
CS880: Approximations Algorithms

Scribe: Matt Elder Lecturer: Shuchi Chawla
Topic: Greedy Approximations: Set Cover and Min Makespan Date: 1/30/06

3.1 Set Cover

The Set Cover problem is: Given a set of elements E = {e1, e2, . . . , en} and a set of m subsets
of E,S = {S1, S2, . . . , Sn}, find a “least cost” collection C of sets from S such that C covers all
elements in E. That is, ∪Si∈CSi = E.

Set Cover comes in two flavors, unweighted and weighted. In unweighted Set Cover, the cost of a
collection C is number of sets contained in it. In weighted Set Cover, there is a nonnegative weight
function w : S → R, and the cost of C is defined to be its total weight, i.e.,

∑

Si∈C w (Si).

First, we will deal with the unweighted Set Cover problem. The following algorithm is an extension
of the greedy vertex cover algorithm that we discussed in Lecture 1.

Algorithm 3.1.1 Set Cover(E, S):

1. C ← ∅.

2. While E contains elements not covered by C:

(a) Pick an element e ∈ E not covered by C.

(b) Add all sets Si containing e to C.

To analyze Algorithm 3.1.1, we will need the following definition:

Definition 3.1.2 A set E′ of elements in E is independent if, for all e1, e2 ∈ E′, there is no
Si ∈ C such that e1, e2 ∈ Si.

Now, we shall determine how strong an approximation Algorithm 3.1.1 is. Say that the frequency of
an element is the number of sets that contain that element. Let F denote the maximum frequency
across all elements. Thus, F is the largest number of sets from S that we might add to our cover
C at any step in the algorithm. It is clear that the elements selected by the algorithm form an
independent set, so the algorithm selects no more than F |E′| elements, where E′ is the set of
elements picked in Step 2a. That is, ALG ≤ F |E′|. Because every element is covered by some
subset in an optimal set cover, we know that |E′| ≤ OPT for any independent set E′. Thus,
ALG ≤ F OPT, and Algorithm 3.1.1 is therefore an F–approximation.

Theorem 3.1.3 Algorithm 3.1.1 is an F–approximation to Set Cover.

Algorithm 3.1.1 is a good approximation if F is guaranteed to be small. In general, however, there
could be some element contained in every set of S, and Algorithm 3.1.1 would be a very poor
approximation. So, we consider a different unweighted Set Cover approximation algorithm which
uses the greedy strategy to yield a ln n–approximation.

1

Algorithm 3.1.4 Set Cover(E, S):

1. C ← ∅.

2. While E contains elements not covered by C:

(a) Find the set Si containing the greatest number of uncovered elements.

(b) Add Si to C.

Theorem 3.1.5 Algorithm 3.1.4 is a ln n
OPT

–approximation.

Proof: Let k = OPT, and let Et be the set of elements not yet covered after step i, with E0 =
E. OPT covers every Et with no more than k sets. ALG always picks the largest set over Et in
step t + 1. The size of this largest set must cover at least |Et|/k in Et; if it covered fewer elements,
no way of picking sets would be able to cover Et in k sets, which contradicts the existence of OPT.
So, |Et+1| ≤ |Et| − |Et|/k, and, inductively, |Et| ≤ n (1− 1/k)t.

When |Et| < 1, we know we are done, so we solve for this t:

(

1−
1

k

)t

<
1

n

⇒ n <

(

k

k − 1

)t

⇒ ln n ≤ t ln

(

1 +
1

k − 1

)

≈
t

k

⇒ t ≤ k ln n = OPT ln n.

Algorithm 3.1.4 finishes within OPT lnn steps, so it uses no more than that many sets. We can
get a better analysis for this approximation by considering when |Et| < k, as follows:

n

(

1−
1

k

)t

= k

⇒ n
1

et/k
= k (because (1− x)1/x ≤

1

e
for all x).

⇒ et/k =
n

k

⇒ t = k ln
n

k
.

Thus, after k ln n
k steps there remain only k elements. Each subsequent step removes at least one

element, so ALG ≤ OPT
(

ln n
OPT + 1

)

.

Theorem 3.1.6 If all sets are of size ≤ B, then there exists a (ln B + 1)–approximation to un-
weighted Set Cover.

Proof: If all sets have size no greater than B, then k ≥ n/B. So, B ≥ n/k, and Algorithm 3.1.4
gives a (ln B + 1)–approximation.

2

Now we extend Algorithm 3.1.4 to the weighted case. Here, instead of selecting sets by their number
of uncovered elements, we select sets by the ”efficiency” of their uncovered elements, or the number
of uncovered elements per unit weight.

Algorithm 3.1.7 Weighted Set Cover(S, C, E, w):

1. C ← ∅, and E′ ← E.

2. While E contains uncovered elements:

(a) s← argmaxX∈S |X ∩ E|/w(X).

(b) C ← C ∪ s, S ← S \ {s}, and E′ ← E′ \ S.

Algorithm 3.1.7 was first analyzed in [5].

Theorem 3.1.8 Algorithm 3.1.7 achieves a ln n–approximation to Weighted Set Cover.

Proof: For every picked set Sj, define θj as |Sj ∩ E|/w(Sj) at the time that Sj was picked. For
each element e, let S′

j be the first picked set that covers it, and define cost(e) = 1/θj . Notice that
∑

e∈E cost(e) = ALG.

Let us order the elments in the order that they were picked, breaking ties arbitrarily. At the time
that the ith element (call it ei) was picked, E contained at least n− i + 1 elements. At that point,
the ”per-element” cost of OPT is at most OPT/(n − i + 1). Thus, for at least one of the sets in
OPT, we know that

|S ∩ E|

w(s)
≥

n− i + 1

OPT
.

Therefore, for the set Sj picked by the algorithm, we have θj ≥ (n− i + 1)/OPT. So,

cost(ei) ≤
OPT

n− i + 1
.

Over the execution of Algorithm 3.1.7, the value of i goes from n to 1. Thus, the total cost of each
element that the algorithm removes is at most

n
∑

i=1

OPT

n− i + 1
≤ OPT ln n.

Thus, Algorithm 3.1.7 is a ln n–approximation to Weighted Set Cover.

The above analysis is tight, which we can see by the following example:

3

The dots are elements, and the loops represent the sets of S. Each set has weight 1. The optimal
solution is to take the two long sets, with a total cost of 2. If Algorithm 3.1.7 instead selects the
leftmost thick set at first, then it will take at least 5 sets. This example generalizes to a family of
examples each with 2k elements, and shows that no analysis of Algorithm 3.1.7 will make it better
than a O(ln n)–approximation.

A ln n–approximation to Set Cover can also be obtained by other techniques, including LP-rounding.
However, Feige showed that no improvement, even by a constant factor, is likely:

Theorem 3.1.9 There is no (1− ε) ln n–approximation to Weighted Set Cover unless NP ⊆ DTIME(nlog log n).
[1]

3.2 Min Makespan Scheduling

The Min Makespan Problem is: given n jobs to schedule on m machines, where job i has size si,
schedule the jobs to minimize their makespan.

Definition 3.2.1 The makespan of a schedule is the earliest time when all machines have stopped
doing work.

This problem is NP-hard, as can be seen by a reduction from Partition. The following algorithm
due to Ron Graham yields a 2–approximation.

Algorithm 3.2.2 (Graham’s List Scheduling) [2] Given a set of n jobs and a set of m empty
machine queues,

1. Order the jobs arbitrarily.

2. Until the job list is empty, move the next job in the list to the end of the shortest machine
queue.

Theorem 3.2.3 Graham’s List Scheduling is a 2–approximation.

Proof: Let Sj denote the size of job j. Suppose job i is the last job to finish in a Graham’s
List schedule, and let ti be the time it starts. When job i was placed, its queue was no longer

than any other queue, so every queue is full until ti. Thus, ALG = Si + ti ≤ Si +
(
Pn

j=1
Sj)−Si

m =
1
m

∑n
j=1 Sj + (1 − 1/m)Si. It’s easy to see that Si ≤ OPT and that 1

m

∑n
j=1 Sj ≤ OPT . So, we

conclude that ALG ≤ (2− 1/m)OPT, which yields a 2–approximation.

This analysis is tight. Suppose that after the jobs are arbitrarily ordered, the job list contains
m(m−1) unit-length jobs, followed by one m-length job. The algorithm yields a schedule completing
in 2m− 1 units while the optimal schedule has length m.

This algorithm can be improved. For example, by ordering the job list by increasing duration instead
of arbitrarily, we get a (4/3)–approximation, a result proved in [3]. Also, this problem has a poly-
time approximation scheme (PTAS), given in [4]. However, a notable property of Algorithm 3.2.2
is that it is an online algorithm, i.e., even if the jobs arrive one after another, and we have no
information about what jobs may arrive in the furture, we can still use this algorithm to obtain a
2–approximation.

4

References

[1] Uriel Feige. A Threshold of lnn for Approximating Set Cover. In J. ACM 45(4), pp 634-652.
(1998)

[2] Graham, R. Bounds for Certain Multiprocessing Anomalies. In Bell System Tech. J., 45, pp
1563-1581. (1966)

[3] Ronald L. Graham. Bounds on Multiprocessing Timing Anomalies. In SIAM Journal of Applied
Mathematics, 17(2), pp 416-429. (1969)

[4] Dorit S. Hochbaum, David B. Shmoys. A Polynomial Approximation Scheme for Scheduling on
Uniform Processors: Using the Dual Approximation Approach. In SIAM J. Comput. 17(3), pp
539-551. (1988)

[5] D. S. Johnson. Approximation Algorithms for Combinatorial Problems. In Journal of Computer
and System Sciences, 9, pp 256-278. (1974) Preliminary version in Proc. of the 5th Ann. ACM
Symp. on Theory of Computing, pp 36-49. (1973)

5

