
CS880: Algorithmic Mechanism Design

Lecture 4: Myerson’s mech.; Ironing; Simplicity vs Optimality Scribe: Evangelia Gergatsouli

4.1 Recap from previous lecture

Recall from the previous lecture, that in order to approach the revenue maximization problem
we needed to assume some previous knowledge for the values of the agents i.e. the Bayesian
Assumption. More formally the setting for revenue maximization is the following

Setting:

• 1 item

• n single parameter1 linear2 agents

• Values vi for every agent where v = (v1, v2, . . . , vn) ∼ F = F1×F2× . . .×Fn, known product
distribution

Goal: Find a mechanism M = (x, p), where x : Rn → {0, 1}n is the allocation function and
p : Rn → Rn is the payment function, such that

• M satisfies some form of incentive compatibility (either DSIC or BIC)

• Revenue
∑

i Ev∼F [pi(v)] is maximized

For this optimization problem, in order to achieve the incentive guarantees, we already saw that
Myerson’s lemma[Mye81] characterizes the mechanisms that have the DSIC/BIC property.

4.1.1 Myerson’s Lemma[Mye81]

Theorem 4.1.1 A mechanism M = (x,p) for the setting described above is BIC if and only if
for all agents i we have that

• The allocation xi(vi) is monotone non-decreasing in vi

• The payment p(vi) = vix(vi)−
∫ vi
0 xi(t)dt + pi(0)

The payment function, even though it may seem complicated, if we drew it in terms of the allocation
and the values it would look like the shaded gray area in figure 4.1.1; essentially the area above the
allocation curve until the value vi.

1The agent has a single value for his utility of getting or not getting the item
2The utility of agent i is vixi − pi
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Figure 4.1.1: Payment amount displayed on the x(v) plot

Theorem 4.1.2 A mechanism M = (x,p) for the setting described above is DSIC if and only if
for all agents i and all values v−i we have that

• The allocation xi(vi, v−i) is monotone non-decreasing in vi

• The payment p(vi, v−i) = vix(vi, v−i)−
∫ vi
0 xi(t, v−i)dt + pi(0)

Observe that from the lemma above we get that the revenue is linear in the allocation function
x(v).

4.2 Solving the Optimization Problem

We start by rewriting the optimal mechanism design problem as a ”linear program”, as shown in
table 1 and try to simplify it. The first set of constraints, feasibility, can be anything that the
problem requires, for example it could be that we only have 2 items to allocate, so we cannot
allocate more than 2. For the final set of constrains we assume that p(0) = 0 i.e. we do not charge
an agent that gets 0 items.

maximize
∑

i Evi∼Fi [pi(v)]
subject to x1, . . . , xn are feasible

xi(v) is weakly increasing for all i
pi(vi) = vixi(vi)−

∫ vi
0 x(t)dt, for all i

Table 1:

Denote by Fi and fi the cdf and pdf of agent i respectively, where Fi(vi) = Prt∼Fi [t ≤ vi] and
fi(vi) = F ′i (vi). Additionally, in the calculations below we drop the i subscripts for convenience.
For one agent we get that the payment is
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Evi∼Fi [pi(vi)] =

∫ vi

0
pi(vi)fi(vi)dvi

=

∫ vi

0
vixi(vi)fi(vi)dvi −

∫ ∞
0

(∫ vi

0
x(t)dt

)
fi(vi)dvi Definition of payment

=

∫ v

0
vx(v)f(v)dv −

∫ ∞
0

(∫ v

0
x(t)dt

)
f(v)dv Drop subscripts

=

∫ v

0
vx(v)f(v)dv −

∫ ∞
t=0

(∫ ∞
v=t

f(v)dv

)
x(t)dt Change order of integration3

=

∫ v

0
vx(v)f(v)dv −

∫ ∞
t=0

(1− F (t))x(t)dt Definition of the pdf

=

∫ v

0
vx(v)f(v)dv −

∫ ∞
v=0

(1− F (v))x(v)dv Change variable t to v

=

∫ v

0
x(v)(vf(v)dv − (1− F (v)))dv Merge integrals

=

∫ v

0
x(v)

(
v − 1− F (v)

f(v)

)
f(v)dv

=

∫ v

0
x(v)Φ(v)f(v)dv Renaming

= Ev∼F [x(v)Φ(v)]

Putting all the agents together, in the optimization problem we defined in table 1 we get the
optimization problem of table 2. Observe that the third constraint was no longer needed since we
used it in the calculations shown before, and is in a sense “embedded” in our objective.

maximize
∑

i Evi∼Fi [xi(vi)Φi(vi)] = E [
∑

i xi(vi)Φi(vi)]
subject to x1, . . . , xn are feasible

xi(v) is weakly increasing for all i

Table 2: Rewritten optimization problem, using virtual values

Let Φi(vi) be the virtual value for agent i. If we fix some vector v = (v1, v2, . . . , vn) and an
allocation x = (x1, x2, . . . , xn) then the social welfare is

∑
i xivi while the virtual social welfare is∑

i xiΦi(vi). Therefore, what we showed is that

Revenue Maximization ≡ Virtual Social Welfare Maximization s.t. monotonicity of x

Now we can think of our problem in terms of virtual welfare with an additional monotonicity
constraint. The process we use in these problems is the following

1. Ignore the monotonicity constraint
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2. Point-wise maximize objective

3. Go back to the constraint, what conditions we need for the constraint to be satisfied?

We show how this is applied in the following example.

Example In this example, there is 1 item and 2 agents, whose values are distributed as follows:
v1, v2 ∼ U [0, 1] therefore F1(t) = Pr [vi ≤ t] = t, then also f1(t) = f2(t) = 1

Assume initially that the goal was social welfare maximization, so we wanted to maximize E [x1v1 + x2v2].
In that case, we ask the agents to report v1, v2 and we allocate to 1 (so x1 = 1, x2 = 0) iff v1 ≥ v2
otherwise (x1 = 0, x2 = 1) agent 2 gets the item and then the agents are charged the critical price.

In the case of revenue maximization, as shown above we calculate the virtual value function Φ as
follows

Φ(v) = v − 1− F (v)

f(v)
= 2v − 1

then the objective becomes

max (x1(2v1 − 1) + x2(2v2 − 1)) = x1Φ(v1) + x2Φ(v2)

such that only 1 item is allocated. When we do not have the monotonicity property, we can point-
wise maximize the objective, the same way we did in the case of welfare maximization, i.e. if
Φ1 ≥ Φ2 then x1 = 1, x2 = 0, and x1 = 0, x2 = 1 otherwise.

Observe though, that the virtual values, contrary to the actual values vi, can also be negative.
If that is the case, we do not want to allocate the item at all. Therefore, we modify the above
rule that decides the allocation to take into account the possible negative virtual values, while still
point-wise maximizing the objective:

• If Φ1 ≥ Φ2 and Φ1 ≥ 0 then allocate to 1 (x1 = 1, x2 = 0)

• If Φ2 ≥ Φ1 and Φ2 ≥ 0 then allocate to 2 (x1 = 0, x2 = 1)

• If Φ1 < 0,Φ2 < 0 serve no one (x1 = x2 = 0)

Now that we made sure the allocation actually maximizes the objective, we need to also make sure
that the monotonicity property is also satisfied.

x1(v1) = Pr [Φ1(v1) ≥ 0,Φ(v1) ≥ Φ(v2)] =

{
0, if v1 ≤ v2

Pr [Φ1 ≥ Φ2] , else
=

{
0, if v1 ≤ v2

v1, else

where we used that when fixing v1, then Pr [Φ2 < Φ1] = Pr [2v2 − 1 < 2v1 − 1] = Pr [v2 < v1] = v1.
The plot or this function is shown in figure 4.2.2. Observe that this function is monotone, therefore
putting the constraint back in ,gives us the optimal mechanism.
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Figure 4.2.2: Allocation function for the example

Observe that int his case, for any fixed v2 we have that x(v1, v2) = Pr [v1 ≥ 1/2 and v1 ≥ v2] which
is a step function, changing from 0 to 1 at max(1/2, v2). The function Φ has a nice property in
that case, that makes this mechanism satisfy the monotonicity property; as v increases, so does Φ.
This condition formally is called regularity and we define it below.

4.2.1 The Road to the Optimal Mechanism

Definition 4.2.1 (Regularity) A value distribution F is regular, if Φ is weakly non decreasing.

We describe now the optimal mechanism, and using the claim below, we only need this regularity
to hold for the value distributions.

1) Agents report v1, . . . , vn
2) Compute Φ1, . . . ,Φn

3) Return feasible set argmaxs
∑

i∈s Φi (maximizes virtual surplus)

Table 3: Myerson’s Optimal Mechanism

Claim 4.2.2 If all value distributions are regular, then Myerson’s mechanism (table 3) is BIC.

Observe that the mechanism is deterministic, and DSIC4 Recall that the virtual value is Φ(v) =

v − 1−F (v)
f(v) .

There is a special class of distributions that satisfy this, that have the monotone hazard rate
property. Specifically, we say a distribution is MHR (Monotone Hazard Rate) if h(v) = f(v)

1−F (v) is
monotone non-decreasing. Observe that for these distributions, we get that the virtual function is
non-decreasing.

Examples of distributions to try and find Φ

4Since agents will not want to misreport, once the values of the other agents are fixed.
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• Uniform in [a, b]

• Exponential distribution

• Power law distribution & special case f(v) = 1/v2 for v ∈ [1,∞)

• Bimodal distributions (for example 1/2U [0, 1] + 1/2U [2, 3])

4.3 Change to Quantiles

In this section, we swift gears to a quantile interpretation of the virtual value function. Recall that
quantiles are uniform, so, for example, being below the 90th quantile has 90% probability.

Consider for example the function F shown in figure 4.3.3 and described by the cdf: F = 1
2U [0, 1/3]+

1
2U [1/3, 1]. Note that picking a quantile in this plot, we can uniquely map it back to a value, so
if we drew the same plot but using quantiles on the x-axis we get figure 4.3.4 shown below, where
the low quantiles in this plot correspond to high values and vice versa5 where the quantile q is
q = 1− F (v) and v = V (q).

values

quantiles

F

1
3

1

1
2

1

Figure 4.3.3: Cdf for the distribution F

5A 42% quantile, means that we are among the best/highest 42% values.
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Figure 4.3.4: Quantile plot for the distribution F

4.3.1 Single agent

We focus on a single agent, and let x(q) denote the allocation for the agent with quantile q. The
revenue then is the expected revenue from allocation x, which is now a function of the quantile.

Denote by Tt(q) = Iq≤t the step function that is 1 before t and 0 after. Then any function x(q) can
be rewritten as an integral over these step functions as shown below6.

x(q) = −
∫

x′(t)Tt(q)dt

Having defined x in this quantile space, we write revenue as follows

Rev(x) = −
∫
t
x′(t)R(t)dt

=

∫ 1

0
x(t)R′(t)dt−R(1)x(1) + R(0)x(0) integration by parts

=

∫ 1

0
x(t)R′(t)dt Since R(0) = 0 and R(1) = 0

where we used that the expected revenue of Tt is R(t) = tV (t) which is the probability of serving
the agent (t) times the value it gives (V (t)), and for the first equality integration by parts.

Therefore, we have shown that for any weakly monotone allocation function x then Rev(x) =∫
q x(q)R′(q)dq. If we call R′(q) the virtual value we get that

Expected revenue = Expected Virtual Surplus

6The negative sign is because x is decreasing.
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We show now that this is the same virtual surplus we calculated before. Recall that R(q) = qV (q)
and that V (q) is the inverse of 1− F (v).

R′(q) = V (q) + qV ′(q)

= V (q) + q
−1

f(v)

= v +
1− F (v)

−f(v)

= v − 1− F (v)

f(v)

= Φ(v)

where we used that V (q) = dv/dq = 1/(dq/dv) = 1/(1− F (v))′ = −1/f(v)).

Recall that the regularity condition from before required for Φ(v) to be non-decreasing in v. Using
the rewritten version of Φ we have that we want Φ(q) = Φ((V (q)) is non increasing in q7 and
therefore R(q) is concave in q (since we require the derivative to be non-increasing).

Example: apply this to the example distribution F The cdf of the distribution in shown
in figure 4.3.3 and the plot of V (q) in figure 4.3.4. We calculate V (q) and R(q) as follows

V (q) =

{
1− 4

3q, For q ≤ 1
2

2
3 (1− q) For q > 1

2

and

R(q) =

{
q − 4

3q
2, For q ≤ 1

2
2
3

(
q − q2

)
For q > 1

2

If we plot the revenue curve above we get the plot in figure 4.3.1, and as we can see this is not
concave. Ideally we would want to allocate the item only when Φ > 0, but this will lead to
a non-monotone allocation function. In order to avoid this problem, we use a technique called
ironing, which basically corresponds to “drawing” the purple lines in the plot (see figure 4.3.1), and
essentially removing the non-monotonicities in Φ and the non-concavities in R(q).

7This comes form the interpretation of quantiles, and the fact that low quantile means high value.
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q
R(q)

Φ(q)

Figure 4.3.5: R(q) plot

This can be achieved by taking the concave upper envelope R(q) for R, which formally is the
smallest concave function that lies above R(q). This is shown in figure 4.3.1 below; the envelope
is the same as the function R with the difference that it follows the purple part to avoid the
non-concavity of R.
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q
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Figure 4.3.6: R(q) ironed plot

Observe the following properties satisfied by the concave envelope:

1. R(q) is concave and so Φ(q) is non increasing

2. Rev(x) = Eq [x(q)Φ(q)] = −Eq [x′(q)R(q)]
If x is monotone (i.e. x′(q) ≤ 0) then Rev(x) = −E [x′(q)R(q)] ≤ E

[
x′(q)R(q)

]
= E

[
x(q)Φ(q)

]
Therefore, we have that Expected Revenue of x ≤ Ironed Virtual Surplus. This
happens essentially because the ironed surplus “pretends” that the mechanism gets more
revenue than it actually does.

3. For any mechanism M = (x, p) such that x′(q) = 0 whenever R(q) 6= R(q) we have that
Expected Revenue of x = Ironed Virtual Surplus.

4. There is a monotone mechanism maximizing virtual surplus that satisfies 3 (above)

4.4 Putting it all together: Myerson’s Mechanism

1. Pointwise maximize the ironed virtual surplus
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2. If there are any ties in the ironed virtual values→ break ties consistently. In any interval
where R(q) > R(q) we will get the ironed version of the virtual surplus to be constant:
Φ(q) =constant, and therefore the allocation is the same over this region8. This implies that
x′(q) = 0 in this region, and therefore that ironed virtual surplus = virtual surplus.

Example for Myerson’s Mechanism We have 1 item, 2 buyers where F1 = U [0, 2] and F2 =
U [0, 3], therefore F1(t) = t/2 and F2(t) = t/3. We find the virtual value functions:

• Φ1(t) = t− 1−F1(t)
f1(t)

= t− 1−t/2
1/2 = 2t− 2

• Φ2(t) = t− 1−F2(t)
f2(t)

= t− 1−t/3
1/3 = 2t− 3

The plot of the virtual functions is shown in figure 4.4 below. It is clear now, when the optimal
mechanism should allocate to each agent:

• If v1 ≤ 1 then reject agent 1

• If v2 ≤ 1.5 then reject agent 2

• Else, agent 2 needs to outbid 1 by 1/5 to win

There are some useful observations to make for this mechanism, which we describe here.

1. The mechanism is discriminating, since if we know which agent has more value, we can set
different “entry” fees, depending on their values.

2. If all values are iid and regular, then all the value functions are identical. This implies that
the agent with the higher Φ is the agent with the highest v, then we allocate to the agent
with the highest value as long as it is more than 0. This is called the monopoly reserve price
Φ−1(0) = r∗. The mechanism for iid regular agents, described concretely is

• remove everyone below r∗

• allocate to the highest surviving agent

which is essentially the Vickrey auction with monopoly reserve.

8This is the purple region in figure 4.3.1.
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Figure 4.4.7: Virtual Values

4.5 Simplicity vs Optimality

In this section, we redirect our focus to designing simple mechanisms, that also are good approx-
imations to the optimal, since even from the example before, we saw that the rules can get quite
complicated. The way we try to approximate the optimal mechanism is through Vickrey Auction
with (different) reserve prices, for non iid settings. The auction is described below:

1. Compute r∗i = Φ−1i (0)

2. Reject all agents with vi ≤ r∗i

3. Run Vickrey auction over the values reported

4. Charge critical prices = max(r∗i ,maxi 6=j, vj≥r∗j vj)

Theorem 4.5.1 In the non-iid regular setting, Vickrey with monopoly reserves sets a 2-approximation
to the optimal expected revenue. This factor is also tight.

Proof: Initially note that the optimal mechanism also rejects the agents that have a negative
virtual value (steps 1+2 of the algorithm above). In the 3rd step though the optimal will run the
Vickrey auction over the virtual values in stead of the reported values.

The difference the optimal mechanism and the Vickrey mechanism might have, comes from the
fact that the order in virtual values is not the same as the order in the values vi

9, so for example
the ordering of the values might be v1 ≥ v2 ≥ v3 . . . but the ordering of the virtual values is

9Since the agents do not have the same distribution
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Φ2 ≥ Φ1 ≥ Φ4 ≥ . . .. Note that Vickrey has a monotone allocation rule, so we can use the
characterization of the expected revenue; Rev(V ickrey) = E [V irtual Surplus], and in this case
the revenue of Vickrey is Φ1 and the revenue of the optimal is Φ2.

Denote by i the winning agent for optimal and j the winning agent for Vickrey. Observe that for
every agent we have that Φi(vi) ≤ vi. The optimal revenue is

E [Φi] = E [Φi|i = j] Pr [i = j] + E [Φi|i 6= j] Pr [i 6= j]

we bound each of the two terms by the revenue of the Vickrey auction: for the fist term we get

E [Φi|i = j] Pr [i = j] = E [Φj |i = j] Pr [i = j]

≤ E [Φj |i = j] Pr [i = j] + E [Φj |i 6= j] Pr [i 6= j]

= Rev(V ickrey)

where for the inequality we used that Φj ≥ 0, from the specification of Vickrey. Similarly for the
second term (where the optimal and Vickrey do not pick the same agent)

Rev(V ickrey) = E [pj |i = j] Pr [i = j] + E [pj |i 6= j] Pr [i 6= j]

≥ E [vi|i 6= j] Pr [i 6= j]

≥ E [Φi|i 6= j] Pr [i 6= j]

where the first inequality comes from the fact that j needs to beat at least the value vi to win.v
Putting all of this together, we get that Rev(OPT ) ≤ Rev(V ickrey).
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