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The first part of the lecture shows how a randomized rounding scheme can be used to transform
an optimal LP solution to a valid solution of the original problem. The specific problem used for
this example is the min-congestion routing problem.

The second part of the lecture introduces the concept of LP-Duality, and the primal-dual interpre-
tation of the maxflow-mincut problem.

12.1 Randomized rounding

12.1.1 Min congestion routing problem

GIVEN: a graph G = (V,E) and k pairs of demand vertices (si, ti).
DO: find a single path pi from si to ti for every i, trying to minimize the congestion C. The
congestion is defined as the number of paths going through the most-used edge in the graph.

C = max
e∈E

|{i|e ∈ pi}|

We then cast the problem as an LP where xie is defined as the amount of path i flow being sent
through edge e.

min t obj fcn
∑

e∈δ+(v)

xie =
∑

e∈δ−(v)

xie ∀i,∀v 6= si, ti

∑

e∈δ−(si)

xie =
∑

e∈δ+(ti)

xie = 1 ∀i

∑

i

xie ≤ t ∀e

xie ≥ 0 ∀i,∀e

The sets δ+(v) and δ−(v) correspond to the incoming and outgoing flow, respectively, for vertex v.
The summation constraints then enforce flow conservation, and source/sink assignments.

Since the objective function is to minimize t, which is constrained to be an upper bound for the
flow across any edge, t will give us the (possibly fractional) congestion for a solution point of this
LP.

In order to recover an integral/unsplittable flow solution from the LP solution, we will consider an
equivalent formulation of the LP.
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In this alternative formulation xp refers to the flow along path p, and Pi is the set of all possible
paths from si to ti.

min t obj fcn
∑

p∈Pi

xp = 1 ∀i

∑

{p|e∈p}

xp ≤ t ∀e

xp ≥ 0 ∀p

These formulations are equivalent in the sense that any solution to one can be converted into a
solution of the other.

To convert from the first to the second, find all non-zero xie for a given i. Then, considering only
these edges, perform DFS from si to find a path to ti. For this path p, set xp to the minimum xie

value on the path, then subtract that amount from all xie on the path. That will effectively remove
the minimum edge from our edge set. Repeat this procedure until there are no edges remaining,
building a set of xp values as you go.

To convert from the second LP to the first, find all non-zero xp for a given Pi, then simply add
that much flow to the edge flow xie for each e ∈ p.

It is important to note that the second formulation is impractical to solve directly, as the number of
possible paths in the Pi sets will lead to exponentially many constraints. However the xp quantities
will come in useful for our randomized rounding scheme, as we will see.

12.1.2 Randomized rounding transformation

As on previous problems, the optimal objective function value of our LP forms a lower bound on
the true optimal solution of the original problem. That is, LP ∗ ≤ OPT . However, we need a way
to do rounding from the flows in our LP solution to legal unsplittable flows for the original problem.

Our approach will be to solve the LP in the first formulation, convert the solution to the second
formulation, and then treat the xp values as path selection probabilities. For a given path set
Pi, the constraints that all xp must be ≥ 0 and sum to 1 ensure that this is a valid probability
distribution. The algorithm is then relatively simple.

1. solve original formulation LP,

2. convert solution LP ∗ to second formulation

3. for each i, pick a p ∈ Pi with probability xp

Obviously, this algorithm will select exactly one path for each (si, ti) pair, yielding a valid solution.
What will the congestion be?
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For every edge, total traffic in LP ∗ is ≤ t. The traffic corresponds to the xp values, which also then
correspond to the path selection probabilities.

For each edge define a set of indicator random variables Xi.

Xi =

{

1 if algo picks edge e for commodity i

0 else

Then define the expectation of Xi.

E(Xi) = µi =
∑

{p∈Pi|e∈p}

xp

Then for any edge e and set of random variable values Xi = xi, define its congestion to be Ce =
∑

i xi. The expectation of the edge congestion can then be computed using our µi values and the
linearity of expectation.

E(Ce) = E(
∑

i

Xi) =
∑

i

E(Xi) =
∑

i

µi ≤ t

For our approximation factor, we want the sum of all Xi for every edge to be small. As shown
above, we know the expectation for each edge e to be ≤ t. More specifically, we want to show that
for an appropriate value of λ, Pr[Ce ≥ λE(Ce)] is small, for all e.

This can be accomplished through the use of a concentration bound result, specifically Chernoff’s
bound [1]. This bound assumes that the individual Xi are independent variables which can take on
the values {0, 1}, and then uses Markov’s inequality applied to a certain function to get the bound.
For λ ∈ [0, 1], the bound is:

Pr[X /∈ (1 ± λ)E(X)] ≤ exp
−λ2E(X)
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We customize the bound to our specific situation, using the fact that
∑

i µi ≤ t to get the following
inequality.

Pr[Ce ≥ (1 + λ)t] ≤ exp
−λ2

∑

i µi

3

Note that
∑

i µi may be quite small, meaning that no value of λ ≤ 1 will give a small probability of
error. So in order to obtain a smaller bound we must use a more general formulation of Chernoff’s
bound that also holds for λ > 1.

P (Ce ≥ (1 + λ)t) ≤

(

exp λ

(1 + λ)1+λ

)

P

i
µi
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We then manipulate the right-hand side.

(

eλ

(1 + λ)1+λ

)

P

i
µi

≤

(

eλ

λλ

)

P

i
µi

≤

(

1

(λ/e)λ

)

P

i
µi

We now pick a value of λ for which the term λλ in the denominator becomes nO(1). Specifically
we set λ = O( log n

log log n
). We then substitute in our definition of λ.

λλ = exp(λ log λ)

= exp

(

log n

log log n
(log log n − log log log n

)

= Θ(nc)

where c is a factor determined by the actual terms in the O() equation used to calculate λ. Setting
λ appropriately to get c = 3, we plug this back into the original bound and end up with the result
that for any edge e:

Pr[Ce > (1 +

(

log n

log log n

)

)t] < 1/n3

We take the union of this bound over all ≤ n2 edges to get a total probability bound.

P (∃e|Ce > (1 +

(

log n

log log n

)

)t) < 1/n

By repeatedly applying our algorithm, we can then achieve an arbitrarily low probability of ex-
ceeding an (1 + log n

log log n
)-approximation to OPT .

12.2 LP-Duality

12.2.1 Definition/Derivation of LP-Duality

Consider the following example linear program. (For more discussion of this example, see [1].)

min x + 4y

x + 2y ≥ 5

2x + y ≥ 4

x, y ≥ 0
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How could we obtain a lower bound on the true optimal objective function value for this LP (without
actually solving it, that is)?

We can take a non-negative linear combination of the constraint equations. Since x, y ≥ 0, if
the x coefficient in our combination is ≤ the x coefficient in the objective function, and the same
holds true for the y coefficients, our linear combination of constraints must also be ≤ the objective
function for any legal x, y.

When taking linear combinations of the constraints, we will also end up a linear combination of
the right-hand side of the constraints. Since it is a lower bound on the left-hand side, the linear
combination of the right-hand sides of the constraints is also a lower bound on the objective function.

To see what we mean, call the linear combination coefficients u, v.

min x + 4y

(x + 2y)u ≥ 5u

(2x + y)v ≥ 4v

x, y, u, v ≥ 0

Enforcing that the x, y coefficients in the linear combination are ≤ than the x, y coefficients in
the original objective function gives us some constraints on u, v. Since we want the tightest lower
bound possible, we then want to maximize the right-hand size of the constraint linear combination.
This mix of constraints and objective function give us a new LP.

max 5u + 4v

u + 2v ≤ 1

2u + v ≤ 4

u, v ≥ 0

This LP is known as the dual of the original LP, which is called the primal. It is interesting to note
that the objective function coefficients of the primal have become the constraint bounds in the dual,
while the constraint bounds of the primal have become the objective function coefficients of the
dual. Also, the u, v constraint coefficient matrix is the transpose of the x, y constraint coefficient
matrix.

The relationship between the primal and dual LPs is very special and useful. The specifics will be
spelled out in series of lemmas. For notation, V alP (x, y) and V alD(u, v) are the objective function
values of the primal and dual LPs, respectively, with an ∗ denoting the optimal objective function
value.

Theorem 12.2.1 Let (x, y) be any feasible primal solution. Let (u, v) be any feasible dual solution.

Then V alP (x, y) ≥ V alD(u, v).

This result follows from manipulation of the constraints in the definition of the dual presented
above, and is known as the Weak LP-Duality Theorem.
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Theorem 12.2.2 V al∗P is finite iff V al∗D is finite.

Theorem 12.2.3 If both the primal and the dual have feasible solutions, then V al∗P = V al∗D.

These results are known as the Strong LP-Duality Theorem.

What if there are no feasible solutions for one of the versions of the problem, or if one of the
problems is unbounded? It turns out that the dual has no feasible solutions iff the primal is
unbounded below. Likewise, the primal has no feasible solution iff the dual is unbounded above.

Finally, it is interesting to note what happens when we take the dual of the dual.

Lemma 12.2.4 The dual of the dual is the original primal.

12.2.2 Applications of LP-Duality

12.2.2.1 General motivation

Why do we care about LP-Duality? For one thing, some of the optimization algorithms for actually
finding LP solutions rely heavily on LP-Duality and its consequences.

Aside from that, it may be that the primal formulation is unwieldy, or that the rounding transfor-
mation for the dual solution may be more favorable. The dual formulation also may yield useful
combinatorial insight into problem structure.

Finally, we can use the structure of the primal and dual to guide a purely combinatorial approxima-
tion algorithm for the underlying optimization problem. This technique is known as the primal-dual
method and will be sketched out more fully in the next lecture.

12.2.2.2 Mincut-Maxflow

Consider the following LP formulation of the standard maxflow problem. Let xp be the flow on
path p, which is a path from source s to sink t.

max
∑

p

xp obj fcn

∑

{p|e∈p}

xp ≤ ce ∀e

xp ≥ 0 ∀p

Then take the dual.

min
∑

e∈E

yece obj fcn

∑

e∈p

ye ≥ 1 ∀p

ye ≥ 0 ∀p
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Note that since all ce ≥ 0 and we are trying to minimize the sum over e, in a solution no ye will be
assigned a value greater than 1.

What is the intuitive interpretation of the dual of our maxflow LP? Each ye corresponds to ’choosing’
an edge. The constraints state that we must choose ≥ 1 edge from every path, and the objective
function tells us to minimize the sum of yece over all e.

Ignoring fractional ye, this means that our optimal LP solution to this dual needs to choose edges
so that every path contains one of the chosen edges, and also choose the edges with the smallest
total capacity. The smallest capacity set of edges which interesects every path from s to t is, by
definition, the minimum weight separating cut between s and t.

As it turns out, all basic points of the primal and dual LPs are integral. This, along with the Strong
LP Duality theorem (Theorem 12.2.3), implies the Max-Flow Min-Cut Theorem. The following
lemma and theorem formalize this notion.

Lemma 12.2.5 The Mincut LP has integral basic points.

Corollary 12.2.6 Maxflow-Mincut Theorem: The maximum possible flow between s and t is equal

to the capacity of the minimum cut separating s and t.

In this way LP-Duality allows us to clearly see the duality of the maxflow and mincut problems.
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