CS880: Algorithmic Mechanism Design
HW2

Due: Nov 2, 2020

Submission instructions: Please email a PDF to Shuchi by Nov 2, 11:59 pm.

Problems:

1. (10 points) Consider a revenue maximization setting with one item and \(n \) buyers, where for \(i \in [n] \) the value of buyer \(i \) (denoted \(v_i \)) is drawn independently from regular distribution \(F_i \). Let \(M \) denote the optimal (Myerson’s) revenue achievable by the seller in this setting.

Consider another setting with one item and \(2n \) buyers, where the values of buyers \(i \) and \(n+i \) for \(i \in [n] \) are drawn independently from the distribution \(F_i \). Let \(V \) denote the revenue of the Vickrey auction for this setting.

(a) Provide an example where \(V \) is larger than \(M \).
(b) Provide an example where \(V \) is smaller than \(M \).
(c) Prove that for any tuple of regular distributions \(F_1 \times \cdots \times F_n \) we have \(V \geq M/2 \).
(d) Consider a mechanism for the first setting that draws an independent sample \(s_i \) from each of the distributions \(F_i \) and runs a Vickrey auction with the anonymous reserve price \(\max_i s_i \). What can you say about the revenue of this mechanism relative to \(M \)? (Hint: relate this revenue to \(V \).)

2. (5 points) Optimal mechanisms for symmetric settings\(^1\) are always symmetric owing to the convexity of the space of all IC mechanisms. However, optimal pricings are not necessarily symmetric. Even in a 2-item setting with a single unit-demand agent whose values for the items are drawn from an independent symmetric distribution, there may be no symmetric optimal item pricing. Identify a single dimensional distribution \(F \) for which there is no symmetric optimal item pricing for a two item setting with a unit-demand agent whose values for each of the items are drawn i.i.d. from \(F \).

3. (5 points) Let \(F_1, \cdots, F_m \) be independent value distributions, and for a set \(S \subset [m] \) let \(F_S \) denote the distribution over value vectors where the value of an item \(i \in S \) is drawn independently from \(F_i \) and the value of an item \(i \not\in S \) is 0.

Let \(\operatorname{Rev}(F_S) \) denote the optimal revenue achievable from an additive buyer with item values drawn from \(F_S \). Let \(\operatorname{SRev} = \sum_{i \in [m]} \operatorname{Rev}(F_{\{i\}}) \).

Prove that there exists a constant \(\alpha > 0 \) such that for any distribution \(q = \{q_S\}_{S \subseteq [m]} \) over subsets of \([m]\), we have:

\[
\sum_{S \subseteq [m]} q_S \operatorname{Rev}(F_S) \leq \alpha \cdot \mathbb{E}_{S \sim q}[|S|] \cdot \operatorname{SRev}
\]

\(^1\)i.e., where the distribution and the feasibility constraint are symmetric across items and/or buyers.