
CS880: Algorithmic Mechanism Design

Lecture 2: Introduction to Revenue Maximization Scribe: Austen Fan

2.1 Borodin & Lucier’s Algorithm

Recall last time we introduced the greedy algorithm by Borodin and Lucier which can be thought
of as a generalization of the LOS algorithm:

Algorithm 2.1.1 (Borodin & Lucier ’2011)

• Ask agents to report valuation ṽi(·)

• While items remain unallocated

– Let (i,Xi) = argmax
(i,S)

S is unallocated

fi (ṽi (·) , S)

– Allocate Xi to agent i

• Charge each agent its critical value θi,S, i.e. the min value ṽi(S) that i needs to report for S
to be allocated S

The function fi in the algorithm is a “score function” that assigns a non-negative value to each pair
(ṽi, S) where S is a subset of items. In LOS algorithm (single-minded agent setting), the function
fi = vi√

Si
. Typically under single-minded agent setting, when fi’s are monotone non-decreasing

in vi and monotone non-increasing in |S| along with charging critical price, the algorithm under
the LOS framework will be DSIC. Here is a much general setting where each agent could assign
different values to different subset of items and the Borodin & Lucier’s algorithm is no longer DSIC.
Nevertheless, Borodin & Lucier’s algorithm possesses good behavior when considering worst case
Nash Equilibrium. Formally speaking, we are going to prove the following claim:

Claim 2.1.2 Suppose that the function fi’s are monotone non-decreading in vi and the greedy
algorithm is a c-approximation. Then in any Nash Equilibrium of the greedy mechanism, the Social
Welfare is a (c+ 1)-approximation to the optimal Social Welfare.

Proof: Observe that any agent will never submit a bid that is higher than her value. Indeed, if
she wins with that bid, since the critical price is defined to be independent of her bid, either she
will earn a utility which is equal to the case when she bid truthfully or incur a net loss. If she loses,
bidding higher than her value will not bring any good. Thus we have∑

(i,Xi) allocated
by greedy

vi(Xi) ≥
∑

(i,Xi) allocated
by greedy

ṽi(Xi)
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By assumption, ∑
(i,Xi) allocated

by greedy

ṽi(Xi) ≥
1

c

∑
(i,Si) optimal

ṽi(Si)

Imagine changing the bid for each (i, Si) which is allocated under optimal but not by greedy
algorithm to θi(Si)− ε for any ε > 0. Then the result of greedy solution will not change. Thus,∑

(i,Xi)∈ Greedy

ṽi(Xi) ≥
1

c
{

∑
(i,Si)∈OPT\Greedy

(θi(Si)− ε) +
∑

(i,Si)∈OPT∩Greedy

θi(Si)}

≥ 1

c

∑
(i,Si)∈OPT

θi(Si)−O(ε)

Since the equation holds for any ε > 0, letting ε go to 0∑
(i,Xi)∈ Greedy

ṽi(Xi) ≥
1

c

∑
(i,Si)∈OPT

θi(Si) (?)

By definition, agent i’s strategy is a best response to other’s bids under any Nash Equilibrium.
Consider alternate strategy where agent i bids vi(Si) on the subset of items Si. Then

Utility from new strategy = vi(Si)− θi(Si)
≤ vi(Xi)− θi(Xi)

where Xi and Si are subsets of items allocated to agent i under greedy algorithm and optimal
solution respectively. Combining (?) yields the result∑

(i,Si)∈ OPT

vi(Si) ≤
∑

(i,Si)∈ OPT

vi(Xi) +
∑

(i,Xi)∈ Greedy

vi(Xi)

≤ c
∑

(i,Xi)∈ Greedy

vi(Xi) +
∑

(i,Xi)∈ Greedy

vi(Xi)

which in terms of Social Welfare is equivalent to

OPT ≤ (c+ 1)Greedy

The proof is now complete.

Recall the definition of Price of Anarchy last lecture, the claim is exactly saying PoA ≤ c+ 1.

2.2 Maximal in Distributional Range

We introduce an alternate approach called Maximal in Distributional Range. Recall that the Social
Welfare Maximization on set F is the following problem:

– Given a feasible set F and value functions vi : F → R+ for any i ∈ [n] where n is the number
of agents
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– Find arg max
j∈F

∑
i∈[n] vi(j)

The idea is instead of considering the whole feasible set F , we choose to consider a subset F ′ ⊂ F
where optimal over F ′ is approximate to optimal over F . Formally speaking,

Maximum In Range mechanism

– Find F ′ ⊂ F such that Social Welfare Maximization over F ′ is computationally easy

– Run VCG mechanism over F ′

Similarly, we might consider picking a distribution over feasible set F such that optimal over that
distribution gives approximate result of optimal over the entire set.

Maximum In Distributional Range mechanism

– Find F ′ ⊂ ∆F where ∆F is a distribution over outcomes such that Social Welfare Maximiza-
tion over F ′ is computationally easy

– Run VCG mechanism over F ′

We now describe Lavi-Swamy’s approach on MIDR mechanism. Let n be the number of agents,
m be the number of items and F be all partitions of items across agents. Consider the following
Relaxation Linear Programming setting which is called Configuration LP where xi,S refers to
the indicator variable that set S is allocated to agent i:

max
∑
i,S

xi,Svi(S)

s.t.
∑
i

∑
j∈S

xj,S ≤ 1 ∀j ∈ [m]

∑
S

xi,S ≤ 1 ∀i ∈ [n]

xi,S ≥ 0 ∀i ∈ [n], j ∈ [m]

Claim 2.2.1 Configuration LP can be solved exactly in polynomial time.

Proof: Omitted.

The idea is to use a separation oracle for the dual problem. Though there might be exponentially
many constraints, the algorithm only needs demand queries to solve the dual LP. That is, the
algorithm inductively asks agents to pick their favorite set of items at given prices and use that
information to come up with new prices. The main theorem is the following:

Theorem 2.2.2 (Lavis-Swamy ’05) Suppose there is a c-approximation rounding algorithm for
the Configuration LP. Then given any x feasible for the LP, we can find a distribution D over
deterministic partitions such that SW(D) = 1

c SW(x).
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Proof: Omitted.

The idea is to write 1
cx as a convex combination of many deterministic partitions which are integral

solutions. Denote
ALG(x) := distribution D

as in the Lavis-Swamy theorem and

F ′ = {ALG(x) : x ∈ feasible set of Configuration LP}

Then the following mechanism gives optimal over F ′:

– Solve optimal solution x∗ for Configuration LP

– Return ALG(x∗)

– Use VCG pricing

2.3 Revenue Maximization

We now focus on maximizing the total revenue. However, things become trickier than Social
Welfare. When maximizing Social Welfare, the technique usually used is to first consider allocation
and payment rule, and then justify the assumption of incentive compatibility. But that will not
work when maximizing the total revenue since the highest price a seller might charge depends on
the value of the buyers. Besides, the optimal solution of Social Welfare is clear and this is no longer
true under revenue maximization. In summary, two immediate difficulties are:

• Can’t easily compare to an incentive-free optimum

• Not clear what is a good alternative benchmark

Without an ex ante knowledge, it is hard to even start any analysis. We thus introduce the Bayesian
assumption which is widely used in economics.

Bayesian assumption: Agent i’s value function is drawn from a known distribution.

The timeline for direct revelation mechanisms is: Designers and agents learn distribution from
which values are drawn → Designer announces mechanism → Values are drawn → Agents report
valuation → Designer announces outcome

The simplest setting is when single item auction where there is single agent with value v drawn
from a distribution F . The outcome space is determined by allocation rule x and payment rule p.
We consider randomized allocation rule where x ∈ [0, 1] is the probability of allocation and assume
positive payment rule, i.e. p ∈ R+. We make a further assumption that agent’s expected utility
from outcome (x,p) is simply vx− p.

The mechanism designer’s problem is formalized as following:

Given distribution F , develop functions x(·),p(·) such that

4



• (x,p) is DSIC/BIC (defined later)

• Ev∼F [p(v)] is maximized

The following lemma characterizes DSIC mechanism:

Lemma 2.3.1 (Myerson) For the single item single agent problem, (x,p) is DSIC iff

1. x is monotone non-decreasing in v;

2. Satisfies the payment identity p(v) = vx(v)−
∫ v
0 x(t)dt+ p(0).

Usually we can “normalize” the payment rule so that p(0) = 0. This is just saying agent do not
need to pay anything when they don’t value the item at all.

2.4 General Single-parameter Linear Agents Setting

Suppose now we have n agents. Each agent has its own “type” which is given by one number vi.
If the outcome for each agent is xi ∈ [0, 1] and pi ∈ R, then the utility of linear agent i from (xi, pi)
is given by vixi − pi. Each agent acts to maximize their expected utility.

The timeline for direct revelation mechanism is summarized as the following: Designer and agents
learn the joint distribution F of values → Designer announces mechanism (x, p) → Agents realize
their values (v1, v2, . . . , vn) ∼ F → Agents report their bids bi = σi(vi) → designer announces
outcome x(b1, b2, . . . , bn) and p(b1, b2, . . . , bn).

We adopt the notation that xi(b1, b2, . . . , bn) and pi(b1, b2, . . . , bn) is the allocation to and payment
of agent i. Analogous to Dominant Strategy Incentive Compatibility, we now define what is called
Bayesian Incentive Compatibility.

Definition 2.4.1 (BIC) A strategy σi for agent i maps value vi to the bid σi(vi). A strategy tuple
(σ1,σ2,...,σn) is in Bayesian Nash Equilibrium if given all other agents’ strategies σ-i, for all agent i,
values vi and alternate strategies σ′i,

E
v-i∼F|vi
b-i=σ-i(v-i)

[vixi(σi(vi), b-i)− pi(σi(vi), b-i)] ≥ E
v-i∼F|vi
b-i=σ-i(v-i)

[vixi(σ
′
i(vi), b-i)− pi(σ′i(vi), b-i)]

A mechanism is BIC if truth-telling, i.e. σi(vi) = vi∀i, is a Bayesian Nash Equilibrium.

We start by assuming agents have independent value distributions Fi. Equivalently, the joint
distribution F = F1 ×F2 × · · · × Fn. Fix σ-i, define

xi(b) = E
v-i∼F|vi
b-i=σ-i(v-i)

[xi(b, b-i)];

pi(b) = E
v-i∼F|vi
b-i=σ-i(v-i)

[pi(b, b-i)].

We now state the general case of Myerson’s lemma:
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Lemma 2.4.2 (Myerson)

A mechanism (x, p) for the single parameter (linear agent) setting is BIC iff ∀i:

1. xi(vi) is monotone non-decreasing in vi;

2. Satisfies the payment identity pi(vi) = vixi(vi)−
∫ v
0 xi(t)dt+ pi(0).

Similarly, a mechanism (x, p) for the single parameter (linear agent) setting is DSIC iff ∀i,v-i:

1. xi(vi,v-i) is monotone non-decreasing in vi;

2. Satisfies the payment identity pi(vi,v-i) = vixi(vi,v-i)−
∫ v
0 xi(t,v-i)dt+ pi(0).

Proof: Omitted.

Observe the following implications of Myerson’s Lemma:

1. Revenue Equivalence

Two BIC mechanisms that have the same allocation rules will always have the same expected
revenue. For example, in the Vickrey auction the agent with the highest value will win. In the
First Price sealed bid auction where every buyer’s value is drawn from some some distribution
and so they use symmetric strategies, the buyer with the highest value will win. Since both
mechanisms are BIC, we immediately conclude that these two mechanisms will yield the same
revenue.

2. Revenue Linearity

Observe the payment identity: if we average the allocation rules of two mechanism, then the
expected revenue gets averaged.

3. For the single parameter (linear agent) setting, the optimal BIC mechanism is deterministic
and DSIC.

Proof: We prove for the single agent setting. First notice that by Myerson’s lemma, the
allocation rule x(·) in any deterministic mechanism that is DSIC must be a step function. In
other words, the mechanism is simply the “pricing” mechanism: charge price θ for allocating
the item and 0 for not allocating. Denote the step function x(·) whose jump point is θ as τθ.
Thus the revenue for such mechanism is

Revenue(θ) = θPr[v ≥ θ] = θ(1− F (θ))

where F is the cumulative distribution function. Notice that the optimal deterministic DSIC
mechanism will, by definition, optimize Revenue(θ).

Now for the optimal BIC mechanism, by Myerson’s lemma again, the allocation rule x(·)
must be monotone non-decreasing in v. By basic result in functional analysis, we can write
any non-decreasing function x : R→ [0, 1] as a distribution of step functions. Namely,

x(v) =

∫ ∞
0

x′(θ)τθ(v)dθ
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By the revenue linearity,

Revenue(x) =

∫ ∞
0

x′(θ) Revenue(τθ)dθ

Finally observe that Revenue(x) reaches maximal when Revenue(τθ) reaches its maximal
pricing, which is the exactly when the mechanism is optimal, deterministic and DSIC.
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