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In this lecture we give an algorithm for Steiner tree and then discuss greedy algorithms.

2.1 Steiner Tree

Problem Statement: Given a weighted graph G = (V,E) and a set R ⊆ V , our goal is to determine
the least cost connected subgraph spanning R. Vertices in R are called terminal nodes and those
in V \R are called Steiner vertices.

Note that the least cost connected subgraph spanning R is a tree. Also we are free to use non
terminal vertices of the graph (the Steiner nodes) in order to determine the Steiner tree.

We first show that we can assume without loss of generality that G is a complete graph. In
particular, let Gc denote the metric completion of G: the cost of an edge (u, v) in Gc for all
u, v ∈ V is given by the length of the shortest path between u and v in G. As an exercise verify
that costs in Gc form a metric.

Lemma 2.1.1 Let T be a tree spanning R in Gc, then we can find a subtree in G, T ′ that spans
R and has cost at most the cost of T in Gc.

Proof: We can get T ′ by taking a union of the paths represented by edges in T . Cost of edges in
Gc is the same as the cost of the paths (shortest) of G they represent. Hence the sum of costs of
all the paths making up T ′ is at most the cost of T .

As seen in the previous lecture a lower bound is a good place to start looking for an approximate
solution. We will use ideas from the previous lecture relating trees to traveling salesman tours to
obtain a lower bound on the optimal Steiner tree.

Lemma 2.1.2 Let Gc
R be the subgraph of Gc induced by R. Then the cost of the MST in Gc

R is
at most the cost of the optimal TSP tour spanning Gc

R.

Proof: See previous lecture.

Lemma 2.1.3 The cost of the optimal TSP tour spanning GR
c is at most twice OPT (the optimal

Steiner tree in Gc spanning R)

Proof: As shown in Figure 2.1.1 traversing each edge of the Steiner tree twice gives us a path
which covers all the terminal nodes i.e. a tour covering all of R. Hence TSP spanning R ≤ 2OPT .

Corollary 2.1.4 The cost of the MST of Gc
R is at most twice OPT .

Proof: Follows from the above mentioned lemmas.

The lower bound in itself suggests a 2-approximation to the Steiner tree. The algorithm is to simply
determine the MST on R in Gc

R i.e.
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Figure 2.1.1: Constructing tour spanning R from the optimal Steiner tree

• Consider Gc, the metric completion of graph G.

• Get Gc
R, the subgraph induced by set R on Gc.

• Determine MST on Gc
R, translate it back to a tree in G as described in the proof of lemma

2.1.1.

• Output this tree

Theorem 2.1.5 The algorithm above gives a 2-approximation to Steiner tree.

Proof: Follows from the three lemmas stated above.

By a more careful analysis the algorithm can be shown to give a 2
(

1 − 1
|R|

)

approximation. This

is left as an exercise.

The best known approximation factor for the Steiner tree problem is 1.55 [5]. Also from the
hardness of approximation side it is known that Steiner tree is “APX − Hard”, i.e. there exists
some constant c > 1 s.t. Steiner tree is NP- Hard to approximate better than c [1].

2.2 Greedy Approximation Algorithms—the min. multiway cut

problem

Next we look at greedy approximation algorithms. The design strategy carries over from greedy
algorithms for exact algorithm design i.e. our aim here is to pick the myopic best action at each
step and not be concerned about the global picture.

First we consider the Min Multiway Cut Problem.

Problem Statement: Given a weighted graph G with a set of terminal node T and costs (weights)
on edges our goal is to find the smallest cut separating all the terminals.

Let k = |T | denote the cardinality of the terminal set. When k = 2, the problem reduces to simple
min cut and hence is polytime solvable. For k ≥ 3 it is known that the problem is NP-Hard and
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also APX-Hard [3]. Note that multiway cut is different from the multicut problem. We will study
the latter later on in the course.

We provide a greedy approximation algorithm for the min multiway cut problem and give a tight
analysis to show that it achieves an approximation factor of 2

(

1 − 1
k

)

. The algorithm and analysis
is due to Dahlhaus et al. [3]

Algorithm: For every terminal ti ∈ T , find the min-cut Ci separating ti from T\{ti}. A Multiway
cut is obtained by taking the union of the (k − 1) smallest cuts out of C1,C2,...Ck.

The size of multiway cut determined by the greedy algorithm is
∑

i≤k |Ci|.

We proceed to analyze the relative goodness of the greedy solution with respect to that of the
optimal. The idea behind the analysis is captured by figure 2.2.2.

Lemma 2.2.1
∑

i |Ci| ≤ 2OPT , where OPT is the cost of the minimum multiway cut.

Proof: Consider the components generated by OPT , call them S1,...,Sk. For each ti, consider
the full cut C ′

i consisting of all the edges in OPT with exactly one end point in Si. We know that
|Ci| ≤ |C ′

i|, because C ′
i separates ti from T\{ti}.

Also (Figure 2.2.2) on summing up the capacities of C ′
is each edge of the min multiway cut is

counted twice hence we have
∑k

i=1 |C
′
i| = 2OPT . Combining the two we get

∑k
i=1 |Ci| ≤ 2OPT
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Figure 2.2.2: Min multiway cut

A tighter version of the above may be stated as follows.

Lemma 2.2.2 Let j = argmaxi|Ci|, i.e. j is the largest of the cuts then

∑

i∈[k],i6=j

|Ci| ≤ 2

(

1 −
1

k

)

OPT

Proof:
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As |Cj | is greater than the average value of the cuts we have,

∑

i∈[k],i6=j

|Ci| ≤

(

1 −
1

k

)

∑

i∈[k]

|Ci|

Combining this with the previous lemma we get the desired result.

Theorem 2.2.3 The above algorithm gives a 2
(

1 − 1
k

)

approximation to min multiway cut.
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Figure 2.2.3: Bad example for Min multiway cut greedy algorithm

We now give a tight example for the algorithm. First let us examine the case of k = 3 as in the
figure above. In this case the algo. returns a cut of cost 4, whereas the min. multiway cut has
cost 3(1 + ε). Generalizing the triangle of Figure 2.2.3 to a k cycle we find that the analysis of the
algorithm provided above is in fact tight. In particular for the k cycle case, |Ci| = 2 for each i and
hence the greedy multiway cut is of size 2(k−1). The min multiway cut is in fact the k cycle hence
OPT = (1 + ε)k. The example shows that our analysis of the provided greedy algorithm is in fact
tight.

Though the analysis provided here is tight, better algorithms exist for the min multiway cut prob-
lem. Calinescu et al. [2] gave a

(

3
2 − 1

k

)

approx. which was subsequently improved to a 1.3438
approx by Karger et al. [4].
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