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Lecture 6: Simplicity vs Optimality in Multi-parameter Settings Scribe: Jeremy McMahan

6.1 Unit-demand Setting

In a Multi-paramter setting, each agent has a value for many different outcomes. We usually focus
on the context of combinatorial auctions, where each buyer may want to obtain several items instead
of just one. The allocation of a mechanism assigns to each agent a set describing which items this
agent obtains. The total value of the set of items obtained is defined by a value function v(S),
which could be arbitrarily complicated. In contrast, in the single parameter setting, each agent
only cares about a single outcome (getting the desired item or not) and can describe his value
for this outcome with a single number instead of needing an entire function. We will focus on two
simple multi-parameter settings. In the first, called the unit-demand buyer setting , each agent, also
called a buyer, will only receive the value of the highest valued item in the allocated set. Formally,
v(S) = maxi∈S vi where vi is the buyer’s value for item i. In the additive setting , we have the value
of an allocated set is exactly the total value of each time in the set, v(S) =

∑
i∈S vi. Note, we will

assume that agent’s values for different items are drawn from independent distributions.

In the multi-paramter setting, the optimal mechanism is described by menus that list allocation,
price pairs. Hence, each agent may purchase different sets of items at different prices. However,
the optimal mechanism may require lotteries which sell a distribution of items at some fixed price.
In this context it was shown that certain value distributions require unbounded sized menus, so
we focus on approximation mechanisms. In particular, we will try to find simple mechanisms, no-
tably per-item posted-pricings, continuing with the theme of simplicity vs optimality in mechanism
design.

Let’s first consider a single unit-demand buyer. We want to show that fixing a price for each
item leads to an approximately optimal mechanism. Most of the proof was given last time, so
we just need to complete the final claim. We refer to Setting 1 as the setting where we have a
single unit-damand buyer and the values for all the items are drawn from a product distribution,
v ∼ F1 × . . . × Fn. We let OPT denote the optimal mechanism’s allocation in Setting 1. On the
other hand, we refer to Setting 2 as the setting where we have m agents, a single item, and the
value of each agents value is drawn from an independent distribution, vi ∼ Fi. Note, the optimal
mechanism in Setting 2 is exactly Myerson’s mechanism as discussed before, so we refer to this
mechanism as MYE. We argued previously that item pricing form Setting 1 is has revenue at least
1/2 that of Myerson’s mechanism applied to Setting 2. We need to show that:

Claim 6.1.1 MYE ≥ 1
2OPT

Note that this claim is not easily generalizable to other settings like the additive one. After this
claim has been established, we get overall:

Corollary 6.1.2 Item pricing achieves revenue at least 1/4 that of OPT
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This is the best approximation known at this point in time. Let’s prove the claim.

Proof:

We proceed by using OPT to construct an incentive compatible mechanism for Setting 2, MECH.
Being that the best mechanism for Setting 2, MYE, must achieve at least as much revenue as any
other mechanism for the setting, we will have the claim.

Recall, in Setting 1, the optimal menu may have lotteries and so the utility of the buyer may look
like

∑n
i=1 xivi−p where p is the price of the lottery and xi is the probability of getting item i having

value vi. We want to use the same allocation so that social surplus of the n agents in Setting 2 is
exactly

∑n
i=1 xivi. However, to make this incentive compatible and achieve good revenue we need

to break the single payment p into payments to each individual agent.

For a fixed value vector v, we define the favorite item of the unit-demand agent as i∗ = argmax
i∈[n]

vi.

Our constructed mechanism for Setting 2 will then take the reported vector of values of each agent
v, and assign to i∗ a fraction xi∗(v) to this agent and charge price p−

∑
i 6=i∗ xi(v)vi. The utility of

friend i in Setting 2, will be

xi∗(v)vi∗ − (p−
∑
i 6=i∗

xi(v)vi)

=
∑
i

xi(v)− p

= Utility of unit-demand agent in Setting 1

Thus, if friend i wants to increase his utility by deviating from the colluding strategy, then the
unit-demand agent in Setting 1 could have also increased his utility. Thus, incentive compatibility
of OPT guarantees that of our constructed mechanism.

The revenue of our mechanism is

Ev[p−
∑
i 6=i∗

xi(v)vi]

= Ev[p]− Ev[
∑
i 6=i∗

xi(v)vi]

= OPT − Ev[
∑
i 6=i∗

xi(v)vi]

≥ OPT − Ev[max
i 6=i∗

vi]

Note since i∗ was the favorite item in the original setting, the second term above is exactly
the second favorite item’s value. Thus, the Vickrey auction in Setting 2, would give exactly
revenue Ev[maxi 6=i∗ vi]. Hence, we get the revenue of the constructed mechanism is at least
OPT − Rev(V ickrey). Consequently, the revenue of MECH plus the revenue of Vickrey gives
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at least OPT . Now, both of MECH and Vickrey are IC mechanisms for Setting 2, and so MYE
has larger revenue than both of them. Thus, 2MYE ≥ OPT .

6.2 Additive Setting Examples

Recall, we have m items, one agent, and the values for each item is drawn independently, v ∼
F1 × . . .× Fm. The value of a set of items, S, is v(S) =

∑
i∈S vi. We consider 4 different examples

in this setting.

1. Suppose we have two items with values v1, v2 ∼ U{1, 2}. What would the optimal price be for
item 1? In this case, we could price item 1 at 1 or 2 and get equally good revenue. Overall,
we have a revenue of 1 dollar per item, for a total revenue of 2 dollars. However, if we sell a
bundle of items we can do better. Note the distribution of a bundle of items is U{2, 3, 3, 4}.
Then, the optimal bundling revenue results from posting a price of 3 for the bundle. The
revenue achieved is $3 · 34 > $2.

2. Now, if we had 100 items all drawn from the same U{1, 2} distribution, we could again
sell them separately and get a revenue SRev = 100. If we bundle them together, we get
a bundling revenue BRev. Note that we have a sum of random variables, and so they are
very concentrated around the mean, 150. In particular, the deviation around the mean is
at most 10 for 100 items. Thus, we can post a price slightly under the mean, say at 140,
and still make a sale the majority of the time yet get very close to 150 in revenue. Hence,
BRev ≈ 150− something small. Though, bundling is not always optimal unless the items are
distributed identically as we see next.

3. Suppose we have n items and the distribution for item i is:

vi =

{
0 w.p. 1− 1/(n · 2i)
2i w.p. 1/(n · 2i)

The probability of having one item of non-zero value in a set is very small, so we expect
bundling to give a very small revenue. Specifically, it behaves like the equal revenue distri-
bution which is defined by F (x) = 1− 1/x giving a flat revenue curve R(p)− 1. In this case,
we have the selling separately strategy’s revenue will be much better than bundling. So, we
have that sometimes selling separately is good and sometimes bundling is good. The question
becomes which items to bundle and which to sell separately. Though we can also sell lotteries
in this context too giving even stranger phenomenon. We consider this next.

4. Again we have two items but now having different value distributions v1 ∼ U{1, 2}, v2 ∼
U{2, 3}. Note, v1 + v2 ∼ U{2, 3, 4, 5}. The best mechanism that sells separately achieves
revenue SRev = $1 · 1 + $3 · 1/2 = $2.5. The best mechanism that bundles everything
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achieves revenue BRev = $3 · 3/4 = $2.25. Lastly, the optimal mechanism for this example
uses lotteries.

OPT menu =


(1, 1) $4

(1, 12) $2.5

(0, 0) $0

The optimal revenue is then $4 · 12 + $2.5 · 14 = $2.625.

6.3 Additive Setting Approximation

The main result is that the better of the two mechanisms that sell everything separately and bundle
everything will be approximately optimal [1].

Theorem 6.3.1 max(SRev,BRev) ≥ 1
6OPT .

Lemma 6.3.2 (Lemma 1) Let S and T be disjoint sets of items. Let F be a distribution over
the values of S and F ′ a distribution over the values of T . Then,

Rev(F × F ′) ≤ Rev(F ) + V al(F ′)

where V al(F ′) = EF ′ [
∑

i∈T vi]

Proof:

The proof follows similarly to Claim 7.1.1 from before. Let MP be the optimal mechanism for
F × F ′. We will define a mechanism MF for F . Given v|S ∈ F we draw v|T ∈ F ′, to construct a
total vector v for F × F ′. Suppose now MP outputs (x, p) when given values from v. We define
MF so that MF will assign x|S on v|S and charge a price of p−

∑
i∈T xivi. A similar argument as

before implies that MF will be IC. Also, we have

Rev(MF ) = Rev(MP )− Ev∼F ′ [
∑
i∈T

xivi]

≤ Rev(MP )− Ev∼F ′ [
∑
i∈T

vi]

= Rev(MP )− V al(F ′)

We will use a Core-Tail decomposition defined as follows. Given a random v ∼ F1 × . . .× Fm = F
and given a fixed threshold ti for each i, we say i is in the core of F if vi ≤ t and we say i is
in the tail if vi > ti. Note that Pr[i ∈ tail] = Pr[vi > t] = qi and hence the name tail. Let
ri be the revenue from an item pricing for i which is equal to maxp p(1 − Fi(p)). We also define
r = SRev =

∑
i ri. We have tiqi = tiPr[vi > ti] ≤ ri. So, qi ≤ ri

ti
.
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Lemma 6.3.3 (Lemma 2) Suppose we partition the space of all value vectors into components
C1, C2, . . .. Let F|Cj

be the distribution over values conditioned on being in Cj. Then,

Rev(F ) ≤
∑
j

Pr[Cj ]Rev(F|Cj
)

Lemma 1 discusses a partition over a set of items for a fixed value vector whereas Lemma 2 partitions
the set of possible value vectors itself.

For every set A ⊆ [m], define CA = {v|∀i ∈ A, vi > ti ∧ ∀i 6∈ A, vi ≤ ti}. In words, every item in
A must be in the tail and all items not in A must be in the core, so CA are all the value vectors
having tail A. Let FA = F|CA

. From Lemma 2, we have that

Rev(F ) ≤
∑
A

Pr[tail = A]Rev(FA)

We can apply Lemma 1 to the last revenue term to get

Rev(F ) ≤
∑
A

Pr[A]{Rev(F tailA ) + V al(F coreA )}

≤
∑
A

Pr[A]Rev(F tailA ) + V al(F coreA )

We first want to bound the revenue of the tail. Recall, in the unit-demand setting, Rev(D) ≤
4SRev(D). For some set A and additive values over this set,

Rev(D|A) ≤ |A|Rev(unit-demand buyer over A) ≤ 4SRev(D|A)

Hence, ∑
A

Pr[A]Rev(F tailA ) ≤ 4SRev(F )E[|tail|]

We can bound the expectation term by

E[|tail|] =
∑
i

qi ≤
∑
i

ri
ti

=

∑
i ri

SRev
=
SRev

SRev
= 1

We see that we have a small tail in expectation, so the first part of the Rev(F ) expression is
bounded by 4SRev. Now, we can focus on the value of the core term. Note, if i is in the core,
then vi ∈ [0, r]. We want to show that S =

∑
i∈core vi is concentrated around its mean to use the

bundling results from before. Our strategy will be to relate the expectation of S to its median.

Lemma 6.3.4 (Lemma 3) Let S =
∑

i∈core vi. There exists constants c1, c2 so that

E[S] ≤ c1Median(S) + c2r
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Note in this context, the median of the sum will be BRev and r is SRev.

Recall, the best revenue from pricing i is ri. Consequently, for any p, we know that p(1−Fi(p)) ≤ ri.
Rearranging this inequality gives Fi(p) ≥ 1 − ri

p , so fi = ri
p2

. We will eventually use Chebyshev’s
inequality, so we need a bound on the variance of S. We compute such a bound by bounding the
variance of each term in the sum S. For a fixed i in the core, we have

V ar(vi) ≤ E[v2i ] ≤
∫ r

0
t2
ri
t2
dt+ r2

ri
r

= 2rir

Thus,

V ar(S) ≤
∑
i

V ar(vi) ≤
∑
i

2rir = 2r2

Let µ = E[S]. Applying Chebyshev’s inequality gives

Pr[S ≤ 1

4
µ] ≤ Pr[|S − µ| > 3

4
µ] ≤ V ar(S)

(34µ)2
≤ 2r216

9µ2
=

32

9

r2

µ2

Now, this bound gives different implications depending on whether SRev is close to the mean or
not.

1. If SRev ≥ 1
4µ = 1

4V al(core), we are done.

2. If SRev < 1
4µ, then Pr[S ≤ µ

4 ] ≤ 2
9 . Hence, BRev ≥ µ

4
7
9 ≥

µ
4 = 1

4V al(core).

In either case, max(SRev,BRev) ≥ 1
4V al(core). Now, we use this to bound the overall optimal

revenue, Rev(F ).

OPT ≤ Rev(tail) + V al(core)

≤ Const · SRev + Const ·max(SRev,BRev)

≤ Const ·max(SRev,BRev)

Using the straightforward bounds presented here would give a constant of 8, though working out
the details more strictly yields the best known constant of 6.

6.4 Extensions

1. The single buyer setting with independent item values can be extended subadditively to sets.
In particular, it is shown that the better of item pricing and bundle pricing is still a constant
approximation.

2. The multiple buyers setting with independent item values can similarly be extended subaddi-
tiviely to sets [2]. Approximate optimality is achieved through a sequential mechanism that
offers to each buyer a two-part tariff . Two-part tariff mechanisms use an entry fee with per
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item prices. For example, to buy from Amazon you first need an Amazon membership which
costs a fee. Then, you buy items at a fixed price per item. The per item pricing gives us the
behavior of a selling individually mechanism while the entry fee gives behaviour of a grand
bundling mechanism since the entry fee acts as a payment for access to all items like buying
a bundle.

Using an Ex-ante Relaxation yields the above result. For a single buyer, define the revenue
of this buyer, Revqi(Fi), where qi = (qi1, . . . , qim) is a vector to be the maximum revenue we
can achieve from buyer i under the constraint that item j is allocated to i with probability at
most qij . Note the qi represent the ex-ante supply constraints. In particular, this constraint
requires that

∑
i qi ≤ (1, . . . , 1). We then have the total revenue is

Rev(F ) ≤ max∑
i qi≤(1,...,1)

∑
i

Revqi(Fi)

Note independent item values and subadditivity is crucial in all of these results.

References

[1] Moshe Babaioff et al. A Simple and Approximately Optimal Mechanism for an Additive Buyer.
2020. arXiv: 1405.6146 [cs.GT].

[2] Shuchi Chawla and J. Benjamin Miller. Mechanism Design for Subadditive Agents via an Ex-
Ante Relaxation. 2016. arXiv: 1603.03806 [cs.GT].

7


