effective address predictors
make predictions on 64% – 99% of dynamically
executed loads. The predictors accurately predict
between 73% and 95% of these loads.

Additionally, we find that an ideal hybrid of LAP,
SAP, CAP, and DEAP captures most of the
performance benefit available from a Perfect
predictor. The Perfect predictor can boost
performance between 7% and 244% in our seven
benchmarks. The ideal hybrid of LAP, SAP, CAP,
and DEAP can capture 82% of the Perfect predictor’s
performance improvement, except for compress.
These predictors boost performance because they
allow the pipeline to prefetch both L1 cache hits and
L2 cache hits. Unfortunately, for compress, these
predictors are unable to predict the effective addresses
of loads that miss frequently in the L1 data cache, but
hit in the L2, and account for most of the performance
degradation.

Figure 1. Effective address prediction and load
issue via bypass path.

First
Execution
Stage

First
Memory
Stage

Register
Rename
Stage

Predict Effective Address and Issue Load

Pipeline Bypass Path for
Load Instructions

3

We use a method called Oracle Simulation for this
study. Ideally, for upper bound studies, we would like
to have all information about an instruction at the
fetch stage itself. For example, knowing the direction
of a branch at the fetch stage would allow us study the
performance benefit from a perfect branch predictor.
Unfortunately, in a detailed simulation model of an
out-of-order and speculative pipeline, such
information is not available at the fetch stage because
prior instructions that the branch may depend on may
not have executed.

Oracle simulation solves this problem. With Oracle
simulation, we run two simulations—one that models
the detailed out-of-order, multi-stage pipeline and a
second one that models a single-stage pipeline. Every
time the out-of-order pipe fetches an instruction, the
corresponding single-stage pipe executes the
instruction completely. Thus, the second pipe has
complete information about the instruction.
Specifically, for our case, the second pipe can return
the effective address of loads when they are at the
fetch stage of the first pipe. This helps us implement
the Perfect effective address predictor as well as
verify if the predictions from other predictors are
correct.

The rest of the paper is organized as follows. Section
2 describes our four effective address predictors.
Section 3 discusses our evaluation methodology.
Section 4 discusses results. Section 5 describes
related work. Finally, Section 6 presents our
conclusions.

2 Effective Address Predictors
In this section we describe the four predictors: LAP,
SAP, CAP, and DEAP. We also simulate a Perfect
Effective Address Predictor, which always returns the
correct effective address of a load instruction. Section
3.2 describes how we implement these predictors in
our simulator.
2.1 LAP: Last Address Predictor
A Last Address Predictor (LAP) [3][7] predicts that a
load will reuse the same effective address that it used
the last time it executed. LAP works well for loads
that access the same variables repeatedly (e.g.,
globals). In our evaluation LAP can accurately predict
the effective addresses of almost 35% of the dynamic
loads (averaged across our seven benchmarks) on
which LAP makes a prediction. For our LAP
implementation we use a direct-mapped, tagged
cache, indexed by the PC of the load. Each LAP entry
contains a tag, the predicted address (i.e., last

address), and a two-bit saturating counter. LAP does
not make a prediction if the PC does not exist in the
tagged cache or until the saturating counter has not
reached its maximum count.
2.2 SAP: Stride Address Predictor
A Stride Address Predictor (SAP) predicts that the
effective address of a load will be fixed offset (or
stride) from the load’s effective address it produced
the last time it executed. SAP is well suited for array
accesses in which a load sequences through different
elements of an array. Our SAP implementation
accurately predicts 48% of dynamic loads (averaged
across our seven benchmarks) that it makes
predictions on.

For our SAP implementation we use a direct-mapped,
tagged cache, indexed by the PC of the load. Each
SAP entry contains a tag, the last address, the
predicted stride, the last stride seen, and a confidence
counter. The predicted address is the sum of the last
address and the predicted stride. The last stride seen
is the difference between the last effective address and
next-to-last effective address used by the load. SAP
changes the predicted stride only if it encounters the
same stride twice in a row [9][10]. SAP makes a
prediction only if the PC exists in the tagged cache
and the confidence counter has reached its maximum
count.

Figure 2. A Context Address Predictor (CAP)

Load Buffer Link Table

load
PC

Prediction?

=

Speculative Access?

+

Predicted
Address

tag count offset history tag link
pollution-
free bits

.

4

2.3 CAP: Context-based Address Predictor
A Context-based Address Predictor (CAP) predicts a
load’s effective address based on the history of prior
addresses encountered by the load. Loads often
sequence through a fixed pattern of addresses, such as
in recursive data structures. CAP works well with
such recursive data structures. CAP can also capture
some of the effective addresses that are accurately
predicted by LAP and SAP. This is because LAP is a
degenerate case of CAP with no history. Similarly,
CAP can capture a sequence of strided addresses, if
CAP’s history captures the sequence of strided
addresses. Nevertheless, SAP is a more compact
representation of strided addresses and, therefore, we
expect SAP to have a higher accuracy for strided
access patterns. For our seven benchmarks, CAP
accurately predicts 52% of the loads it makes
predictions on.

In this paper we use Bekerman et al.’s implementation
of a CAP [4]1. This implementation of CAP uses two
tables: the load buffer (LB) and the link table (LT), as
shown in Figure 2. The load buffer is a per-static-load
table that maintains the recent history of effective
addresses of the associated load. The link table is a
second-level table that provides the address used for
effective address computation. The load buffer is
indexed by part of the load’s PC. Each load buffer
entry contains a tag (the rest of a load’s PC bits), a
saturating counter, the load’s offset as found in the
load instruction itself, and the history. The saturating
counter serves as a confidence estimator. Thus, CAP
will not return a prediction unless the value of the

1 We have validated our implementation against the prediction accuracy
numbers in the Bekerman, et al. paper.

counter is above a certain threshold. The load buffer
history bits contain the history of prior base addresses
of a load instruction. We update the CAP history as
follows: history = (history << m) XOR
(new_base_address >> 2). That is, the history is
shifted left m bits and XOR-ed with the new base
address shifted right by two. We shift the new base
address by two bits because the lower two bits do not
matter except for unaligned accesses.

We index the link table using the history bits of a load
buffer entry. Because of this, CAP’s history maintains
only base addresses, multiple load buffer entries may
map into the same link table entry. To avoid
destructive aliasing, the link table also contains a tag,
which is the history of the load buffer entry itself. The
link table contains the link, which is the base address
of the predicted load. To obtain the complete
effective address, we must add the offset from the
load buffer with the link address from the link table.
Finally, a link table entry also contains a few
pollution-free bits. The pollution-free bits record a
few bits of the base address of a probing load. We
update the link table entry when two consecutive
accesses to the link table have the same pollution-free
bits.

Like the other predictors, CAP does not make a
prediction if it does not find a matching PC in the load
buffer or if there is tag mismatch in the link table.
2.4 DEAP: Dependence-based Address Predictor
Our Dependence-based Effective Address Predictor
(DEAP) predicts effective addresses based on
dependences between load instructions. Two load
instructions are dependent if the first one (the
producer load) loads a value that is the base address
for the second load (the consumer load). DEAP
recognizes such dependences and predicts the
effective address of the consumer load based on the
value loaded by the producer. DEAP is well suited for

Figure 3. DEAP configuration. PPC = Producer
PC, CPC = Consumer PC.

Figure 4. Load-Load Dependence Across
Iterations.

PC1: load: R1 � (R2)
PC2: load: R4 � (R5) Iteration 1

PC1: load: R1 � (R2)
PC2: load: R4 � (R5) Iteration 2

R5 � R1 + 4

R5 � R1 + 4

Correlation Table

PPC Value

Potential Producer
Window (PPW)

PPC CPC offset Value1 Value2

 Slot prediction

5

predicting effective addresses in pointer-chasing
programs, which have such load-load dependence
patterns. Of the three Olden benchmarks [11] we
examine in this paper, DEAP can accurately predict
59% of the total number of dynamically executed
loads that it makes predictions on.

We have derived DEAP from Roth, et al.’s load-load
dependence predictor [5], which we refer to as the
RMS2 predictor. The RMS predictor captures
dependences between producer and consumer loads.
However, the RMS predictor does not always capture
the precise effective address of a specific instance of a
consumer load. First, we describe the RMS predictor.
Then, we show how we derive DEAP from the RMS
predictor.

2.4.1 The RMS Predictor
The RMS predictor consists of two tables: the
Potential Producer Window (PPW) and the
Correlation Table (CT). The PPW maintains a list of
most recently loaded values and their corresponding
instructions. Thus, loads in the PPW are loads that
can potentially be producer loads. The CT maintains
correlations or dependences between producer and
consumer loads. As a load completes, we enter its PC
and loaded value into the PPW. At the same time, we
do an associative search of the PPW to find if a prior
load produced this load’s base address. If so, then this
load is a consumer load of the prior load. This
establishes the load-load dependence template that we
record in the CT. Subsequently, when the producer
load appears again, the RMS predictor will search the
CT associatively for a match. If there is a match, the
RMS predictor will trigger a prefetch on the value
(i.e., base address) loaded by the producer load +
offset of the consumer load obtained from the CT.

2 The acronym RMS comes from the first letter of the authors’ last names:
Roth, Moshovos, and Sohi.

The RMS predictor works great for prefetching load
misses, but may not be as precise for effective address
prediction in a few cases. Figure 4 shows such an
example. In this example, the RMS predictor
establishes a dependence between PC1 and PC2.
However, the real dependence exists between PC1 of
the first iteration and PC2 of the second iteration.
That is, PC1 of the first iteration loads the base
address of PC2 of the second iteration. Unfortunately,
if we use the RMS predictor to predict effective
addresses, then we would incorrectly predict that the
effective address of PC2 in the first iteration is loaded
by PC1 from the first iteration. This, however, works
well for prefetching load misses—the purpose Roth, et
al. originally designed the RMS predictor for. This is
because Roth, et al. trigger a prefetch using the base
address (and adding in any necessary offset) loaded by
the producer load from PC1 of the first iteration. As
long as this prefetch does not cause too much cache
pollution, it is irrelevant whether PC2 from the first
iteration or second iteration uses the prefetched cache
block. However, we do not have this luxury for
effective address prediction, which must precisely
predict the addresses for PC2 in every iteration.

2.4.2 Deriving DEAP from the RMS Predictor
We construct DEAP by augmenting the RMS
predictor with more precise dependence information
(Figure 3). Like the RMS predictor, DEAP has the
PPW and the CT. Like RMS, DEAP’s PPW has two
fields: PPC and Value. The PPC is the potential
producer PC and Value is the value (a potential base
address of a subsequent load) loaded by the potential

Table 1. Effective Address Predictor Configurations.

CPU Model
128 entry instruction queue
128K 2-way set-associative Level 1 instruction cache

128K 2-way set-associative Level 1 write-through data
A bigger and more powerful 21264-like branch
predictor
8 instructions maximum issued per cycle

4 D-Cache Ports (any combination of loads and stores),
2-cycle access
8M Direct Mapped, Write-Back, Unified Second Level
Cache, 12 cycle access

Table 2. Base processor configuration used in all
simulations. Note that our results are independent
of our choice of write-back or write-through
cache.

Predictor Total Bytes Configuration

LAP 45K 4K-entry, 2-way table

SAP 60K 4K-entry, 2-way, 2-delta, strided predictor

CAP 70K 4K-entry, 2-way Load Buffer; 4K-entry,
direct-mapped Link Table

DEAP 3.8K 128-entry, depth=2, fully-associative CT;
32-entry, fully-associative PPW

6

producer load. Like the RMS predictor, DEAP’s CT
maintains the PPC (producer PC), CPC (consumer
PC), and offset of the consuming load. Unlike, the
RMS predictor, DEAP’s CT has several additional
fields. Each entry in DEAP’s CT can have one or
more Value slots (Value1, Value2, ...) and a slot
predictor. Also, unlike the RMS predictor, we force
DEAP to have only one entry corresponding to a
consumer PC to simplify the implementation of
DEAP. We could have had multiple consumer PC
entries like the RMS predictor, but that would have
made the slot prediction more complicated.

When a load commits, we take three update actions.
First, as in the RMS predictor, we enter the load into
the PPW. Second, we associatively search the CT
with the load’s PC for a match on the PPC field of the
CT. For every matching entry, we record the value
read by the load into the entry. We maintain the
Value1, Value2, ... etc. fields as a circular queue, so
this newly loaded value will remove the oldest value
loaded in every matched CT entry. Third, we
associatively search the CT with this load’s PC for a
match on the CPC field. Since all CPC entries in
DEAP are forced to be unique, this consumer load’s
PC will match only one CT entry. Then, we will
search the Value slots in the CT entry for a match. If
there is a match, we update the slot predictor to point
to this slot in the CT entry.

The DEAP probe is simpler than the update. We
probe the CT with a load’s PC. If the probe finds a
CT entry with a CPC value that matches the load’s
PC, we examine the slot predictor to obtain the
specific slot to use in the prediction. We add the value
(i.e., base address) from the predicted slot of the CT
entry and the load’s offset to predict an effective
address for the load. However, DEAP does not make

a prediction if there is no matching CPC entry in the
CT.

There is another subtle difference between RMS and
DEAP. The RMS predictor is probed by producer
loads, so that the producer loads can trigger the
prefetch of the corresponding consumer loads’ data.
In contrast, the DEAP predictor is probed by
consumer loads to obtain their own effective
addresses. This enables the pipeline to issue
consumer loads early in the pipeline.

3 Evaluation Methodology
This section describes Asim—our simulator
framework, the machine model we simulated using
Asim, and the benchmarks we used for our evaluation.
3.1 Asim
Asim is a simulation framework developed by the
VSSAD, Alpha Development Group, to rapidly
prototype modern out-of-order and speculative
microprocessors [16]. Asim is divided into two major
components—a front-end instruction feeder and a
back-end performance model. The front-end feeder
fetches, issues, and executes instructions as well as
reads and writes memory under the control of the
performance model, which can direct the feeder to go
down and recover from wrong speculative paths. This
level of control allows us to perform detailed
simulation of out-of-order and speculative
microprocessors.

We have structured Asim’s performance models as a
bundle of modules and buffers. Modules execute
algorithms with almost no notion of time, while
buffers connect modules and incorporate time in them.
For example, a data cache could be a module. A data
cache probe would return the data via the result bus,
which we model as an output buffer. However, this

Table 3 . Benchmark Characterization. We skipped between 30 million and two billion instructions to
reach the interesting portion of each benchmark. M = one million. K = one thousand. Warmup = number
of instructions for which we warm up the simulator without collecting statistics. Tot insts = total number
of instructions simulated.

B enchm ark S uite W arm up Tot Insts Loads S tores B ase IP C
com press S pecInt95 1M 30M 5.8M 1.7M 1.6
gcc S pecInt95 1M 30M 7.4M 3.3M 2.2
m 88ksim S pecInt95 1M 30M 4.1M 2.0M 2.2
m grid S pecFp95 1M 30M 10.8M 2.0M 6.1
em 3d O lden 1M 30M 10.6M 2.0M 1.9
health O lden 1M 30M 10.0M 4.0M 0.8
tsp O lden 1M 30M 7.7M 318K 1.5

7

output buffer from the data cache module will capture
both the time to run the data cache probe algorithm in
hardware as well as the time on the result bus. Such
level of detail allows us to accurately prototype a
modern microprocessor.

Asim modules can be used in different contexts. For
example, they can work independently (and called
Standalone Model) or within a timing framework
(called Timing Model). For example, the data cache
module can run by itself and return cache hit or miss
rates. At the same time, we can plug in the same data
cache module into a Timing Model to understand the
behavior and timing of the data cache in a real
pipeline model.

In this paper, we use both the Standalone and Timing
Models to understand the behavior of the five
predictors. The Standalone Model gives us the
accuracy of our predictors, while the Timing Model
shows the impact of effective address prediction in a
real pipeline.
3.2 Oracle Simulation
Oracle simulation allows us to perform upper bound
studies of realistic pipelines. For example, in this
paper using Oracle simulation, we study the upper
bound of the performance of a Perfect effective
address predictor with a modern, out-of-order, and
speculative pipeline. Our Perfect predictor obtains the
correct effective address for an instruction by
querying the Oracle, which runs simultaneously with
the main simulation thread. Then, Perfect sends the

predicted loads down a fast path to the memory
system in the pipeline (Figure 1). The entire pipeline
remains unchanged except for the fast path and higher
bandwidth to the memory system.

We implement the Oracle using Asim’s multi-
threading support. Normally, in Asim, each
benchmark is run in two threads—the Feeder Thread
and the Timing thread. With Oracle simulation, each
benchmark is run in three threads—the Feeder thread,
the Timing thread, and the Oracle thread. The Feeder
thread feeds instructions to the Timing Thread. The
Timing thread corresponds to the conventional
detailed pipeline model simulation with out-of-order
issue and speculative execution. The Oracle thread,
however, fetches the same instruction stream as the
Timing thread, but executes each instruction
immediately upon fetching.3

In Oracle mode, the simulator keeps track of the
relationship between corresponding instructions in the
Timing and Oracle threads. During the simulation we
can find the Oracle thread counterpart to each
instruction in the Timing thread. The simulator allows
us to query this Oracle Instruction for its input values,
computed output values, and internal state like branch
direction and effective address. This query is possible

3 Unfortunately, we cannot run the Timing Thread in the same way—that
is, execute an instruction completely on fetch—because we need to
accurately model the relative occurrence of instruction-related events. For
example, we cannot correctly model the impact of speculation and wrong-
path instructions without a detailed pipeline model.

 L S C D LS LC LD SC SD CD LSC LSD LCD SCD LSCD None

Compress 0.0 12.1 0.2 0.3 0.1 0.0 0.0 0.1 0.0 0.0 57.9 0.0 0.0 0.0 2.4 26.8
Gcc 1.9 1.7 12.8 2.5 8.1 0.8 0.2 0.9 0.2 0.6 21.3 0.6 0.0 0.1 1.5 46.7
m88ksim 1.4 1.3 23.8 1.3 3.1 0.8 0.2 0.3 0.1 0.3 35.2 1.2 0.0 0.1 13.8 17.2
Mgrid 0.0 27.9 12.8 0.1 0.3 0.0 0.0 40.5 0.0 0.2 4.1 0.0 0.0 0.0 0.3 13.8
em3d 0.0 15.5 0.0 27.1 0.1 0.0 2.5 0.1 2.2 10.5 0.2 5.4 4.9 1.5 11.5 18.5
Health 0.8 0.7 12.5 49.1 3.1 3.4 0.3 0.1 0.2 1.2 15.5 3.2 0.0 0.1 2.6 7.1
Tsp 0.2 0.2 4.9 19.4 3.9 0.2 0.1 0.1 0.1 32.8 30.9 0.4 0.0 0.0 0.4 6.4

Table 4. Breakdown of accurately predicted dynamic loads as a percentage of covered loads. L = % loads
accurately predicted by LAP alone and no other predictor. S = % loads accurately predicted by SAP
alone. C = % loads accurately predicted by CAP alone. D = % loads accurately predicted by DEAP alone.
LS = % load accurately predicted both by L and S, but not by L and S individually and not by another
predictor either. We define various combinations of L, S, C, D in a similar way. None = no predictor
accurately predicted these loads. Figure 5 shows a Venn diagram that illustrates the breakdown of
accurately predicted loads in this table.

8

even before the respective instruction in the Timing
thread has issued, since the corresponding instruction
in the Oracle thread has already executed with the
correct input values and produced the correct output
values. Note that the Oracle thread follows the Timing
thread down all paths of execution, including
speculative paths. In case of a misprediction recovery,
both the Timing thread and the Oracle thread restore
their state to the same point, i.e. the killed instruction,
and continue to execute along the correct path.

Although other researchers have used the separation
of Feeder and Timing threads to model modern out-
of-order and speculative processors (e.g., Bechem, et
al. [17]), we are not aware of any prior work that used
Oracle threads for upper bound studies of the nature
explored in this paper.
3.3 Simulated Machine Model
Table 1 shows the configurations of the four effective
address predictors we implemented in Asim. Table 2
shows the base processor configuration we use in all
our simulations. Figure 1 shows how we integrated
our predictors with our realistic pipeline model. All
the five predictors—Perfect, LAP, SAP, CAP, and
DEAP—make predictions right after the register
rename stage of the pipeline. However, to study the
upper bound of performance available from effective
address prediction with a realistic pipeline, we made
the following assumptions:

• We probe and update the predictors in the same
cycle. Perfect is always correct, so it does not
need to be updated. However, we update the
other four predictors using the correct effective
address available from the Oracle. Additionally,
DEAP requires producer loads to update the
DEAP tables with the value it loaded. We assume
that this update happens immediately in the same
cycle, and not when the producer load commits. In
a real implementation, such update may be
delayed and must happen speculatively.

• We allow loads for which the predictor makes a
correct prediction to go down a fast path. The fast
path is a bypass from the front-end of the pipe
(after the rename stage) to the memory access
stage of the pipeline. The fast path never stalls,
so the fast path must provide 8 load ports (because
we can issue up to 8 instructions, and hence 8
loads, per cycle). 4

4 This increases the total number of load ports in our machine to 12 (4 in
the regular path and 8 extra ports on the fast path). However, our

• To avoid any unwanted interaction of store-load
dependence predictor with our effective address
predictors, we use a perfect memory dependence
predictor for all our simulations.

• Finally, we have not implemented any recovery
mechanism. This allows us to study the upper
bound of performance of effective address
prediction without having to worry about quirks in
individual recovery mechanisms for different
predictors.

3.4 Benchmarks
We use a mix of seven benchmarks in our
evaluation—three from SpecInt95, one from
SpecFp95, and three from the Olden benchmark suite
[11]. The SpecInt95 and SpecFp95 benchmarks are
from the SPEC suite (http://www.spec.org), while the
Olden benchmarks are pointer-intensive benchmarks
from Princeton University. We believe these provide
a good mix of benchmarks because they represent
programs from widely different application areas.
We added Olden to our evaluation because the SPEC
benchmarks are not particularly pointer-rich. Table 3
summarizes the characteristics of our seven

experiments, not shown here, reveal that our base machine model (with no
fast path) has almost no performance gains with greater than 4 load ports
on the seven benchmarks we evaluated in this paper.

Figure 5. Explanation of columns in Table 4.
This Venn diagram shows how we break down
the accurately predicted loads into different
categories.

LCS LCD

CSD LSD

CD LCSD LS

C
LC

D SD

None

L

S

9

benchmarks. Compress compresses large text files
using adaptive Limpel-Ziv coding. Gcc compiles pre-
processed source into optimized SPARC assembly
code. M88ksim simulates the Motorola 88100
processor running Dhrystone and a memory test
program. Mgrid calculates a 3D potential field. Em3d
simulates the propagation of electro-magnetic waves
in a 3D. Health simulates the Columbian health care
system. Finally, Tsp computes an estimate of the best
hamiltonian circuit for the Traveling-salesman
problem. Em3d, health, and tsp use a variety of
pointer-based data structures, such as lists, binary
trees, and quadtrees.

We compiled all the above benchmarks using the
Compaq GEM compiler tuned for the Alpha 21264
processor at peak optimization levels. Also, we
skipped between 30 million to two billion instructions
to get to the interesting part of each benchmark.

4 Results
In this section, we discuss our results from the
Standalone and Timing Models. We also perform
some sensitivity tests with the effective address
predictors.
4.1 Standalone Model Results
Asim’s Standalone Models allow us to study the
prediction coverage and accuracy of our effective
address predictors. Perfect is an ideal effective
address predictor, whose coverage and accuracy is

100% in the Standalone Model.5 Figure 7 shows the
coverage and accuracy of the other four predictors—
LAP, SAP, CAP, and DEAP. Figure 7a shows that a
hybrid of the four predictors—LAP, SAP, CAP, and
DEAP—could cover (i.e., make a prediction on) a
large percentage of dynamically executed loads in our
seven benchmarks. Individually, the predictors have
widely different coverage. LAP, SAP, CAP, and
DEAP cover 39%, 53%, 54%, and 32% respectively
of all loads. However, the hybrid predictor on average
covers 85% of loads across the seven benchmarks.

Figure 7b shows that an ideal hybrid, which can
always pick the best predictor for each load, can

5 Perfect’s coverage is, however, not 100% in the Timing model because
Perfect does not make a prediction on loads that depend on a recent prior
uncommitted store. In contrast, the Standalone model simply executes
instructions without a pipeline model and, hence, Perfect makes
predictions on, and therefore covers, all loads in the Standalone model.

Figure 6. Potential IPC Improvement from
Effective Address Predictors. The vertical axis is
% percentage improvement in IPC over the base
IPCs reported in Table 3. Four bars that are cut-
off from the top are: compress-Perfect = 60%,
health-DEAP = 218%, health-Hybrid = 234%,
health-Perfect = 244%.

Figure 7. (a) % Dynamic loads covered by all
predictors. (b) % Dynamic Loads predicted
correctly by predictors. Hybrid means that at least
one predictor tried to predict (for graph a) or
predicted accurately (for graph b) the effective
address of a dynamic load.

0

5
10

15

20

25

30

35

40

co
mpre

ss gc
c

m88
ks

im
mgri

d
em

3d
he

alt
h tsp

%
 Im

pr
ov

em
en

t i
n

IP
C

LAP
SAP
CAP
DEAP
Hybrid
Perfect

(b)

(a)

0
10
20
30
40
50
60
70
80
90

100

co
mpre

ss gc
c

m88
ks

im
mgri

d
em

3d
he

alt
h tsp

%
 D

yn
am

ic
 L

oa
ds

 C
ov

er
ed

LAP
SAP
CAP
DEAP
Hybrid

0
10
20
30
40
50
60
70
80
90

100

co
mpre

ss gc
c

m88
ks

im
mgri

d
em

3d
he

alt
h tsp%

 D
yn

am
ic

 L
oa

ds
 P

re
di

ct
ed

 C
or

re
ct

ly

LAP
SAP
CAP
DEAP
Hybrid

10

provide very high prediction accuracy. Like the
coverage results, the individual accuracy results vary
between 29% - 52% across the predictors. However,
an ideal hybrid could correctly predict the effective
addresses of 81% of dynamically executed loads that
it makes predictions on.

Table 4 explains why the ideal hybrid can predict the
effective addresses with such high accuracy. Table 4
shows a breakdown of correctly predicted loads for
each predictor and

Figure 5 shows the corresponding Venn diagram of
predictor coverage. For example, the column S shows
the percentage of loads that were correctly predicted
only by SAP. Similarly, the SC column shows the
percentage of loads that were correctly predicted by
both SAP and CAP, and not by any other predictor.
The S number does not include the SC number.

As Table 4 shows, SAP, CAP, and DEAP appear to
accurately predict different loads. For example, only
SAP correctly predicts the effective addresses of
27.9% of the loads in mgrid, while CAP alone
correctly predicts 23.8% of the loads in m88ksim. On
the other hand, only DEAP accurately predicts
between 19% – 49% of the loads in the Olden
benchmarks. Thus, an ideal hybrid of these
predictors can result in very high prediction accuracy.
4.2 Timing Model Results
Asim’s Timing Model combined with Oracle
Simulation allows us to study the upper bound of the
performance from effective address prediction. As
Figure 6 shows, the potential performance
improvement from effective address prediction varies
widely among the benchmarks. The potential

performance improvement (as shown by the Perfect
predictor) ranges from as low as 7% to as high as
244%. Interestingly, however, the ideal hybrid—the
predictor that always picks the correct predictor for
each load—performs very close the Perfect predictor
for most benchmarks. Individually, on average, LAP,
SAP, CAP, and DEAP result in 3%, 7%, 8%, and 36%
performance improvement respectively. The ideal
hybrid results in 44% improvement, while the Perfect
predictor performs 58% better. Note that the Perfect
predictor makes predictions on all loads, except those
that are dependent on recent prior stores in flight.
Similarly, the other predictors do not make predictions
on loads that depend on recent prior stores in flight.

Several interesting results stand out:

• The ideal hybrid performs very well for all
benchmarks, except compress. This is because
none of the predictors can accurately predict a
large fraction (25%) of the dynamically executed
loads in compress (Figure 9). Thus, for the hybrid
predictor, only 22% of all loads that miss in the
L1 cache go down the fast path. In contrast, the
Perfect predictor, which can issue the loads that
miss earlier in the pipe and thereby prefetch the
L1 misses (and L2 hits) ahead of time, predicts
accurately 97% of the loads.

• DEAP is extremely effective for the Olden
benchmarks and provides a performance
improvement between 49% - 63%. This is
because DEAP can predict loads that are in
pointer-chasing codes, such as the Olden
benchmarks. This is because of two reasons.
Like the RMS predictor, DEAP can prefetch L2

Figure 8. % Predicted Loads That Hit in L1.

Figure 9. % Dynamic Loads Predicted Accurately
in the Timing Runs.

0
10
20
30
40
50
60
70
80
90

100

co
mpre

ss gc
c

m88
ks

im
mgri

d
em

3d
he

alt
h tsp

%
 D

yn
am

ic
 L

oa
ds

 P
re

di
ct

ed
 (A

cc
ur

at
el

y)
 in

Ti

m
in

g
R

un
s

LAP
SAP
CAP
DEAP
Hybrid
Perfect

0
10
20
30
40
50
60
70
80
90

100

co
mpre

ss gc
c

m88
ks

im
mgri

d
em

3d
he

alt
h tsp

%
 L

1
H

its
 A

m
on

g
Pr

ed
ic

te
d

Lo
ad

s

LAP
SAP
CAP
DEAP
Hybrid
Perfect

11

hits that miss in the L1 cache. However, more
importantly, unlike the RMS predictor, DEAP
helps prefetch L1 hits. This is critical to
performance improvement because a large
percentage of the predicted loads actually hit in
the L1 cache (Figure 8).

• Finally, we found that increasing the DEAP size
had very little impact on performance of these
benchmarks. Increasing the DEAP size by
roughly seven times gave a performance
improvement of less than 1%.

5 Related work
In this paper we draw upon a huge body of prior
research on effective address prediction. The
predictors LAP, SAP, and CAP are based on work in
several papers, such as [4], [7], [8], [9], [10], [13], and
[15]. Additionally, many papers, such as [3], [4], and
[15], performed a comparative study of some of the
predictors and their hybrids.

We improve upon this prior body of research by
evaluating DEAP and understanding its prediction
rates and performance. DEAP is variant of the RMS
predictor [5]. However, unlike the RMS predictor,
which was used by Roth, et al. to prefetch cache
misses, we use DEAP to prefetch L1 cache hits and
issue loads early in the pipeline. We compare DEAP
with LAP, SAP, and CAP in terms of their prediction
rates and upper bound of performance achievable
from these predictors. We also show that on six of
our seven benchmarks an ideal hybrid predictor, that
picks the correct predictor for each load, can achieve
performance close to a Perfect Effective Address
Predictor.

Although we focussed on effective address prediction,
there are other ways to generate effective addresses
earlier in the pipeline. Austin and Sohi [14] proposed
overlapping effective address computation with cache
access with the help of special circuits and software
support. Bekerman, et al. [6] proposed tracking certain
registers and immediate values to calculate a load’s
effective address earlier in the pipeline. We believe
that a combination of these techniques along with the
effective address predictors we studied in this paper
will lead to good effective address prediction rates.

6 Conclusions and Future Work
Modern, deeply-pipelined, out-of-order, and
speculative microprocessors continue to be plagued by
the latency of load instructions. This latency is
dominated by the latencies to resolve the source

operands of the load, to compute its effective address,
and to fetch the load’s data from caches or main
memory. This paper examined the performance
potential of hiding a load’s data fetch latency using
effective address prediction. By predicting the
effective address of a load early in the pipeline, we
could initiate the cache access early, thereby
improving performance.

The current generation of effective address predictors
for a load instruction is based on either the history or
the context of the specific load. In addition,
researchers had examined load-load dependence
predictors to prefetch cache misses. This paper
examined the performance potential of using a load-
load dependence predictor to predict effective
addresses of load instructions and issue them early in
the pipeline. We called this predictor the DEAP
predictor.

We showed that on average DEAP could improve the
accuracy of effective address prediction by 28% over
a perfect combination of last address, stride address,
and context-based address predictors across our seven
benchmarks from the SPEC95 and Olden suite. We
found that an ideal hybrid of these four predictors
(including DEAP), which always picked the right
predictor for a load, could potentially achieve
performance close to that of a Perfect predictor in
most cases.

We used an oracle-based simulation approach to
evaluate our timing results. This method allowed us
to measure the upper bound of the performance from
effective address prediction using a mostly realistic
pipeline. However, our timing simulation method did
not account for penalty due to mis-prediction of an
effective address and assumed a zero-cycle latency
from address prediction resolution to address predictor
update.

This work can be extended in several ways in future.
To accurately reflect pipeline effects, one must model
the penalty due to the mis-prediction of the various
effective address predictors as well as realistic
latencies for address prediction resolution to address
predictor update. Also, it will be interesting to
understand the combined impact of load-load
dependence prediction on cache misses (or
prefetching) as well as cache hits (as studied in this
paper) for long-latency pipelines. An analytical
model may help in this effort.

12

Acknowledgements
We would like to thank Rick Kessler, Geoff Lowney,
and Paul Rubinfeld for their valuable feedback on
early drafts of this paper.

References
[1] George Chrysos and Joel Emer, “Memory Dependence

Prediction Using Store Sets”, Proceedings of the 25th
Annual International Symposium on Computer
Architecture (ISCA), June, 1998.

[2] Andreas Moshovos, Scott E. Breach, T. N.Vijaykumar,
and Gurindar S. Sohi, “Dynamic Speculation and
Synchronization of Data Dependences,” Proceedings
of the 24th Annual International Symposium on
Computer Architecture (ISCA), May, 1997.

[3] Glenn Reinman and Brad Calder, “Predictive
Techniques for Aggressive Load Speculation,”
Proceedings of the 31st Annual International
Symposium on Microarchitecture (MICRO),
December, 1998.

[4] Michael Bekerman, Stephan Jourdan, Ronny Ronnen,
Gilad Kirshenboim, Lihu Rappoport, Adi Yoaz, and
Uri Weiser, “Correlated Load-Address Predictors,”
Proceedings of the 26th Annual International
Symposium on Computer Architecture (ISCA), May,
1999.

[5] Amir Roth, Andreas Moshovos, and Gurindar S. Sohi,
“Dependence Based Prefetching for Linked Data
Structures,” Proceedings of the 8th International
Conference on Archtiectural Support for Programming
Languages and Operating Systems (ASPLOS), October,
1998.

[6] Michael Bekerman, Adi Yoaz, Freddy Gabbay,
Stephan Jourdan, Maxim Kalaev, and Ronny Ronen,
“Early Load Address Resolution via Register
Tracking,” Proceedings of the 27th Annual
International Symposium on Computer Architecture
(ISCA), June, 2000.

[7] M.H.Lipasti, C.B.Wilkerson, and J.P.Shen, “Value
Locality and load value prediction,” Proceedings of the
17th International Conference on Architectural Support
for Programming Languages and Operating Systems,
pp 138-147, October, 1996.

[8] T-F. Chen and J-L Baer, “Effective Hardware-Based
Data Prefetching for High Performance Processors,”
IEEE Transactions on Computers, 5(44):609-623,
May, 1995.

[9] R.J.Eikermeyer and S. Vassiliadis, “A Load Instruction
Unit for Pipelined Processors,” IBM Journal of
Research and Development, 37:547-564, July, 1993.

[10] Y. Sazeides and James E. Smith, “The Predictability of
Data Values,” Proceedings of the 30th International
Symposium on Microarchitecture (MICRO), pp 248-
258, December, 1997.

[11] Martin C. Carlisle and Anne Rogers, “Software
Caching and Computation Migration on Olden,”
Proceedings of the Fifth ACM SIGPLAN Symposium

on Principles & Practice of Parallel Programming
(PPoPP), July, 1995.

[12] James Smith in “Slow Wires, Hot Chips, and Leaky
Transistors: New Challenges in the New Millennium,”
Panel at the International Symposium on Computer
Architecture (ISCA), June, 2000. Moderator:
Shubhendu S. Mukherjee. Panelists: Robert Colwell,
Dirk Grunwald, Mark Horowitz, Norm Jouppi, James
Smith, and T. N.Vijaykumar.

[13] J. Gonzalez and A. Gonzalez, “Speculative Execution
via Address Prediction and Data Prefetching,”
Proceedings of the 11th International Conference on
Supercomputing (ICS), pages 196 – 203, July, 1997.

[14] T.M.Austin and G.S.Sohi, “Zero-cycle Loads:
Microarchitecture Support for Reducing Load
Latency,” Proceedings of the 28th Annual International
Symposium on Microarchitecture (MICRO), pages 82-
92, December, 1995.

[15] B. Black, B. Mueller, S. Postal, R. Rakvie, N.
Tamaphethai, and J.P.Shen, “Load Execution Latency
Reduction,” Proceedings of the 12th International
Conference on Supercomputing (ICS), June, 1998.

[16] Shubhendu S. Mukherjee, “The Asim Manual,”
Compaq Confidential Document.

[17] Candice Bechem, Jonathan Combs, Noppanun
Utamaphethai, Bryan Black, R.D.Shawn Blanton, and
John Paul Shen, “An Integrated Functional
Performance Simulator,” IEEE Micro, pp. 26 – 35,
May/June, 1999.

