
CS880: Approximations Algorithms

Scribe: Chi Man Liu Lecturer: Shuchi Chawla
Topic: Bourgain’s Embedding into ℓ1, Semi-Definite Programming Date: 3/22/2007

In the previous lecture, we saw how to approximate Sparsest Cut given a low distortion embedding
from arbitrary metrics into ℓ1. In the first part of this lecture, we present such an embedding with
O(log n) distortion [1], and hence a O(log n)-approximation for Sparsest Cut [2]. In the second
part of this lecture, we introduce a generalization of linear programming known as semi-definite
programming (SDP), and give an SDP relaxation for the Max-Cut problem [3].

19.1 Bourgain’s Embedding into ℓ1

Last time we showed that Sparsest Cut could be approximated by interpreting the problem as an LP
over ℓ1-metrics. In this section, we show how to embed an arbitrary metric over a set of n points into
an ℓ1 metric with O(log n) distortion [1]. An immediate result would be a O(log n)-approximation
for Sparsest Cut [2].

Let V be a set of n points and d be a metric over V . We want to find an embedding of d into R
k

for some k with distortion O(log n), i.e. we want to find an embedding f : V → R
k such that there

exists α, β > 1 with αβ = O(log n) and for all x, y ∈ V ,

ℓ1(f(x), f(y)) ≤ α · d(x, y) and

ℓ1(f(x), f(y)) ≥
1

β
· d(x, y).

19.1.1 The Algorithm

In our construction, we use Fréchet embeddings, which map general metric spaces to normed metric
spaces as follows. Let (V, d) be a metric space. Suppose that we want to embed this metric space
into ℓ1 over |V | points in Rk. Then, for the ith coordinate (1 ≤ i ≤ k), we pick a subset Ai ⊆ V ,
and set fi(x) = d(x, Ai) for all x ∈ V , where d(x, Ai) = miny∈Ai

d(x, y).

We are going to map V to n points in R
M1M2 , where M1 = ⌈log2 n⌉ and M2 is a constant multiple

of log n to be determined later. The algorithm is as follows.

(1) For i = 1, . . . , M1,

(2) For j = 1, . . . , M2,

(3) Form the set Aij by picking every x ∈ V with probability 2−i.

(4) For all x ∈ V , set f(x) = (f11(x), f12(x), . . . , fM1M2
(x)), where fij(x) = d(x, Aij).

We give an intuition for the above algorithm. Consider a particular coordinate. Arrange the points
in V on the real number line according to their coordinates. For any two points, we do not want

1

their distance on the number line to be too large, otherwise the expansion of the embedding would
be large. In fact, using the triangle inequality, we can conclude that the distance will never be too
large: |fij(x)− fij(y)| = |d(x, Aij)− d(y, Aij)| ≤ d(x, y). Likewise, we do not want them too close,
since we want to keep the contraction small. One way to achieve this is to ensure that d(x, Aij) is
quite large and d(y, Aij) is relatively small (or vice versa). That is, we want Aij to include at least
one point close to y, but no point close to x. If the set Aij is too large, it may include points close
to x, and if it is too small, it may not include any point close to y. This is why we use randomness
in our algorithm: we hope that the overall distortion will be small by randomly picking sets of
varying sizes (depending on the value of i).

19.2 Analysis

We need to show that our algorithm gives a O(log n)-distortion embedding with reasonbly high
probability. The following lemma bounds the expansion of f .

Lemma 19.2.1 The expansion of f is at most M1M2.

Proof: Pick any x, y ∈ V and look at one coordinate. By the definition of f and the triangle
inequality, we have

|fij(x) − fij(y)| = |d(x, Aij) − d(y, Aij)| ≤ d(x, y).

Thus, the ℓ1 distance between f(x) and f(y) is bounded by

M1
∑

i=1

M2
∑

j=1

|fij(x) − fij(y)| ≤ M1M2 · d(x, y).

The following lemma bounds the contraction of f . The proof of this lemma is deferred.

Lemma 19.2.2 The contraction of f is O(1
log n), i.e. for all x, y ∈ V , ℓ1(f(x), f(y)) = Ω(log n) ·

d(x, y).

Our main theorem follows from Lemma 19.2.1 and Lemma 19.2.2 directly.

Theorem 19.2.3 There exists an efficiently computable O(log n)-distortion embedding from (V, d)
into (Rk, ℓ1), where k = O(log2 n).

Before we prove Lemma 19.2.2, we need a few definitions.

Definition 19.2.4 For any x ∈ V and r ≥ 0, we denote by B(x, r) the (closed) ball centered at x

with radius r, i.e. B(x, r) = {y ∈ V | d(x, y) ≤ r}. For any x ∈ V and non-negative integer i, let
ri(x) be the smallest r such that |B(x, r)| ≥ 2i.

We now proceed to the proof of Lemma 19.2.2.

Proof: [Proof of Lemma 19.2.2] Fix x, y ∈ V . For any i, let ρi = max{ri(x), ri(y)}. Note that
|B(x, ρi)| ≥ 2i and |B(y, ρi)| ≥ 2i. Let t be the smallest index such that ρt ≥

1
2d(x, y). Consider

ρ0, ρ1, . . . , ρt. If ρt + ρt−1 > d(x, y), we redefine ρt = d(x, y) − ρt−1. By doing this, we ensure that
B(x, ρi−1) and B(y, ρi) are disjoint (but they can touch) for i = 1, . . . , t. We want to show that

2

for any i and j, there is a good chance that Aij contains a point near x but no point near y. This
effectively bounds the contraction of f between x and y. This is formalized in the following claim.

Claim 19.2.5 Let 1 ≤ i ≤ t. Let Si = {j | |fij(x) − fij(y)| ≥ ρi − ρi−1}. Then there exists a
constant c > 0 such that Pr[|Si| ≥ c log n] ≥ 1 − n−3.

Proof: [Proof of Claim 19.2.5] Without loss of generality, suppose that ρi = ri(y). Let the ith good
ball Gi be B(x, ρi−1), and the ith bad ball Bi be the open ball centered at y with radius ρi, i.e.
Bi = {v ∈ V | d(y, v) < ρi}. Note that |Gi| ≥ 2i−1 and |Bi| ≤ 2i−1 (since Bi is open).

Aij

Gi

Bi

ρi−1 ρi

yx

Figure 19.2.1: The ith good ball Gi, the ith bad ball Bi, and the set Aij .

Fix j. We bound the probability that some point in Aij lies in Gi but none lies in Bi as follows.

Pr[Aij ∩ Gi 6= ∅ and Aij ∩ Bi = ∅]

= Pr[Aij ∩ Gi 6= ∅] · Pr[Aij ∩ Bi = ∅]
(by independence, because

Gi and Bi are disjoint)

≥

(

1 −

(

1 −
1

2i

)2i/2
)

(

1 −
1

2i

)2i

≥ (1 − e−1/2) ·
1

4
.

Thus, the above probability is at least some constant. Note that Aij ∩ Gi 6= ∅ implies that
fij(x) ≤ ρi−1, and Aij ∩ Bi = ∅ implies that fij(y) ≥ ρi. Hence, it follows from the above
that Pr[|fij(x) − fij(y)| ≥ ρi − ρi−1] is at least some constant.

For each j, let Zj be an indicator random variable taking the value 1 if and only if |fij(x)−fij(y)| ≥

ρi−ρi−1. Then by linearity of expectation, we have E
[

∑M2

j=1 Zj

]

≥ c′ ·M2 for some constant c′ > 0.

By choosing M2 (recall that M2 is a constant times log n and we have not picked the constant yet)

3

and a suitable constant c′′ > 0 and applying the Chernoff bound1, we have

Pr

M2
∑

j=1

Zj < c · M2

 < e−
c′′·M2

3 =
1

n3
,

where c depends on c′, c′′ and M2. Recall that M2 = Θ(log n) and
∑M2

j=1 Zj = |Si|. This proves our
claim.

Let c be the constant in Claim 19.2.5. For every i, we call it good if |Si| ≥ c · log n, and bad
otherwise. If all i’s are good, then

t
∑

i=1

M2
∑

j=1

|fij(x) − fij(y)| ≥
t
∑

i=1

Ω(log n)(ρi − ρi−1)

≥ Ω(log n)ρt

≥ Ω(log n)d(x, y).

Thus, the contraction of f is O(1
log n). It remains to show the probability that all i’s are good is

not too small. By union bound, we have

Pr[there exists a bad i] ≤
1

n3
log n <

1

n2
.

Hence, for fixed x, y ∈ V , all i’s are good with probability at least 1 − n−2. We say that a pair
(x, y) fails if not all i’s are good. By union bound, we get

Pr[there exists a pair (x, y) which fails] ≤
1

2
.

We can repeat the algorithm until the contraction of f is O(1
log n). The expected number of times

we need to run the algorithm is constant.

Note. It can be shown that f is a O(log n)-distortion embedding into ℓp for general p using a similar
analysis. Also, there are metrics which cannot be embedded into ℓ1 with distortion o(log n), e.g.
expander graph metrics.

19.3 Semi-Definite Programming

One downside of linear programming is that it cannot capture nonlinear constraints. In this section,
we introduce semi-definite programming, which is capable of capturing a specific form of nonlinear
constraints that turns out to be useful in some formulations.

19.3.1 Definitions

A semi-definite program (SDP) can be thought of as a linear program with an additional “semi-
definiteness” constraint. More specifically, an SDP is a mathematical program with the following
elements:

1The Chernoff bound we use here is Pr[
∑

Zj < (1 − ǫ)E[
∑

Zj]] < exp(−ǫ2E[
∑

Zj]/3).

4

• a set of variables;

• a linear objective function to be minimized or maximized;

• a set of linear constraints;

• a special constraint saying that some matrix of variables is positive semi-definite (see below).

The special constraint is the only thing that is not seen in linear programs. This constraint has
the form “A has to be positive semi-definite, where A is a square matrix whose entries are taken
from the variables in the program”. In the following, we define positive semi-definite matrices and
give some related results in linear algebra.

Definition 19.3.1 (Positive semi-definite matrix) An n×n matrix A is positive semi-definite
(denoted as A � 0) if and only if

1. A is real symmetric; and

2. for all x ∈ R
n, xT Ax =

∑n
i=1

∑n
j=1 Aijxixj ≥ 0.

The following proposition implies that convex combinations of feasible solutions to an SDP are still
feasible.

Proposition 19.3.2 Let A, B be positive semi-definite matrices of the same size. Then

1. A + B � 0;

2. λA � 0 for all real λ ≥ 0.

The following proposition gives different characterizations of positive semi-definite matrices.

Proposition 19.3.3 Let A be an n × n matrix. The following statements are equivalent:

1. A � 0.

2. All eigenvalues of A are real and non-negative.

3. There exists a matrix C ∈ R
m×n (m ≤ n) such that A = CT C.

Given a positive semi-definite matrix A, the matrix C in the third characterization can be computed
in polynomial time using an algorithm called Cholesky decomposition. Note that a positive semi-
definite matrix can be viewed as a matrix of dot products. If we think of C = [C1 · · ·Cn] as a
bunch of column vectors in R

m, the (i, j)th entry of A is the dot product Ci · Cj . This leads us
to viewing SDP as vector programming. A vector program is a mathematical program with the
following elements:

• a set of variables vi’s in R
n, for some n > 0;

• an objective function linear in all (vi · vj)’s, to be minimized or maximized;

• a set of linear constraints over all (vi · vj)’s

We will see some vector program formulations in later lectures.

5

19.3.2 Solving SDPs

Similar to an LP, the feasible region (polytope) of an SDP is convex, except that one of its faces
(the one corresponding to the nonlinear constraint) might not be “flat”. As a result, the optimal
solution to an SDP could be in the interior of a face of the feasible region and could be irrational.
Hence, having a polynomial-time algorithm for solving SDPs exactly is impossible. However, we can
achieve a (1+ǫ)-approximation in time poly(n, log 1

ǫ), where n is the input size. Typical algorithms
for solving SDPs include interior point methods and the ellipsoid method. Recall that the ellipsoid
method starts by enclosing the whole feasible region in a large ellipsoid. It then checks if the center
of the ellipsoid lies in the feasible region. If not, it picks a violated constraint and computes the
intersection of the ellipsoid with the hyperplane corresponding to that constraint. A new, smaller
ellipsoid is then used to enclose the intersection. This process is repeated until we have found a
point lying in the feasible region, or the ellipsoid has become so small that we can conclude the
feasible region to be empty. One nice thing about the ellipsoid method is that even if the SDP has a
super-polynomial number of constraints, it still runs in polynomial time, provided that there exists
an efficient algorithm for testing feasibility of a given solution, and finding a violated constraint if
the solution is infeasible. Such an algorithm is known as a separation oracle for the SDP.

19.3.3 Example: Max-Cut

Recall the (Unweighted) Max-Cut problem.

Definition 19.3.4 (Max-Cut) Given an undirected graph G = (V, E), find a cut in G with max-
imum cut value, i.e. find a subset S ⊆ V that maximizes

c(S) =
∣

∣{(v, v′) | v ∈ S, v′ ∈ V \S, (v, v′) ∈ E}
∣

∣ .

We are going to formulate Max-Cut as an SDP. For each vertex v ∈ V , we have a variable xv that
takes a value in {1,−1} depending on the partition to which v is assigned. It is clear that the value

of the cut is
∑

(u,v)∈E
|xu−xv |

2 . We are going to maximize the value. Thus, we have the following
nonlinear program.

maximize
∑

(u,v)∈E
|xu−xv |

2

subject to xv ∈ {−1, 1} ∀v ∈ V

Note that the objective function in not linear in the xv’s. We can convert the above program to
the following equivalent quadratic integer program.

maximize
∑

(u,v)∈E
(xu−xv)2

4

subject to x2
v = 1 ∀v ∈ V

Solving quadratic programs is NP-hard in general. By introducing new variables, the objective
function can be converted to a linear one. Specifically, we have a new variable yuv for each pair
(u, v) ∈ V × V . We add (nonlinear) constraints to enforce the equality yuv = xuxv for every u and
v. By observing that (xu − xv)

2 = x2
u + x2

v − 2xuxv = 2 − 2yuv, we obtain the following program.

maximize
∑

(u,v)∈E
1−yuv

2

subject to yuv = xuxv ∀(u, v) ∈ V × V

yvv = 1 ∀v ∈ V

6

Let Y = [yuv]u,v∈V be a matrix of variables. Then Y = XT X where X = [xv]v∈V is a row vector
containing the variables xv’s. We rewrite the above program in matrix form.

maximize
∑

(u,v)∈E
1−yuv

2

subject to yvv = 1 ∀v ∈ V

Y = XT X

X is a row vector

The above program can be relaxed into an SDP. By Proposition 19.3.3, Y � 0. The resulting SDP
relaxation is as follows. Note that xv’s no longer appear in the program.

maximize
∑

(u,v)∈E
1−yuv

2

subject to yvv = 1 ∀v ∈ V

Y � 0

Since the SDP is a relaxation of the original program, its optimal value must be at least the optimal
cut value. To get an approximation, we still need to show how to convert the SDP solution to a cut
whose value is not much smaller than the optimal value of the SDP. Let Y ∗ be an optimal solution
to the above SDP. Using Cholesky decomposition, we can find in polynomial time a matrix X∗ such
that Y ∗ = X∗T X∗. Suppose that X∗ has m rows, where m ≤ n. Then each vertex v is represented
by a vector in R

m. Note that these vectors are unit vectors because yvv = 1 for all v, and hence
they all lie on the unit sphere in R

m. In order to obtain a cut, we need separate these vectors into
two sets. Let (u, v) be an edge in G. Let X∗

u and X∗
v be a unit vectors corresponding to u and v. If

X∗
u and X∗

v are far apart, their dot product X∗
u ·X∗

v = yuv is small, and so the value 1−yuv

2 is large.

Thus, to maximize
∑

(u,v)∈E
1−yuv

2 , our objective is to separate the vectors into two sets such that
“long” edges get cut. If we pick a random hyperplane through the origin, the probability that an
edge gets cut is roughly proportional to its length. This randomized approach seems to be a nice
and easy way to meet our objective. We will continue our discussion next time. The algorithm is
due to Goemans and Williamson [3].

References

[1] J. Bourgain. On Lipschitz embedding of finite metric spaces in Hilbert space. Israel J. Math.,
52(1–2), pp. 46–52, 1985.

[2] N. Linial, E. London and Y .Rabinovich. The geometry of graphs and some of its algorithmic
applications. Combinatorica, 15, pp. 215–245, 1995.

[3] M.X. Goemans and D.P. Williamson. Improved approximation algorithms for maximum cut
and satisfiability problems using semidefinite programming. Journal of the ACM (JACM), 42(6),
pp. 1115–1145, 1995.

7

