Chapter 0
Prologue

Look around you. Computers and networks are everywhere, enabling an intricate
web of complex human activities: education, commerce, entertainment, research,
manufacturing, health management, human communication, even war. Of the two
main technological underpinnings of this amazing proliferation, one is obvious: the
breathtaking pace with which advances in microelectronics and chip design have
been bringing us faster and faster hardware.

This book tells the story of the other intellectual enterprise that is crucially fueling
the computer revolution: efficient algorithms. Tt is a fascinating story.

Gather "round and listen close.

0.1 Books and algorithms

Two ideas changed the world. In 1448 in the German city of Mainz a goldsmith
named Johann Gutenberg discovered a way to print books by putting together mov-
able metallic pieces. Literacy spread, the Dark Ages ended, the human intellect was
liberated, science and technology triumphed, the Industrial Revolution happened.
Many historians say we owe all this to typography. Imagine a world in which only
an elite could read these lines! But others insist that the key development was not
typography, but algorithms,

Johann Gutenberg
1398-1468

© Corbis

2

Today we are so used to writing numbers in decimal, that it is easy to forget that
Gutenberg would write the number 1448 as MCDXLVIIL How do you add two Roman
numerals? What is MCDXLVIII + DCCCXIR? (And just try to think about multiplying
them.) Even a clever man like Gutenberg probably only knew how to add and
subtract small numbers using his fingers; for anything more complicated he had to
consult an abacus specialist.

The decimal system, invented in India around AD 600, was a revolution in quanti-
tative reasoning: using only 10 symbols, even very large numbers could be written
down compactly, and arithmetic could be done efficiently on them by following
elementary steps. Nonetheless these ideas took a long time to spread, hindered
by traditional barriers of language, distance, and ignorance. The most influential
medium of transmission turned out to be a textbook, written in Arabic in the ninth
century by a man who lived in Baghdad. Al Khwarizmi laid out the basic meth-
ods for adding, multiplying, and dividing numbers—even extracting square roots
and calculating digits of . These procedures were precise, unambiguous, mechan-
ical, efficient, correct—in short, they were algorithms, a term coined to honor the
wise man after the decimal system was finally adopted in Europe, many centuries
later.

Since then, this decimal positional system and its numerical algorithms have played
an enormous role in Western civilization. They enabled science and technology;
they accelerated industry and commerce. And when, much later, the computer was
finally designed, it explicitly embodied the positional system in its bits and words
and arithmetic unit. Scientists everywhere then got busy developing more and more
complex algorithms for all kinds of problems and inventing novel applications—
ultimately changing the world.

0.2 Enter Fibonacci

Al Khwarizmi’s work could not have gained a foothold in the West were it not for
the efforts of one man: the 13th century Italian mathematician Leonardo Fibonacci,
who saw the potential of the positional system and worked hard to develop it further
and propagandize it.

But today Fibonacci is most widely known for his famous sequence of numbers
0,1,1,2,3,5,8,13,21,34,...,

each the sum of its two immediate predecessors. More formally, the Fibonacci num-
bers F, are generated by the simple rule

Fnﬁ1+Fn_.2 ifn>1
Fn——— 1 ifn=1
0 ifn=0.

0.2 Enter Fibonacct

Chapter 0

Algorithms 3

No other sequence of numbers has been studied as extensively, or applied to more
fields: biology, demography, art, architecture, music, to name just a few. And, to-
gether with the powers of 2, it is computer science’s favorite sequence.

In fact, the Fibonacci numbers grow almost as fast as the powers of 2: for example,
F3 1s over a million, and Fyy is already 21 digits long! In general, F, ~ 206941 (gee
Exercise 0.3).

But what is the precise value of F 100, OF Of F00? Fibonacci himself would surely
have wanted to know such things. To answer, we need an algorithm for computing
the nth Fibonacci number.

Leonardo of Pisa (Fibonacci)
1170-1250

© Corbis

An exponential algorithm

One idea is to slavishly implement the recursive definition of F,,. Here is the resulting
algorithm, in the “pseudocode” notation used throughout this book:

function fibl(n)
if n=0: return 0
if n=1: return 1
return fibl(n—1) + fibl(n—-2)

Whenever we have an algorithm, there are three questions we always ask about it:

1. Ts it correct?
2. How much time does it take, as a function of n?
3. And can we do better?

The first question is moot here, as this algorithm is precisely Fibonacci’s definition
of F,. But the second demands an answer. Let T'(n) be the number of computer steps
needed to compute fib1(n); what can we say about this function? For starters, if n
is less than 2, the procedure halts almost immediately, after just a couple of steps.
Therefore,

T <2 forn<1.

4

For larger values of n, there are two recursive invocations of fibl, taking time
T(n— 1) and T(n — 2), respectively, plus three computer steps (checks on the value
of . and a final addition). Therefore,

T =Tn-1)+Tnh—-2)+3 forn>1

Compare this to the recurrence relation for F,: we immediately see that T(n) > Fn.

This is very bad news: the running time of the algorithm grows as fast as the
Fibonacci numbers! T(n) is exponential in n, which implies that the algorithm is
impractically slow except for very small values of n.

Let’s be a little more concrete about just how bad exponential time is. To compute
Fa00, the f1b1 algorithm executes T (200) > Faoo = 2138 olementary computer steps.
How long this actually takes depends, of course, on the computer used. At this time,
the fastest computer in the world is the NEC Earth Simulator, which clocks 40 trillion
steps per second. Even on this machine, fib1(200) would take at least 292 seconds.
This means that, if we start the computation today, it would still be going long after
the sun turns into a red giant star.

But technology is rapidly improving—computer speeds have been doubling roughly
every 18 months, a phenomenon sometimes called Moore’s law. With this extraor-
dinary growth, perhaps fib1 will run a lot faster on next year’s machines. Let’s
see—the running time of fibl(n) is proportional to 206940 5 (1 6)7, so it takes
1.6 times longer to compute Fni1 than F,. And under Moore’s law, computers get
roughly 1.6 times faster each year. So if we can reasonably compute Figo with this
year’s technology, then next year we will manage Fjo. And the year after, Fio,. And
so on: just one more Fibonacci number every year! Such is the curse of exponential
time.

In short, our naive recursive algorithm is correct but hopelessly inefficient. Can we
do better?

A polynomial algorithm

Let’s try to understand why fibl is so slow. Figure 0.1 shows the cascade of
recursive invocations triggered by a single call to fib1(n). Notice that many com-
putations are repeated!

A more sensible scheme would store the intermediate results—the values Fg, Fq, ...
Fp_1—as soon as they become known.

function fib2(mn)
if n=0: return O
create an array f[0...n]
f[0] =0, fl1] =1
for i=2...1:

flil = fli—-11 + fli—-2
return f[n] ;

0.2 Enter Fibonacci

Chapter 0

Algorithms §

Figure 0.1 The proliferation of recursive calls in fib1.

// F\

F

1 Fn—2
Fn_g Fn_g Fn—3 Fn—4

Fn«S Fn—4 Fn—4 Fn—S Fn—~4 Fn—S Fn—5 Fn—G

As with fibl, the correctness of this algorithm is self-evident because it directly

‘uses the definition of F,. How long does it take? The inner loop consists of a single

computer step and is executed n — 1 times. Therefore the number of computer steps
used by fib2 is linear in n. From exponential we are down to polynomial, a huge
breakthrough in running time. It is now perfectly reasonable to compute Fyg or
even Fag0,000.'

As we will see repeatedly throughout this book, the right algorithm makes all the
difference.

More careful analysis

In our discussion so far, we have been counting the number of basic computer steps
executed by each algorithm and thinking of these basic steps as taking a constant
amount of time. This is a very useful simplification. After all, a processor’s instruc-
tion set has a variety of basic primitives—branching, storing to memory, comparing
numbers, simple arithmetic, and so on—and rather than distinguishing between
these elementary operations, it is far more convenient to lump them together into
one category.

But looking back at our treatment of Fibonacci algorithms, we have been too liberal
with what we consider a basic step. It is reasonable to treat addition as a single
computer step if small numbers are being added, 32-bit numbers say. But the nth
Fibonacci number is about 0.694n bits long, and this can far exceed 32 as n grows.

1o better appreciate the importance of this dichotomy between exponential and polynomial algorithms,
the reader may want to peek ahead to the story of Sissa and Moore in Chapter 8.

6

Arithmetic operations on arbitrarily large numbers cannot possi.bly be perfp;med
in a single, constant-time step. We need to audit our earlier running time estimates

and make them more honest.

We will see in Chapter 1 that the addition of two n-bit numbe.ers takes time roughly
proportional to r; this is not too hard to understand if you think bgck to the grgde—
school procedure for addition, which works on one digit at a tuqe. Thus fibl,
which performs about F, additions, actually uses a number of pamg steps roqghly
proportional to nF,. Likewise, the number of steps taken by' fib2 is propomonal
to n2, still polynomial in n and therefore exponentially superior to fib1. This cor-
rection to the running time analysis does not diminish our breakthrough.

But can we do even better than T1ib2? Indeed we can: see Exercise 0.4.

0.3 BigO notation

0.4. Is there a faster way to compute the nth Fibonacci number than by fib2

(page 4)? One idea involves matrices.

We start by writing the equations Fy-= F; and F, = Fy + F 1 in matrix notation:

F)-C) ()

Similarly,

and in general

()-C 1) ()

So, in order to compute F,, it suffices to raise this 2 x 2 matrix, call it X, to the

nth power.

(a) Show that two 2 x 2 matrices can be multiplied using 4 additions and 8

multiplications.

Exercises

But how many matrix multiplications does it take to compute Xm

(b) Show that O (logn) matrix multiplications suffice for computing X™.
(Hint: Think about computing X®.)

Thus the number of arithmetic operations needed by our matrix-based algorithm,
call it ib3, is just O(logn), as compared to O(n) for fib2. Have we broken
another exponential barrier?

The catch is that our new algorithm involves multiplication, not just addition; and
multiplications of large numbers are slower than additions. We have already seen
that, when the complexity of arithmetic operations is taken into account, the
running time of fib2 becomes o).

(c) Show that all intermediate results of Tib3 are O(n) bits long.

(d) Let M(n) be the running time of an algorithm for multiplying n-bit
numbers, and assume that M(n) = O (n?) (the school method for
multiplication, recalled in Chapter 1, achieves this). Prove that the
running time of fib3 is O (M(n) log n.

(e) Can you prove that the running time of fib3 is O(M(n})? Assume
M(n) = ©(n?) for some 1 < a < 2. (Hint: The lengths of the numbers
being multiplied get doubled with every squaring.)

In conclusion, whether fib3 is faster than fib2 depends on whether we can
multiply r-bit integers faster than O (n?). Do you think this is possible? (The
answer is in Chapter 2.)

Finally, there is a formula for the Fibonacci numbers:

1 [145) 1 [1=45

Fp = —
NAWE N

So, it would appear that we only need to raise a couple of numbers to the nth
power in order to compute F,. The problem is that these numbers are irrational,
and computing them to sufficient accuracy is nontrivial. In fact, our matrix
method fib3 can be seen as a roundabout way of raising these irrational
numbers to the nth power. If you know your linear algebra, you should see why.
(Hint: What are the eigenvalues of the matrix X?)

