CS880: Approximation and Online Algorithms Scribe: Lorenzo Najt

Lecture 0: Experts Problem and Mirror Descent Date: LectureDate

The scribe is responsible for any errors in this document, which has not been scrutinized to the
degree a published work would be. References are given throughout, and the reader is encouraged
to look to them in case of typos.

0.1 Experts and Mirror Descent

In this lecture we study the expert’s problem, defined as follows:

Definition 0.1.1 (Experts Problem) Given: N choices indexed by i. Sequence of cost functions
¢t o [N]—[0,1].

Goal: Pick iy fort € [T] before observing ¢; to minimize Zte[T} ce(i).

The performance of an algorithm is measured in terms of the regret, Rp = Zthl c(iy) — Zthl e (i)
where i* € argmin;c | Zthl (7).

This problem is similar to metrical task systems, but will be easier to solve. We will develop a

solution which we will later understand to be mirror descent, a continuous optimization technique.
Then we will see how mirror descent extends to the metrical task system problem.

0.1.0.1 Comparison of experts to Metrical Task Systems (MTS)

Comparison against MTS:

1. No movement cost.
2. No look ahead (we choose the expert before observing the cost vector)
3. Bounded cost.

4. Comparing against a fixed expert.

We can think of each choice in [N] as being one point in the metric space, as in MTS. In this
problem, we call them “experts.” We are given a sequence of cost functions, mapping each expert
to a cost. We choose an expert and incur the cost that the expert causes. The major difference
between experts and MTS is that we pick the expert before observing the cost. On the other hand,
there is no movement cost, we can change the expert we follow without any cost. We will see below
that the combination of no movement cost, bounded costs and no look ahead is almost equivalent
to having movement cost and look ahead.

The bounded cost has to do with us bounding the regret, rather than the competitive ratio. Unlike
competitive ratio, regret is an additive notion: it says that the total cost that we incur should be
additively close to the total cost of the best expert. In the regret setting, the most cost we can incur



in any step is 1, so the regret is at most 7. Thus, anything regret linear in 7" would be unsatisfying
as answer. Our goal in this situation is to get sublinear regret. We will be able to achieve /T
regret in the experts setting, which is best possible. Note : if the optimal cost is linear in 7', and
our regret is v/T, then as a fraction of the optimal cost, the regret goes to zero.

Additionally, in experts we are comparing against a fixed expert, but in MTS we are comparing
against a moving target (the optimal hindsight algorithm can move the position of the server). The
regret guarantees we will achieve for the experts setting will be stronger, because the competing
algorithm (the best hindsight expert) doesn’t have the same power as our algorithm, which can
change expert from round to round.

0.1.1 Randomized Algorithm

The online algorithm will choose some sequence of distributions p; € AW over the experts, and
will choose experts based on it. Thus, the expected regret will be Z?:l Ep, (ct) = > cr(i*).

We would like to optimize for p,. However, we cannot just set p; based on ¢, because we must
determine p; before observing ¢;. We will rewrite the objective function to reveal a connection
to the framework where lookaheads are possible but where there is a movement cost. Note that
E,(ct) = (pt, ¢t), where (,) denotes the dot product of two vectors.

T T
D Eple) =Y ali) = (0.1.1)
=1 t=1

T T T T
ZEPz ct) ZEPt+1 ZEPtH(Ct) - th(i*) = (0.1.2)
=1 =1 =1 =1
T T
Z — P41, ¢t) + Z<Pt+1, ct — c¢(i%)) (0.1.3)
t=1 t=1

The first term in the last expression calculates the cost of ¢; under the change in p;, which is like
a movement cost with a metric depending on ¢;. Since ¢; < 1 this movement cost term is bounded

T
by > i [l — pesl]1-

The second term calculates the cost relative to the optimal expert; however, we have gained the
ability to look ahead, since we are comparign the cost vector at time ¢ with the proposed probability
distribution at time ¢ + 1.

We thus obtain the following bound Ry < >, (|pt — pe1]1 + (Peg1, 6 — ¢(37))).
We will find that the Li-metric is not a convenient notion to work with. Instead, we will work with
K L-divergence, which we now take a moment to review.

0.1.2 KL-Divergence and Entropy

Recall the definition of entropy of a probability distribution p on [IV]: Zie[N] pilog(1/p;). This
is in the range [0,log(N)]. KL-divergence gives a related way of measuring distances between
distributions:



Definition 0.1.2 Let p and g be distributions on [N|, then D(p|lq) = >, pilog(pi/aq:).

Observe that this is zero if ¢ = p. This intuition behind this function has to do with information
gain: If you thought the distribution was ¢, but it was actually p, this will be the amount of
information you gain when you observe samples from the distribution.

Fact 0.1.3 How to remember which is on the top and the bottom? If q is fixed, then this should
be convex, since it is a sort of distance function, so it should look like negative entropy rather than
entropy.

The idea will be to set p;1 = argmin,ex D(p||pt) +1(p, ), which tries to strike a balance between
not updating too much and accommodating information from the new cost vector. Here n > 0 is
some parameter called the learning rate, which will be tuned depending on the context. In the
next section we will show that the classical exponential weights algorithm is obtained from this
minimization. Later on, after developing the framework of mirror descent, we will see that this is
a simply projected gradient descent with the right choice of geometry, and that this minimization
problem is the proximal description of projected gradient descent.

0.1.2.1 Derivation of Exponential Weights Algorithm

In this section we will solve the minimization problem argmin,cx D (pllp:) + 17(p, ct). Let ¢(p) =
D(pllq) + (p,c) , where ¢ is a nowhere zero pdf on [N], ¢ : [N] — [0,1], and p ranges over the
probability simplex A[y). By calculating the Hessian to be Diag(p;/q:), one sees that this is convex
function over the probability simplex. From here, we will formulate the convex program, and
formulate the dual, and derive the exponential weight updates from the KKT conditions. From a
review of convex optimization, consult Boyd and Vanderberghe chapter 5.

min ¢(p) (0.1.4)

—pi <0 (0.1.5)

d pi—1=0 (0.1.6)
(0.1.7)

Thus, the Lagrangian is
LA\, v,p) =¢(p) — Z Aipi + V(Zpi -1) (0.1.8)

=3 (og(pi/a;) + ci — X+ v)pi) — v (0.1.9)

We can analytically minimize (log(p;/q;) + ¢;i — \i + v)p; with respect to p;, noting that this is only
defined on p; > 0 ( where it equals 0 when p; = 0 by continuity). We obtain, inf,, (log(p;/q;) + ¢ —
Ai+v)=—qexp(—1+ X\ —¢; —v).

We therefore obtain the following dual problem:



maXZ —giexp(=1+ X\ —¢ —v) (0.1.10)

Ai >0 (0.1.11)
veR (0.1.12)
(0.1.13)

We observe that at the dual optimal, we have A\ = 0. Based on this, gradient part of the KKT
optimality condition becomes V(p*) +v*V (> pf — 1) = 0, which is equivalent to log(p}/q;) + ¢ +
1+v* =0 for all ¢, or p; = giexp(—¢;) exp(—1 — v*). The term exp(—1 — v*) is the normalizing
constant.

With ¢; = p(i) and p; = pi11(7), this gives us the exponential weight update algorithm: py11(i) =
pi(i) exp(—c¢;)C, where C' is the normalizing constant.

We can add a weighting 7 to the (p,¢;) term in ¢(p), which is called the learning rate. One
would tune 7 to obtain optimal performance. If one repeats the above calculation with ¢(p) =
D(pe+1llpt) + mp - ¢, the update rule would become py11(i) = pi(i) exp(—c;)Cpia-

0.1.2.2 Analysis of Regret

In this section, we analyze the regret incurred by following the strategy of the previous section.
That is, we have

wq(i) = 1,Vi € [N] (0.1.14)
t—1
wy(i) = exp(—ner(i))wi—1 = exp(—n Y _ (i), > 2 (0.1.15)
s=1
pr= (0.1.16)
[we [y

Definition 0.1.4 (Regret Function) R, =) ;" p;-¢; —infi<icy Dy ci(i).
Theorem 0.1.5 By following the exponential weight update strategy with learning rate n, we have
that Ry, < w + L. By setting n = 2 21%(]\[), we get R, < \/nl%(]\f)'

We provide two proofs, although the second appears to be a proof of a slightly different statement.
The first is from : http://sbubeck.com/BubeckLectureNotes.pdfl The second proof emphasizes
the potential function perspective.

Proof: Let Wy =} oy we(i). First, we calculate:


http://sbubeck.com/BubeckLectureNotes.pdf

lo (W”+1 =log( > Wyy1(i)) — log(N) (0.1.17)
1€[N]
> log(m% wn41(4)) — log(N) (0.1.18)

1€

n

= —nmin () ¢(i)) - log(N) (0.1.19)

1€[N] o

Additionally, we have

Wy Wi
log(=3) = >_log(=7).
t=1

We let I; be a random variable on [N] distributed according to p; = I}U,—if Using Hoeffdings inequality,
we calculate:

W, N w (i)
log( m’zl) = log(; 1;% exp(—ncy(i))) (0.1.20)
= log(E(exp(—nct(11)))) (0.1.21)
2
= nB(ee(ly)) + & (0.1.22)
72
= —npt-ct+ Y (0.1.23)
Thus,we have:
Wht1 & Wt+1 772
log(d) <1 = log a0
jg[l]gl lct ) + log(d) < log( Wn) ; g —pe - Gt )
Rearranging gives R, < %l + log(d) [ |

We now provide a Second errro bound, in which the potential function analysis is more clear.
Roughly speaking, a potential function is a function of the current state, and not how one arrived
at that state, that is bounded below and which has the property that when the algorithm pay the
potential function decreases/l]

LA simple example of this kind of analysis is given by the binary experts problem where we are guaranteed that
there is an expert that is always right. That is, there are n strings x; € {0,1}", and one true string t € {0,1}". We
are guaranteed that there is an i so that z; = y. At each time ¢, we observe the first ¢ digit of the z;, and are asked
to make a guess about the tth digit of y. The majority vote algorithm makes this decision by taking the majority
vote of the set of experts that have made no mistakes by time ¢ — 1. Note that if the algorithm guesses wrong, the
pool of strings that will be considered the next time has decreased by half. Since the pool of experts will never be
zero, we see that the algorithm will make at most |log,(m)| mistakes. The two key features of this algorithm are :



Theorem 0.1.6 Y | p; - ¢ < 7 infi<icny Y1y c(i) + Llog(N).
Proof:
We follow http://www.cs.cornell.edu/courses/cs6820/2012fa/handouts/experts. pdf

We will define the multiplicative update algorithm in terms of multiplying w;(i) by (1 — €)t(®),
since this will make the algebra easier. This is of course the same, provided we pick an n with
exp(—n) = (1 —e).

Let Wy = > ,cywi(i) be the total weights at time ¢, and Cr(i) = ST, ci(i) be the total cost
incurred by expert i. Let ¢* be the optimal expert.

For our analysis, In(Wr) will be the potential function. From Wy > wz(i*) = (1 —€)°T") we have
the following lower bound on the potential function:
In(Wr) > In(1 — €)Cp(i¥) (0.1.24)

Next, or goal is relate decreases in Wr to the amount that the algorithm pays. We will let x; be the
decision that the algorithm makes at time ¢; note that this is random variable whose distribution
is determined by the wy (7).

In particular, we will prove the following inequality, which tells us that the drop in the potential
at time ¢ bounds a constant times the expected cost of the algorithm at time ¢:

eEcy(z)) < E(In(Wy)) — E(ln(Wy1)) (0.1.25)

We use [0.1.25] and in the following way: buy summing over all time steps we obtain
E(C L ci(ze)) < L(n(n) — E(Iln(Wr))) < L(n(n) + In(1)Cr(i*)), since Wy = n.

From this, we can apply the identity (1/y)In(1/(1 —y)) < 1/(1 —y) for y € (0,1) to obtain
B(Sim erla) < B+ L Or(i0).
We now show how to derive [0.1.25

1) it maintains a notion of how credible the set of experts are, the size of the pool of experts that have never made
a mistake. 2) Each time the algorithm makes a mistake, the credibility decreases multiplicative, but since we’ve
assumed the existence of an expert that is close to the true value, the credibility never decreases below some lower
bound. This algorithm is information theoretically optimal, which means that no algorithm can make fewer guess in
the worse case. The scribe convinced himself of the optimality in the following way. First, we recall that the notion of
an algorithm in this context is any sequence of functions f; from the strings z;[0, ] that outputs a bit. In order to be
optimal, we note that the adversary can produce any sequence of bits after observing the behavior of the algorithm,
so long as it doesn’t contradict the assumption that at least one of the experts is always right. This means that if
we have a pool of 2™ experts, making their first m prediction in accordance with a unique one of the 2™ elements of
{0,1}™, then for the first m steps the adversary can also choose the bit other than the bit chosen by the algorithm,
forcing any deterministic algorithm to make at least m mistakes.



http://www.cs.cornell.edu/courses/cs6820/2012fa/handouts/experts.pdf

E(Wigalw) = > E((1— €)@y (i)|wy) (0.1.26)

1€[N]

<) E((L — ece(d))we (i) Jwe) (0.1.27)
1E€[N]

= > wi(i) — B Eer(i)we(i)|w) (0.1.28)
1E€[N] 1E€[N]

= Wi(1 = €B( Y Bler(i)pi(i)|wr)) (0.1.29)

1€[N]
= Wi(1 — eE((Ew, (ct(x1)) |we))) (0.1.30)

(0.1.31)

From the last line above, an application of Jensen’s inequality along with In(1 4 z) < x for x > —1
(noting that the costs are in [0, 1]) yields:

E(In(Wisr)wy) < In(Wy) + In(1 — eB[(Ey, (ct(22))[we)]) (0.1.32)
< In(Wy) — €B[(Ew, (ci(x0))|wr)] (0.1.33)
(0.1.34)

Taking expectation of both sides and rearranging yields [0.1.25
|

We remark the the learning rate n depends on n, the number of trials we will undergo, sometimes
called the horizon. Since we may not know the horizon n , we cannot always expect to pick the
optimal learning rate. It is possible to obtain a regret bound of the same order by using the changing

learning rate of 1, = 2 log( ). See Proposition 2.4 of http://sbubeck. com/BubeckLectureNotes.
pdf.

Additionally, we remark that if ¢t € [m, M] instead an identical analysis applies, except that the
regret scales by a factor of

Mm

0.1.3 Continuous version, bounding regret

In this section we will examine the continuous time version of the algorithm derived in the previous
section.

That is, we have a continuous function C': [0,T] x N — [0, 1], and a differential strategy p : [0,T] —
Ay. Let i* be the expert minimizing fOT ¢(i*). Based on our transformation of the discrete time
problem into a movement term and a cost term, we consider minimizing the following regret:

Definition 0.1.7 (Continuous Regret) The regret functional is R(p fo |8tpt\1dt+f0 Dt, Ct—
cr(1%))dt.


http://sbubeck.com/BubeckLectureNotes.pdf
http://sbubeck.com/BubeckLectureNotes.pdf

In the discrete case, our update rule is py1(i) = pi(i)e "W Ny, where N; = 37, pi(i) exp(—ne (i)
is the normalizing constant. This can be rewritten as

log(pt+1(i)) — log(pt(i)) = —nee(i) + 10g(Z pi(1) exp(—nee (7))

7

If we think of the lefthand side as the discrete derivative, by analogy we can describe an ODE for
p¢ in the continuous time case:

O¢log(pe(i)) = —nee(i) + Ny, where Ny will be a function designed to ensure that Y p:(i) = 1 for
all t. Below we will derive the necessary formula for N;. By simple calculus this formula implies
Opi(i) = —nce(i)pe(7) + Nipe(i).

We will now compute NV;: Given, Y p:(i) = 1 it follows that

0="> dpi(i) = (0.1.35)

Z —nee(i)pe(i) + Nepe(1) = (0.1.36)

7

> (=neu(@)pe(i)) + Ny (0.1.37)

i

Thus, Ny =0, ct(i)pe(i) = n(pt, ¢;). This gives us an ODE describing the evolution of py:

. (0.1.38)
po = Uniform on [N]

{&: log(p(i)) = —nei(i) +npe -
We will now bound the expected regret of using this update rule/ ODE for the probability distri-
butions over the choice of experts. The proof strategy we follow will be to use a potential function:
this means that we will define a function such that each time we incur some large regret, the
potential function decreases a lot. We will then bound the total decrease in the potential.

We will denote the delta distribution on expert i by §;, and the potential function will be KL
divergence relative to d;+, where i* is the hindsight optimal expert.

Theorem 0.1.8 If p; follows the ODE above, then R(p) < 3(y/T log(N)).

Proof: The potential function P(t) = D(i*||p;) = —log(p:(i*)). From here, we calculate the rate
of change in the potential function: 0,D(i*||p;) = —0¢log(p:(i*)) = nee(i*) — n{pe, c). The first
equality in this last expression is the definition of KL divergence, and the second follows from the
ODE for the evolution p;. Continuing our calculation, we obtain (p:,c; — ¢(i*)) = %8tD(i*|pt).
Integrating both sides over ¢, we get:

Jo {prree = ca(i*))dt = 2D (*|[po) — D(i*||pr))] < &N

The last inequality follows since, D(i*|p¢) > 0, and py was uniformly distributed.

Additionally, using that ¢;(i) € [0,1] and the ODE describing the evolution of log(p:(i)), we have
2210 ()] = 225 In(pe(i)ce (i) = (pes ce)pe ()] < m((32; peli)ee(i)) + (pes cr)) < 2n




From the definition of the regret we get R(p) < 2nT + log(N)/n . We optimize this inequality by
choosing n = /log(N)/T, from which we obtain R(p) < 34/T'log(N)).

0.2 Mirror Descent

In this section we will put the algorithm above into the general framework of mirror descent. First,
we will review projected gradient descent in the FEuclidean case.

0.2.1 Projected Gradient Descent

In order to state the optimality conditions for convex optimization over a convex set, we will need
the notion of the normal cone at a point:

Definition 0.2.1 (Normal Cone) Let K be a convex set, and y € K. Then Nk(y) = {6 € R™:
Ve € K,0 - (x —y) < 0} is called the normal cone to K at y. It consists of all the directions that
would take you out of K.

Lemma 0.2.2 Let K be a convex set, and f a differentiable convex function. Theny € argmingcy f(x)
if and only if =V f(y) € Nk (y).

Proof: Let y € K satisfy —Vf(y) € Nk(y). Let z € K. Since f(z) > f(y) + Vf(y)(z — y)
by convexity, and Vf(y)(z —y) > 0 by =V f(y) € Nk(y), it follows that f(z) > f(y). On the
other hand, suppose that y € argmin,c f(x). If (=Vf)(y) € Nk(y), then there is € K so that
(=Vf(y))(xz —y) > 0 so by definition of the directional derivative there is some € > 0 so that
fly+ (@ —yle) < fly). .

The following lemma shows that Euclidean projection onto any convex set only decreases the
distance to other points in that set. This will be relevant when showing that the projection step of
projected gradient descent does not lose any relevant information.

Definition 0.2.3 (Euclidean Projection) Define the function Ik (2) = argmin,ck||z — ylla-

Lemma 0.2.4 (Properties of Euclidean Projection) For any closed convex set K, there is a
unique solution to argmin,er||z —yll2. Thus, Ik (z) exists and is well defined. If y = Ik (z), then
for any w € K, [ly — wlls <[z — w]].

Proof: The existence of the minimum follows by a compactness argument. The uniqueness of
the minimum then follows by strict convexity of the distance function. The inequality follows by
writing z = y + p, where p is in the normal cone to K at z; this can be done because of the

optimality conditions for optimizing the function f(x) = ||z — 2||?, which has —V f(z) = 2z — x, so
z—1y € Nk(y) if y = argmin,c g f(z). The claim now follows by expanding (y +p —w,y+p—w) =
111 + llwl[* = 20y, w) + |Ipl|* = 2(p,y — w) > {y — w,y — w), using that (p,w —y) < 0. m

We note that in some cases, such as for the case of K being the probability simplex, the problem
of finding the nearest point in Euclidean distance can be solved exactly.

Definition 0.2.5 (Projected gradient descent) We fiz n € Ry, called the learning rate. The
algorithm starts with a point xo. The algorithm is defined by the update rule: xy11 = g (z; —



NV f(z)).

In order to analyze the performance of projected gradient descent, either as an optimization algo-
rithm or an online learning algorithm, the notion of a potential function is important. We already
met potential functions in the second analysis of the experts problem given above. Roughly speak-
ing, a potential function is some function of the distance to the optimal point and the difference in
optimal values, which can be guaranteed to decrease during each step of the algorithm, and which
will never become negative. By analyzing how the potential function changes, one gains insight
into how the optimization algorithm approaches the optimum value.

Definition 0.2.6 (Potential function for projected gradient descent) Suppose that x* is the
minimum of f. The function ||z, — x*|| is called the potential function.

The following theorem shows how these tools fit together in the optimization context. Note that
the online learning context is a strict generalization, in which the function f might change from
round to round.

Theorem 0.2.7 Suppose that f is L-Lipschitz. If projected gradient descent runs for T’ steps with
n= I==2oll “there is a t < T such that flxy) — f(2*) < Llla” ~aoll

VT vT
Proof: It is a simple calculation to verify that ||a||> — ||a — b||2 = 2a - b — ||b||>. Thus, taking
a=a"—xand b = x4 — 2y = —nV f(24), we have that:
" = 2|5 = [Jo* = zenl[3 = 202" = 20) - (=0 V f (22)) = |V f ()13 (0.2.39)
> 2(f(xe) = f(2*) =PIV f(20)|13 (0.2.40)
> 2)(f () — f(a*)) —°L? (0.2.41)

0.2.40| followed because from convexity we have that f(x;) — f(2*) < V f(zy)(xp — ).

Summing over all steps, we obtain:

[|l* = @] = [l2* — 2] [|l2* = 1]

2n

T
D (fla) — f(z*) <

+ 02 <
P 2n 2

n 2
—TL
+2

The result follows by making the optimal choice of 1, as ¢(n) = % + % is minimized when n = 4/ %.
|

A key idea in the previous argument is that the reduction in the potential is related to the subop-
timality gap.

We remark that you may not know the optimal learning rate in advance, so one may have to make
a guess for a bound ||z* — z¢|| < D. From this the calculation of the previous theorem will provide
l|z* — 21]|?/(2n) + (n/2)TL? < D/(2n) + (n/2)TL*> < vV/DTL. Note that if f is L’ Lipschitz, and
L > L/, then it is also L-Lipschitz, hence bounds on the Lipschitz constant are also acceptable for
the analysis.

In order to understand the minimization problem from earlier that lead to the exponential update
algorithm, the following optimization interpretation of the gradient descent step will be useful:

10



Proposition 0.2.8 Let K be any convex set. Il (y —v) = argmingnxv -« + 3|z — y||*.

Proof: argmingi,x(v-z+ %Hl‘ —yl?) = argminmnK(%2 + (z,v—1y)). Let ¢(x) = %2 + (z,v—1y),
which is a strictly convex function. We know that the minimum occurs at z iff —V¢(z) € Ng(z)
ory—v—a € Ng(z). This holds for x = IIx(y — v), so the claim follows. ]

0.2.1.1 Euclidean Projected Gradient Descent for the experts problem

In this section we will show that one can derive a suboptimal algorithm for the experts problem
through Euclidean projected gradient descent. Mirror descent will generalize projected gradient
descent, and recover the optimal exponential weights algorithm from beforeE] The value of this
section is to demonstrate the use of the correct geometry.

Translating the experts problem in the projected gradient descent setting, and denoting the prob-
ability simplex by A, we have z;1 = A (2 — ney).

The regret is Zle(ctpt —l¢q), where ¢ is the hindsight optimal expert.

The calculation from the analysis of projected gradient descent gave:

[|[2* — 2|3 — ||z* — 2e01||3 = 2(z* — 2) - (=0 V f(21)) — n?||V f(z¢)||3, which in this context is:
g = pell3 = llg — pesall3 = 2(q — pe) - (=nee) = n?[le 5.

Summing this over all ¢, and using that ||c;||3 < N and ||g — p||2 < 1] we get:

T
49—
Regret = th(pt —q) = I

1°

—lg = pr+1l)? o 1 TN??
o Z||CH2_?

Tuning, we obtain an error bound of /TN, which is suboptimal compared to /T log(NN) obtained
earlier from the exponential weights algorithm. However, the idea to use gradient descent is right;
we just need to work in a different geometry. This geometry can thought of as incorporating
additional information about the problem. For the experts problem, we know that the optimal
solution sparse (unless many experts are equally good), and we will modify the geometry so that
gradient descent moves faster when far from a sparse point.

0.2.2 Preliminaries for Mirror Descent

These notes were useful in the creation of these notes:

1. http://sbubeck.com/BubeckLectureNotes.pdf
2. https://www.cs.ubc.ca/~nickhar/F18-531/Notes20.pdf

3. https://homes.cs.washington.edu/ jrl/teaching/cse599swil6/notes/lecture3.pdf

2For more on how Mirror descent can recover classical algorithms, see the following talk by Alexander Madry:
https://www.youtube.com/watch?v=noRNcDbqtVY

< (Ep)t=1

11


http://sbubeck.com/BubeckLectureNotes.pdf
https://www.cs.ubc.ca/~nickhar/F18-531/Notes20.pdf
https://www.youtube.com/watch?v=noRNcDbqtVY

Recall that the idea of projected gradient descent is that you take a step in the gradient direction,
and then find the nearest point in the feasible set to project back on to. Usually, by projection
we mean to find the closest point in Euclidean distance. The insight of Mirror descent is that in
certain contexts Euclidean distance is not as useful as other notions of distance.

We will use K L-divergence instead. Although K L-divergence is not a metric, the convexity inherent
will make it amenable to a more general projected gradient descent theory called mirror descent.

We will now describe the basic theory underlying mirror descent.
Definition 0.2.9 Throughout, D will denote an open convex subset of R™.

Definition 0.2.10 (Legendre Function) A function F : D — R is Legendre if:

o I is strictly convex and has continuous partials on D

o lim, 5, [IVF()]| = o

Recall that if ¢ is convex, we have ¢(y) > ¢(z) + (Vo(x), (y — x)). Bregman divergence measures
the error of this lower bound.

Definition 0.2.11 (Bregman Divergence) Say that F is a Legendre funcftz’on onD. Let x,y €
D. We define: Dp(z,y) = F(z) — (F(y) + (z — y)TVF(y)) for any (x,y) € D x D.

We will only use certain Legendre functions for gradient descent.

Definition 0.2.12 (Mirror Map) A mirror map will be any Legendre function F defined on a
region D C R", such that VF (D) = (]R”)*EI

The most basic example of a mirror map is the function ||z||3 defined on R”, from which we will
recover projected gradient descent. An important example of a mirror map will be ), x; log(z;) +

> x; on RY.
0.2.2.1 Infinitesimal Bregman Divergence as a Riemannian Metric

In this section we pause to examine the Bregman divergence as a Riemannian metric. Observe
that if ' has continuous second derivatives, then we obtain via Taylor series expansion: F'(z) =
F(y)+VF(y)(z—y)+(z—y)5VF(y) (@ —y) +O(|ly—=||*). Thus, Dp(z,y) = (z—y)5V>F(y)(z—
y) + O(|ly — z||?). In particular, we have that Dr(y + h,y) = h3V2F(y)h + O(||R[|?).

Recall that the differential df lies in the cotangent bundle; in order to bring it back to a vector
in R™, we need to use the inner product given by the Riemannian metric g. When we do so, we
obtain:

grad, f(z) = (V2 F(2)) " (Vf(x)).

In the previous formula V f is the usual Euclidean gradient. Unconstrained mirror descent takes
steps in the —ngrad, f direction; with constraints these steps will be projected back to the feasible
set.

“In some sources this last condition is dropped; if VF(D) C R™ some care is needed to make sure that the
algorithm is well defined. We discuss this below when we define the algorithm.

12



In the remainder of this section, we will calculate this Riemannian metric in the case when the
underlying set is the interior of the probability simplex on [n], and the mirror map is negative
entropy F'(p) = >, pilog(p;). In this case, the metric we obtain is called the Fisher information
metric. We show that after a change of variables it becomes the usual round metric on the sphere,
and recall some intriguing comments about the connection to the Fubini-Studi metric on the space
of quantum states.

First, it is straightforward to calculate that V2F(p) = Diag(1/p;). Thus, the Riemannian metric
can be written ), %.

We will now consider the map y; = p?, mapping the probability simplex to the intersection of the
unit sphere with the positive orthant. Let > dy;dy; be the standard Euclidean metric restricted to
the sphere. Since y; = /p;, we can calculate the pullback of this metric along the map p — y as
follows:

1 dp;dp;
4 pi

> dyidys = Y d(v/)d(VP) = Y

i

In a comment on his blogﬂ John Baez points out that this metric suggests the quantum formalism:
when think of a probability distribution, we may prefer to think of a point on the sphere that
normalizes to that probability distribution. That is, there is a natural section of the probability
amplitude map S?"~! — CP" — A,,, whose image lies in the non-negative real orthant, and of
course this is the map (r1,...,2,) = (3,...,22), which is the map transforming the Fischer metric
to the round metric. Working with the Fischer metric is on the simplex like mapping probability
distributions to the quantum state in the real positive orthant of CP", and using the Fubini-Study

metric.

Finally, we note that boundary of A,,, V2F blows up, so grad, f is shrunk. We will see that can think
of this as slowing down the walk near the boundary of the probability simplex, or (comparatively)
speeding it up in the interior. In the context of the experts problem, this can be thought of as
incorporating the information that we are competing against a good single expert.

While we can think of the unconstrained case as gradient flow, and thus a setting for classical ODE
theory. In https://arxiv.org/pdf/1711.01085.pdf one can see how in the constrained case we
can obtain a differential inclusion with a good existence and uniqueness theory.

0.2.2.2 Background on Fenchel Duality
We will now collect and prove several fundamental properties of the Bregman divergence. A key

concept for these results is the Fenchel dual (Convex Conjugate):

Definition 0.2.13 (Fenchel Dual) Let D C R", and f : D — R be any function. We define
f*(u) = supyep(zTu — f(z)), called the Fenchel (or convez) dual.

f*(u) can be interpreted as the amount needed to shift f down so that 27 u just touches its epigraph.
The notion of duality it invokes is that of describing the epigraph by the collection of supporting

https://johncarlosbaez.wordpress.com/2011/03/02/information-geometry-part-7/

13


https://arxiv.org/pdf/1711.01085.pdf
https://johncarlosbaez.wordpress.com/2011/03/02/information-geometry-part-7/

half-planes. If f(x) = cx, then f*(u) = 0c0dyze, and (f*)*(x) = sup, (xu — 00dyx.) = cx. Thus, if h
is an affine function, (h*)* = h.

Lemma 0.2.14 (Properties of the Fenchel Dual) Suppose that f : D — R is some function.
Then:

1L(f)r<f

2. If f > h, then f* < h*

3. If f is closed and convex, then (f*)* = f.

4. If f is closed and convex, then f*(s) =s-x — f(z) iff s € f(x) iff z € Df*(s).

Proof:

1. Follows from:

(f)"(x) = useuﬂgl(ux —f(u) = (0.2.42)
sup (ux — sup(uz — f(z)) < (0.2.43)
ueR™ zeD

:gﬂg(uw — (ux — f(z)) = f(x) (0.2.44)

2. f*(u) = sup,(wu — f(2)) < sup, (eu — h(z)) = h* (u).

3. Since f is a closedproperﬂ convex function, we may write f is the supremum of all the affine
functions that it majorizes.

4. If f*(s) = sx — f(z), then for all z we have that sz — f(z) > sz — f(z), which we can

rearrange into f(z) > f(z) + s(z — z). In other words, this implies that s € 9f(x). On the
other hand, if s € df(x), then f(z) > f(z) 4+ s(z — x) holds by definition of subgradient, and
so f*(s) = sz — f(z).
For the last iff statement we will use that f is closed and convex, in order to use that f** = f.
Since f*(s) = sz — f(x) iff (f*)*(z) = f(z) = xs — f*(s), we get that x € 9f*(x). On the
other hand, if z € 9f*(s), we have f*(s') > f*(s) + (s —s) Vs, so xs — f*(s) > zs' — f*(5')
Vs’ so xs — f*(s) = (f*)*(z) = f(z).

Let f: D — R™. We think of Vf as a function D — R", sending a point x to the gradient of f
at that point: x — V., f. We let D* be the image of D under this map. With this understood, we
have the following lemma:

5That is, it is not +oo eveywhere, and it is nowhere —co.

14



Lemma 0.2.15 If F is Legendre then F* is also differentiable and V(F*) = (VF)™! on D*.

Proof: If we can show that F* is also differentiable, then we will be done as we will have that
F*(u) = ux — f(z) iff w = VF(x) iff x = VF*(u). Putting the last two statements together gives
z = (VF*)(VF(x)).

Since F™* is a supremum of affine functions, we know that it has subderivatives everywhere. Suppose
that z,2’ € 9F*(u), so that F*(u) = ux — F(z) = ua’ — F(2'). Rewriting this last equality, we get
F(z) = F(2') +u(z —2'). Since F is strictly convex, this implies that = 2’. Thus F** has exactly
one subdifferential at each w. This implies that F' is differentiable everywhere. |

We will now calculate two key examples of Bregmann divergences. The first will help us relate
this to ordinary gradient descent, and the second will be relevant to the our study of the experts
problem.

0.2.2.3 Squared Euclidean Distance
We take F(z) = %||z|[3 and D = R™. Then Dp(z,y) = ||z — y|[3.
0.2.2.4 KL-Divergence

F(z) =Y x;log(x;) — 3 x; defines the generalized negative entropy on D = (0, 4+-00).
We have Dp(z,y) = > x;log(zi/yi) — > (x; — yi), which is called the generalized K L-divergence.
VF = (log(z;)) so D* = R™.

0.2.3 Further Preliminaries on Mirror Descent

Returning to the general theme, we will now prove several lemmas that are key to the Mirror
descent algorithm, and show that the online experts algorithm of the previous section is a special
case of Mirror descent.

Lemma 0.2.16 If F' is Legendre, then we have Dp(x,y) = Dp«(VF(y), VF(x)).

Proof: This follows from straightforward algebra, using the definition of the Bregman divergence
and the identity (VF)~! = (VF*). [ ]

Lemma 0.2.17 (Generalized Pythagorean Theorem) Dp(x,y)+ Dr(y,z) = Dp(z,2)+ (x—
y)(VE)(2) = VF(y))

Proof: This follows by straightforward algebraic manipulation. [ |

The important thing is that Dp behaves like squared FEuclidean distance. To verify this, we need
several more lemmas:

Lemma 0.2.18 If F' is Legendre then Dp(x,y) is strictly convez in x.
Proof: Since Dp(z,y) = F(z) — (F(y) + (x — y)TVF(y)), this follows from the strict convexity

of F. =
Lemma 0.2.19 V,Dp(z,y) = VF(x) — VF(y)
Proof: Dp(z,y) = F(z) — (F(y) + (z — y)TVF(y)), so VDp(z,y) = VF(z) + VF(y). |

15



Scribe Remark: We will assume that F has a continuous extension to D. I'm not sure if this
matters, but it makes the statements easier and is true for the two examples (generalized entropy
and Euclidean squared distance).

Proposition 0.2.20 If A C D is closed and conver, with AN D # 0, then Vo € D, b =
argmingeADp(a,x) exists and is unique. Moreover, if b € AN D, then Ya € A, Dp(a,z) >
Dr(a,b) + Dp(b, ).

Proof: Uniqueness + Existence follows from the strict convexity of F, and the fact that A is
closed and convex. The second condition will follow from the generalized pythagorean theorem plus
the normal cone optimality conditions for minimizing a convex function. [ |

The previous proposition lets us define the projection onto A using the Bregman divergence:
Definition 0.2.21 (Bregman divergence projection) Under the conditions of let 14 (z) =
argminge anpDr(a, ).

0.2.3.1 Mirror Descent

The mirror descent algorithm operates as follows; where [; is the sequence of (differnetiable) loss
functions.

1. Start at a; € argmin,c 4 F(a).
2. Set wip1 = (VF) YV F(ar) — nVlii(ar)). ]

3. Set at1 = argminge 4npDr(a, wir1) = I (wig1).

We examine the optimization perspective on these updating steps. As we saw much earlier with
the experts problem, this perspective can be useful for deriving explicit formulas for the update
steps via convex duality.

Proposition 0.2.22 (Proximal Formulation) |§| The update step of the Mirror descent algo-
rithm can also be described by: ai1 = argminge snp(ngi © + Dp(x, ar)).

Proof:

agt1 =argminge anp D (2, wii1)
=argmin,e snp (F(2) = VF(wiy1) - x)
=argmin,c onp (F(2) — (VF(ar) — nVi(ar)) - )
=argmingc onp (MVii(ar)) - @ + (F(z) — VF(ar) - ))
=argmin,c onp (MVie(ar)) - @ + (F(x) — (F(ar) + VF(ar) - (x — a)))
=argmin,c np(NVie(ar)) - © + Dr (2, ar))

"This is well defined if VF(a:) — nVlii(a:) € D*. In the case of interest to us, where the mirror map is negative
entropy, D* = R", so this condition will always be satisfied.
8See https://blogs.princeton.edu/imabandit/2013/04/16/0orf523-mirror-descent-part-iii/

16


https://blogs.princeton.edu/imabandit/2013/04/16/orf523-mirror-descent-part-iii/

Below, we will show how the experts problem can be cast as mirror descent. The reader can refer
to the given references to see how this provides us with a regret bound that matches our earlier
analysis.

Finally, we remark that for F(z) = $||z||3 mirror descent recovers Projected Gradient Descent.
0.2.3.2 Online Mirror Descent and experts

In this section we verify that the online mirror descent algorithm, with A the probability simplex
and mirror map the negative generalized entropy results in the exponential weight update algorithm
from before. First, we note that D* = R", so the step updating w1 in mirror descent is always
well defined.

We now examine the projection step. Recall:

Dp(z,y) = F(z) — (F(y) + VF(y)(z — y)
sz log xz sz Zyz IOg yz Zyz log yz (‘T - y))
= (yi— )+ > wilog(xi/ys)

To compute the projection to the probability simplex using the Bregman divergence D, we will
need the following lemma:

Lemma 0.2.23 If f is convex and differentiable on X, then f(x) < f(y) for ally € X iff V f(x)(y—
x) >0 forally e X.

Proof: This is a reformulation of the optimality conditions, Vf(x)(y —z) > 0 for all y € X is
equivalent to —V f(z) € Ng(x). ]

We use this to show that in this context the projection map is just renormalization.

Lemma 0.2.24 In the setting A = A, is the probability simplex, and F is generalized negative
entropy, we have 115 (y) = ﬁ

Proof: Since the minimizer is unique, and specified by the condition of [0.2.:23] it suffices to
show that i satisfies it. We have f(x) =>(yi — x;) + > wilog(zi /y:), so Vf(z) = (log(x;/yi)-
We need to show that Vf(x)(z —x) > 0 for all z € A,. But, we have that Vf(z)(z — z) =
>_ilog(wi/yi)(zi — i) = 32, log(1/|[yll1)(zi — ws) = log(1/[lyl|n) (3=, 2 — > wi/llyll) = 0. =
Now we tackle the weight update term. Since l;(x) = ¢; - x, by definition we have that w;y; =
(VE)"H(VF(a) = 1Vcr))

We recall that (VF)(z) = (log(z;)), so (VF) ™ (u) = (exp(u;)). Thus, we have w1 (i) exp(log(a;(i))—
nee(i)) = a(i) exp(—ney(i)). This, along with the calculation of the projection map, shows that
online mirror descent recovers the exponential weights algorithm.

17



0.3 Metrical Task Systems

Finally, we explain a little about an important modern application of Mirror descent to the metrical
task system problem. This follows https://arxiv.org/pdf/1807.04404.pdf| closely.

0.3.1 Metrical Task Systems Problem

First, we recall the metrical task system problem. We have a metric space (X,d), |X| = n. The
input is a sequence of costs, ¢, : X - R4, t € N.

Definition 0.3.1 (Online Algorithm) An online algorithm is a sequence of maps p = (p1, p2,---),
where py : (Rf)t — X maps a sequence of costs functions to a state in X. We have a fized initial
state pg € X. If the maps p incorporate some randomness, then the map is said to be a randomized
online algorithm.

Definition 0.3.2 (Total Cost of the Algorithm p in a cost sequence) Let ¢ = (cy,...,¢)
be a sequence of cost functions, ¢; : X — Ry. The total cost of the algorithm p in servicing c
18:

costy(c) = > lerlpeler, .. ) +dlpi-i(er, ... i), plens. . cr))
t>1

. ct(pt) is referred to as the service cost, and d(pi—1,pt) is the movement cost.

Definition 0.3.3 (Service and movement costs.) If p is a randomized online algorithm, define
Sy(e) =E> " ci(pr)) to be the expected service cost and My(c) = E(Y" d(pe—1,pt)) to be the expected
movement cost.

Definition 0.3.4 (Offline optimum) For a sequence of cost functions ¢, the offline optimum,
cost*(c) is the infimum of > (ct(zt) + d(zi—1, 1)), where x is any sequence of states (of the same
length as c).

Definition 0.3.5 (a-competative) Let p be a randomized online algorithm. It is said to be com-
petative if for every starting position py € Xﬂ there is a constant 5 > 0 such that for all cost
sequence c,

E[cost,(c)] < acost(c) +

0.3.2 Tree Metrics

Definition 0.3.6 (Tree Metric) Let (x,d) be a metric space with a distinguished point r € X.
(X, d) is a tree metric if it is the shortest path distance on a metric tree. The combinatorial depth
of X is the depth of the tree rooted at the point r.

Definition 0.3.7 (Hierarchically separated tree) A hierarchical separated tree (HST) with sep-
aration T > 1 is a tree metric (X,d,r) such that if T = (V,E,d) is the corresponding met-
ric tree, and if T, denotes the subtree rooted at the vertex of e = w,v furthest from r, then
diam(T.) < (1/7)d(u,v)['] These are also called T-HST metrics.

Tt suffices to make this definition for any deterministic starting position.
10That is, traversing the subtree is within a factor 7 as expensive as crossing the edge to enter it.

18


https://arxiv.org/pdf/1807.04404.pdf

Fact 0.3.8 Any metric space can be probabilistically embedded in a weighted HST of depth O(log(n))
and separation T with distortion O(1log(n)). An O(f(n))-competative algorithm for metrical task
systems on T7-HSTs implies an O(f(n)7log(n)) competative algorithm for any metric space.

In the next section we will survey how to produce a O(log(n))-competative randomized algorithm
for metrical task systems on HST metrics.

0.3.3 Continuous Time Mirror Descent

For this application of mirror descent, we will work with a continuous-time model. (The scribe is
not sure why.)

Definition 0.3.9 (Continuous Time Online Algorithm) An online algorithm is a family of
maps p(T), T € Ry, from piece-wise continuous paths of costs functions ¢(t) : X — Ry, t € [0,T]
to random variables p(T) € X.

Definition 0.3.10 (Service Cost) S = IE(f]R+ c(t)(p(t))dt.

It appears that we assume that for any path of costs functions, ¢, p(T') makes only finitely many
jumps in each interval. With this assumption, we can assume without loss that p is right-continuous,
and make the following definition:

Definition 0.3.11 (Movement Cost) M =E(}_; )., dp(t), p(t)).

(Scribe notes: The definitions in the source text are a little hard to interpret. This is what I think
is going on. We note that the goal is to prove something in the discrete time case, after all, and
that when we examine their algorithm... this is perhaps the kind of process that we will get. Note
that while their path of probability distributions given by mirror descent will be a continuous, it’s
not implausible that the stochastic process that one gets out of it only makes finitely many jumps.)

Theorem 0.3.12 The existence of an a-competative algorithm for the continuous-time model with
piecewise continuous costs implies the existence of an a-competative algorithm for the discrete-time
model.

Proof: Suppose that C' is the discrete time cost vector. We let T' = maxzex C(7). (c(t))se(o,]
is a waterfilling continuous time version of ¢, which is ¢(t)(z) = 1g@)>- (Note that this is a
step function that takes the values 0 or 1...I). Let (p(t));co,r) be the "path” taken by the a-
compatative continuous time algorithm on this cost function path, starting with p(0) = po. If we
let s = argmin,cfg 71C (p(t)), the cheapest location that p lands on during this time interval, then
we have that fOT c(t)(p(t))dt > C(p(s)).

We also have that the movement of the continuous-time algorithm is at least d(p(0),p(s)) +
d(p(s), p(T))-

Thus, the discrete time algorithm can move to p(s) during that interval. When it comes time to
move during the next time interval, then movement cost of the continuous time algorithm will be

d(p(T), p(s')) + d(p(s'), p(T")). Since d(p(s), p(s')) < d(p(s), p(T)) + d(p(T), p(s')) by the triangle
inequality, it follows that the total movement cost of the discrete time algorithm is less than that

of the continuous time algorithm.

The offline optimium in the continuous time case is smaller than the discrete-time case, because

19



the continuous time model can at the very least do exactly the same moves as the discrete time
case. [

0.3.4 High Level Overview of what is left over

At this point the scribe is pretty confused. It seems like the authors of this paper do two things:

1) They transform the problem into one about following a path of probability distributions.
For a sequence of probability distributions, it is clear how to use coupling to get a stochas-
tic process in X, and one where the expected movement cost is the same as the total earth-
movers distance cost for the sequence. For a continuous family of probability distributions, this
is less clear. The scribe opened a question: https://mathoverflow.net/questions/347344/
jump-process-with-marginals-given-by-a-curve-of-probability-distributions. If you
know the answer (or maybe where the scribe went wrong in interpreting the paper) an answer
there would be appreciated. The scribe gave up understanding the details after this.

2) They find a polytopal lift K of probability simplex on X such that there is a norm in the lifted
space that agrees with the Wj distance after the projection. This is something special about tree
metrics.

3) Then they pick the right mirror map to for doing mirror descent on K. It turns out that the
right thing to do is to build a weighted and shifted entropy.

4) Here are some sketchy notes on the HST case: Break up the overall problem in hierarchical
manner given by the HST, where we are making a decision at the top level of whether to go down
a subtree or not. They use a notion of an unfair competitor — This says that OPT pays service cost
+ movement cost and the algorithm pays « service cost + 8 movement cost, for o, 8 > 1. This is
relevant in the caseof HSTs because we recursively run MST inside of each component (subtree).
Fach of these algorithms send up some information that just works on the weighted star of the
root, which just works on weighted star of its children. When it decides how much probability to
assign to a child, the sub algorithm computes the algorithm on that. Each of the subtree algorithm
is suboptimal — they incur some competitive ratios. These are going to be exactly the unfairness
ratios that are used in this unfair MTS. It could be a problem that the competitive ratios could
multiply as we move up the tree. We handle this by working with a potential function that has
learning rate, weights and barrier that depend on the subtree in some clever way. Somehow this
works by tuning all these parameters and choose the right averaging of the components of the cost.
It’s interesting to the scribe that the log sum exp soft max appears in this.

20


https://mathoverflow.net/questions/347344/jump-process-with-marginals-given-by-a-curve-of-probability-distributions
https://mathoverflow.net/questions/347344/jump-process-with-marginals-given-by-a-curve-of-probability-distributions

	Experts and Mirror Descent
	Comparison of experts to Metrical Task Systems (MTS)
	Randomized Algorithm
	KL-Divergence and Entropy
	Derivation of Exponential Weights Algorithm
	Analysis of Regret

	Continuous version, bounding regret

	Mirror Descent
	Projected Gradient Descent
	Euclidean Projected Gradient Descent for the experts problem

	Preliminaries for Mirror Descent
	Infinitesimal Bregman Divergence as a Riemannian Metric
	Background on Fenchel Duality
	Squared Euclidean Distance
	KL-Divergence

	Further Preliminaries on Mirror Descent
	Mirror Descent
	Online Mirror Descent and experts


	Metrical Task Systems
	Metrical Task Systems Problem
	Tree Metrics
	Continuous Time Mirror Descent
	High Level Overview of what is left over


