Ground Rules

- See HW1.
- All problems will be graded.

Problems

1. Let us modify binary search in the following way. Given a sorted list of \(n \) elements and a target to search for, instead of querying the median of the list, we compare the target against a random element, and then recurse. Prove that in the worst case the expected number of comparisons the algorithm makes is still \(O(\log n) \).

2. You are given a sorted circular linked list containing \(n \) integers, where every element has a “next” pointer to the next larger element. (The largest element’s “next” pointer points to the smallest element.) You are asked to determine whether a given target element belongs to the list. The only way you can access an element of the list is to follow the next pointer from a previously accessed element, or via the function RAND that returns a random element of the list. Develop a randomized algorithm for finding the target that makes at most \(O(\sqrt{n}) \) comparisons in expectation and always returns the correct answer.

3. Suppose I have two degree \(n \) polynomials, \(A \) and \(B \), with integer coefficients. I think that \(A \cdot B = C \) (for some other polynomial \(C \)) and want to efficiently verify that this identity holds. One way of doing so is to multiply \(A \) and \(B \) and compare the answer against \(C \). The standard way of doing so takes \(O(n^2) \) time, although \(O(n \log n) \) is possible (using FFT, for example). I want to verify the equation in \(O(n) \) time.

(a) Suppose that \(D \) and \(E \) are two distinct degree-\(k \) polynomials. Let \(p \) be a prime number larger than \(k \) and all of the coefficients in \(D \) and \(E \). Consider picking a number \(x \) uniformly at random from \(\{0, \ldots, p-1\} \), and evaluate both \(D(x) \) and \(E(x) \) modulo \(p \). What is the probability that you get the same answer? In other words, obtain an upper bound on \(\Pr[D(x) = E(x) \pmod p] \) over the random choice of \(x \).

\(\text{ Hint: How many roots can a degree } k \text{ polynomial have over the set } \{0, \ldots, p-1\} \pmod p? \text{ For example, the polynomial } x^2 + 3x + 2 \pmod 5 \text{ can be factorized as } (x+2)(x+1) \pmod 5 \text{ and therefore has two roots, namely } 3 \text{ and } 4, \text{ over the set } \{0, \ldots, 4\}. \)

(b) Use your answer to part (a) to design an \(O(n) \) time randomized algorithm for the problem of verifying the identity \(A \cdot B = C \) that returns the correct answer with probability at least \(1/2 \). You may assume that basic arithmetic operations can be done in \(O(1) \) time.

\(\text{(Extra Credit)} \) Can you improve your algorithm from part (b) so that its error probability decreases to some small \(\epsilon > 0? \) What is the running time of your new algorithm in terms of \(n \) and \(\epsilon? \)