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Abstract

Good economic mechanisms depend on the preferences of participants in the mechanism.
For example, the revenue-optimal auction for selling an item is parameterized by a reserve
price, and the appropriate reserve price depends on how much the bidders are willing to pay.
A mechanism designer can potentially learn about the participants’ preferences by observing
historical data from the mechanism; the designer could then update the mechanism in response
to learned preferences to improve its performance. The challenge of such an approach is that
the data corresponds to the actions of the participants and not their preferences. Preferences
can potentially be inferred from actions but the degree of inference possible depends on the
mechanism. In the optimal auction example, it is impossible to learn anything about preferences
of bidders who are not willing to pay the reserve price. These bidders will not cast bids in the
auction and, from historical bid data, the auctioneer could never learn that lowering the reserve
price would give a higher revenue (even if it would). To address this impossibility, the auctioneer
could sacrifice revenue optimality in the initial auction to obtain better inference properties so
that the auction’s parameters can be adapted to changing preferences in the future. This paper
develops the theory for optimal mechanism design subject to good inferability.

1 Introduction

This paper develops prior-independent methods for revenue management of an auctioneer. The
classical revenue optimal auction is prior dependent, i.e., requiring knowledge of the distribution
over values of the bidders (cf. Myerson, 1981). We study a paradigmatic family of auctions and
develop a method for counter-factual inference that allows the equilibrium revenue of one auction
in the family to be estimated from bids in another. One application of this method is a framework
for A/B testing of auctions, a.k.a., randomized controlled trials, wherein an auctioneer can compare
the revenue of auctions A and B. Another application is in instrumented optimization where we
identify sufficient properties of an auction so that the revenue of any counter-factual auction can
be estimated and then optimize revenue over auctions with these properties.

The main technical contribution of this paper is a method for counter-factual revenue estimation:
given two auctions we define an estimator for the equilibrium revenue of one from equilibrium bids
of the other. Our estimator has a number of appealing properties in contrast to the standard
econometric approach to inference in auctions. In the standard approach, first the value distribution
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is inferred from bids of the first auction using equilibrium analysis, and then the estimated value
distribution is used to calculate the expected revenue of the second auction. To infer the value
distribution, the standard approach employs estimates of the derivative of the bid function via an
estimator that typically must be tuned to trade-off bias and variance. by an assumption on bid
distribution. In contrast, our method estimates revenue directly from the bids and our estimator
requires no distribution dependent tuning Our method is statistically efficient with estimation error
proportional to one over the square root of the number of observed bids.

Our work applies to first-price and all-pay position auctions, a model popularized by studies of
auctions for advertising on Internet search engines (cf. Varian, 2007, and Edelman et al., 2007).1

A position auction is defined by a decreasing sequence of weights which correspond to allocation
probabilities, bidders are assigned to weights assortatively by bid, and pay their bid if allocated
(first-price) or always (all-pay). The configurable parameters in this family of auctions are the
weights of the positions. Given two position auctions B and C, each defined by positions weights,
and N samples from the Bayes-Nash equilibrium bid distribution from C, our estimator for the
Bayes-Nash equilibrium revenue of B is a weighted order statistic. We apply a formula to the
position weights in B and C to get a weight for each order statistic of the N bids, and then the
estimator is the weighted sum of the order statistics. The error bounds for this estimator are
proportional to

√
1/N and a term derived from the position weights of B and C.

Our first application of this revenue estimator is to A/B testing of auctions. A/B testing, other-
wise known as randomized controlled trials, is an industry standard method for evaluation, tuning,
and optimizing Internet services and e-commerce systems. This form of online experimentation is
happening all the time and the participants of the experiments are almost always unaware that the
experiment is being conducted. Our framework for A/B testing of auctions is motivated – as we
describe subsequently – by auction environments where ideal A/B testing is impossible.2 In our
framework bidders bid first and then the experimenter randomly selects and runs control auction
A or treatment auction B on the bids. Importantly, the bidders are unaware of whether they are
in the control A or treatment B, but have instead bid according to the Bayes-Nash equilibrium of
auction C, the convex combination of auctions A and B. Our task of A/B testing of auctions is then
to compare estimates of revenue of A and B given bids in C. Note, a convex combination of position
auctions is a position auction with position weights given by the convex combination. Suppose the
A/B test auction C runs the control auction A with probability 1− ε and the treatment auction B
with probability ε. Our main result for A/B testing is that the revenue from B can be estimated
from bids in C with error that depends on ε as log(1/ε). This error bound improves exponentially
over the

√
1/ε dependence on ε that would be obtained by ideal A/B testing.

Our second application of our revenue estimator is to instrumented optimization. Note that
classical revenue optimization in auctions, e.g., by reserve prices and ironing (Myerson, 1981), is
at odds with classical structural inference. Reserve pricing and ironing pool bidders with distinct
values and, thereafter, no procedure for structural inference can distinguish them. The position
auctions (with neither ironing nor reserve prices) of our study do not exhibit this stark behavior;
nonetheless, the error in our revenue estimate for auction B from the bids in auction C does depend
on auction C. (In particular on a relationship between the position weights in B and C; e.g., the

1First-price and all-pay position auctions generalize classical single-item and multi-unit auction models and are
important auction form for theoretical study, see e.g., Chawla and Hartline (2013). Unfortunately, our methods
cannot be directly applied to position auctions with the so-called “generalized second price” payment rule of Google’s
AdWords platform.

2In ideal A/B testing, the bids in A and B are respectively in equilibrium for A and B.

2



position weights are related by ε in the A/B testing application, above.) Our first result shows that
there is universal treatment B such that in the A/B test mechanism C, the revenue of any other
position auction can be estimated. A solution, then, to the instrumented optimization problem is to
run the A/B test mechanism C that corresponds to the revenue optimal position auction A and this
universal treatment B. Our second result incorporates a bound on the desired rate of estimation into
the revenue optimization problem and derives the revenue optimal auction subject to good revenue
inference. Our analysis gives a tradeoff between revenue bounds (relative to the optimal position
auction) and the desired rate of inference. Finally, we show that the revenue optimal position
auction (without reserve prices or ironing) approximates the revenue-optimal auction (with reserve
prices and ironing); thus, there is little loss in revenue from restricting to the family of position
auctions for which our inference methods are applicable.

1.1 Motivating Example: Auctions for Internet Search Advertising.

Our work is motivated by the auctions that sell advertisements on Internet search engines (see
historical discussion by Fain and Pedersen, 2006). The first-price position auction we study in this
paper was introduced in 1998 by the Internet listing company GoTo. This auction was adapted
by Google in 2002 for their AdWords platform, modified to have a second-price-like payment rule,
and is known as the generalized second-price auction. Early theoretical studies of equilibrium in
the generalized second-price auction were conducted by Varian (2007) and Edelman et al. (2007);
unlike the second-price auction for which it is named, the generalized second-price auction does not
admit a truthtelling equilibrium.

Internet search advertising works as follows. A user looking for web pages on a given specifies
keywords on which to search. The search engine then returns a listing of web pages that relate
to these keywords. Alongside these search results, the search engine displays sponsored results.
These results are conventionally explicitly labeled as sponsored and appear in the mainline, i.e.,
above the search results, or in the sidebar, i.e., to the right of the search results. The mainline
typically contains up to four ads and the sidebar contains up to seven ads. The order of the ads
is of importance as the Internet user is more likely to read and click on ads in higher positions on
the page. In the classic model of Varian (2007) and Edelman et al. (2007) the user’s click behavior
is exogenously given by weights associated with the positions,3 and the weights are decreasing in
position. An advertiser only pays for the ad if the user clicks on it. Thus in the classic first-price
position auction, advertisers are assigned to positions in order of their bids, and the advertisers on
whose ads the user clicks each pay their bids.

As described above, the ads in the mainline have higher click rates than those in the the sidebar.
The mainline, however, is not required to be filled to capacity (a maximum of four ads). In the first-
price position auction described above, the choice of the number of ads to show in the mainline
affects the revenue of the auction and, in the standard auction-theoretic model of Bayes-Nash
equilibrium, this choice is ambiguous with respect to revenue ranking. For some distributions of
advertiser values, showing more ads in the mainline gives more revenue, while for other distributions
fewer ads gives more revenue.

The keywords of the user enable the advertisers to target users with distinct interests. For
example, hotels in Hawaii may wish to show ads to a user searching for “best beaches,” while a

3Endogenous click models have also been considered, e.g., Athey and Ellison (2011), but are less prevalent in the
literature.
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computer hardware company would prefer users searching for “laptop reviews.” Thus, the search
advertising is in fact a collection of many partially overlapping markets, with some high-volume
high-demand keywords and a long tail of niche keywords. The conditions of each of these markets
are distinct and thus, as per the discussion of the preceding paragraph, the number of ads to show
in the mainline depends on the keywords of the search.

One empirical method for evaluating two alternatives, e.g., showing one or two mainline ads, is
A/B testing. In the ideal setting of A/B testing, the auctions for a given keyword would be randomly
divided into the A and B, and in part A the advertisers would bid in Bayes-Nash equilibrium for
A and in part B they would bid in equilibrium for B. Unfortunately, because we need to test both
A and B in each market, ideal A/B testing would require soliciting distinct bids for each variant
of the auction. This approach is impractical, both from an engineering perspective and from a
public relations perspective. In practice, A/B tests are run on these ad platforms all the time
and without informing the advertisers. Of course, advertisers can observe any overall change in
the mechanism and adapt their bids accordingly, i.e., they can be assumed to be in equilibrium.
Our approach of A/B testing, that of assuming that bids are in equilibrium for auction C, i.e., the
convex combination of A and B, is consistent with the Industry standard practice.

Our A/B testing framework is is motivated specifically by the goal of optimizing an auction to
local characteristics of the market in which the auction is run. There is a third framework for A/B
testing framework that can be used to evaluate global characteristics of collections of auctions. This
framework randomly partitions markets (by keywords) with little overlap into the control group
(where auction A is run) and treatment group (with auction B). From such an A/B test we can
evaluate whether it is better to run A in every market or B in every market. It cannot be used,
however, for our motivating application of determining the number of mainline ads to show, where
the optimal number naturally varies across markets. The work of Ostrovsky and Schwarz (2011)
on reserve pricing in Yahoo!’s ad auction demonstrates how such a global A/B test can be valuable.
They first used a parametric estimator for the value distribution in each market to determine a
good reserve price for that market. Then they did a global A/B test to determine whether the
auction with their calculated reserve prices (the B mechanism) has higher revenue on average than
the auction with the original reserve prices (the A mechanism). Our methods related to and can
replace the first step of their analysis.

2 Related Work

In the mechanism design literature, the problem of designing mechanisms to enable learning the
parameters of a market has not been considered from a theoretical perspective previously. Sev-
eral works have considered the problem of learning optimal pricing schemes in an online setting
(e.g., Babaioff et al. (2012)). However, these works assume non-strategic behavior on part of the
agents, which makes the inference much simpler. Other works consider the problem of learning
click-through-rates in the context of a sponsored search auction (a generalization of the position
environment we study) while simultaneously obtaining good revenue (e.g., Devanur and Kakade
(2009); Babaioff et al. (2009); Gatti et al. (2012)), however, they restrict attention to truthful
mechanisms, and again do not require inference.

Several works have considered the problem of empirically optimizing the reserve price of an
auction in an online repeated auction setting (e.g., Reiley (2006); Brown and Morgan (2009);
Ostrovsky and Schwarz (2011)). The most notable of these is the work of Ostrovsky and Schwarz
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(2011). Ostrovsky and Schwarz (2011) adapt their mechanism over time to respond to empirical
data by determining the optimal reserve price for the empirically observed distribution, and then
setting a reserve price that is slightly smaller. This allows for inference around the optimal reserve
price and ensures that the mechanism quickly adapts to changes in the distribution.

Finally, the theory that we develop for optimizing revenue over the class of iron by rank auctions
is isomorphic to the theory of envy-free optimal pricing developed by Hartline and Yan (2011).

Our approach to data-driven mechanism design is based on evaluation of mechanisms using
the data directly thus bypassing the computation of equilibrium best responses of agents under the
new mechanism. That comes in contrtast with the approach frequently deployed for counterfactual
inference in Industrial Organization. The traditional approach to counterfactual analysis (see Athey
and Haile (2007), Doraszelski and Pakes (2007) and Paarsch and Hong (2006)) involves, first, using
the observational data to infer the underlying preference parameters (such as valuations of bidders
in auctions). Second, the inferred structural parameters are used as an input in the computation
of the equilibrium outcome of the new proposed mechanism.

The traditional approach requires good properties from the first stage inference procedure given
that the outcomes of this procedure is used as an input for counterfactual prediction for the new
mechanism. Rich literature in Econometrics including Newey (1994), Ai and Chen (2003), Blundell
and Powell (2004), Chernozhukov et al. (2013), and Chen and Pouzo (2012) require a careful control
over the properties of the object estimated in the first stage to ensure good statistical properties
of the object of interest (such as the counterfactual prediction). For instance, in case of first-
price auctions in Guerre et al. (2000) such a control requires the balanced choice of the smoothing
beandwidth for estimation of the distribution of bids which depends on the smoothness of the true
(infeasible) distribution of bids.

Our approach is based on using the bids observed in the data directly to make inferences
regarding the counterfactual mechanisms. This allows us to do inference without relying on assumed
theoretical properties of the underlying distribution of valuations of players. Moreover, that also
allows us to consider cases where teh object of interest is not a smooth functional of the distribution
of the data without imposing additional constraints on the model or the data generating process.

3 Preliminaries

3.1 Auction Theory

A standard auction design problem is defined by a set [n] = {1, . . . , n} of n ≥ 2 agents, each with a
private value vi for receiving a service. The values are bounded: vi ∈ [0, 1]; They are independently
and identically distributed according to a continuous distribution F . If xi indicates the probability
of service and pi the expected payment required, agent i has linear utility ui = vixi − pi. An
auction elicits bids b = (b1, . . . , bn) from the agents and maps the vector b of bids to an allocation
x̃(b) = (x̃1(b), . . . , x̃n(b)), specifying the probability with which each agent is served, and prices
p̃(b) = (x̃1(b), . . . , x̃n(b)), specifying the expected amount that each agent is required to pay.
An auction is denoted by (x̃, p̃). We focus on symmetric auctions, namely those for which the
allocation and payment functions, x̃i and p̃i, do not depend on the identities of the agents. That
is, x̃i(b) = x̃(b) and p̃i(b) = p̃(b) for all agents i, all bids b and some functions x̃ and p̃.

5



Standard payment formats In this paper we study two standard payment formats. In a first-
price format, each agent pays his bid upon winning, that is, p̃i(b) = bi x̃i(b). In an all-pay format,
each agent pays his bid regardless of whether or not he wins, that is, p̃i(b) = bi.

Bayes-Nash equilibrium The values are independently and identically distributed according
to a continuous distribution F . This distribution is common knowledge to the agents. A strategy
si for agent i is a function that maps the value of the agent to a bid. The distribution of values
F and a profile of strategies s = (s1, · · · , sn) induces interim allocation and payment rules (as a
function of bids) as follows for agent i with bid bi.

x̃i(bi) = Ev−i∼F [x̃i(bi, s−i(v−i))] and

p̃i(bi) = Ev−i∼F [p̃i(bi, s−i(v−i))] .

Agents have linear utility which can be expressed in the interm as:

ũi(vi, bi) = vix̃i(bi)− p̃i(bi).

The strategy profile forms a Bayes-Nash equilibrium (BNE) if for all agents i, values vi, and al-
ternative bids bi, bidding si(vi) according to the strategy profile is at least as good as bidding bi.
I.e.,

ũi(vi, si(vi)) ≥ ũi(vi, bi). (1)

A symmetric equilibrium is one where all agents bid by the same strategy, i.e., s statisfies si = s
for all i and some s. For a symmetric equilibrium of a symmetric auction, the interim allocation
and payment rules are also symmetric, i.e., x̃i = x̃ and si = s for all i. For implicit distribution
F and symmetric equilibrium given by stratey s, a mechanism can be described by the pair (x̃, p̃).
Chawla and Hartline (2013) show that the equilibrium of every auction in the class we consider is
unique and symmetric.

The strategy profile allows the mechanism’s outcome rules to be expressed in terms of the
agents’ values instead of their bids; the distribution of values allows them to be expressed in terms
of the agents’ values relative to the distribution. This latter representation exposes the geometry
of the mechanism. Define the quantile q of an agent with value v to be the probability that v is
larger than a random draw from the distribution F , i.e., q = F (v). Denote the agent’s value as a
function of quantile as v(q) = F−1(q), and his bid as a function of quantile as b(q) = s(v(q)). The
outcome rule of the mechanism in quantile space is the pair (x(q), p(q)) = (x̃(b(q)), p̃(b(q))).

Revenue curves and auction revenue Myerson (1981) characterized Bayes-Nash equilibria
and this characteriation enables writing the revenue of a mechanism as a weighted sum of revenues
of single-agent posted pricings. Formally, the revenue curve R(q) for a given value distribution
specifies the revenue of the single-agent mechanism that serves an agent with value drawn from
that distribution if and only if the agent’s quantile exceeds q: R(q) = v(q) (1− q). R(0) and R(1)
are defined as 0. Myerson’s characterization of BNE then implies that the expected revenue of a
mechanism at BNE from an agent facing an allocation rule x(q) can be written as follows:

Px = Eq

[
R(q)x′(q)

]
= −Eq

[
R′(q)x(q)

]
(2)

where x′ and R′ denote the derivative of x and R with respect to q, respectively.
The expected revenue of an auction is the sum over the agents of its per-agent expected revenue;

for auctions with symmetric equilibrium allocation rule x this revenue is nPx.
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Position environments and rank-based auctions A position environment expresses the fea-
sibility constraint of the auction designer in terms of position weights w satisfying 1 ≥ w1 ≥ w2 ≥
· · · ≥ wn ≥ 0. A position auction assigns agents (potentially randomly) to positions 1 through n,
and an agent assigned to position i gets allocated with probability wi. The rank-by-bid position
auction orders the agents by their bids, with ties broken randomly, and assigns agent i, with the
ith largest bid, to position i, with allocation probability wi. Multi-unit environments are a special
case and are defined for k units as wj = 1 for j ∈ {1, . . . , k} and wj = 0 for j ∈ {k+ 1, . . . , n}. The
highest-k-bids-win multi-unit auction is the special case of the rank-by-bid position auction for the
k-unit environment.

In our model with agent values drawn i.i.d. from a continuous distribution, rank-by-bid position
auctions with either all-pay or first-price payment semantics have a unique Bayes-Nash equilibrium
and this equilibrium is symmetric and efficient, i.e., in equilibrium, the agents’ bids and values are
in the same order (Chawla and Hartline, 2013).

Rank-by-bid position auctions can be viewed as convex combinations of highest-bids-win multi-
unit auctions. The marginal weights of a position environment are w′ = (w′1, . . . , w

′
n) with w′k =

wk − wk+1. Define w′0 = 1 − w1 and note that the marginal weights w′ can be interpreted as a
probability distribution over {0, . . . , n}. As rank-by-bid position auctions are efficient, the rank-by-
bid position auction with weights w has the exact same allocation rule as the mechanism that draws
a number of units k from the distribution given by w′ and runs the highest-k-bids-win auction.

Denote the highest-k-bids-win allocation rule as x(k:n) and its revenue as Pk = Px(k:n) =
Eq

[
−R′(q)x(k:n)(q)

]
. This allocation rule is precisely the probability an agent with quantile q

has one of the highest k quantiles of n agents, or at most k− 1 of the n− 1 remaining agents have
quantiles greater than q. Formulaically,

x(k:n)(q) =

k−1∑
i=0

(
n−1
i

)
qn−1−i(1− q)i.

Importantly, the allocation rule of a rank-by-bid position auction does not depend on the distribu-
tion at all. The allocation rule x of the rank-by-bid position auction with weights w is:

x(q) =
∑

k
w′k x

(k:n)(q).

By revenue equivalence (Myerson, 1981), the per-agent revenue of the rank-by-bid position auction
with weights w is:

Px =
∑

k
w′k Pk.

Of course, P0 = Pn = 0 as always serving or never serving the agents gives zero revenue.
A rank-based auction is one where the probability that an agent is served is a function only of the

rank of the agent’s bid among the other bids and not the magnitudes of the bids. Any rank-based
auction induces a position environment where w̄k denotes the probability that the agent with the
kth ranked bid is served. This auction is equivalent to the rank-by-bid position auction with these
weights w̄. In a position auction with weights w, the following lemma characterizes the weights w̄
that are induced by rank-based auctions.

Lemma 3.1 (e.g., Devanur et al., 2013). There is a rank-based auction with induced position
weights w̄ for a position environment with weights w if and only if their cumulative weights satisfy∑k

j=0 w̄j ≤
∑k

j=0wj for all k.
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3.2 Inference

As we discussed this above, the traditional structural inference in the auction settings is based
on inferring distribution of values, which is unobserved, can be inferred from the distribution of
bids, which is observed. Once the value distribution is inferred, other properties of the value
distribution such as its corresponding revenue curve, which is fundamental for optimizing revenue,
can be obtained. In this section we briefly overview this approach.

The key idea behind the inference of the value distribution from the bid distribution is that
the strategy which maps values to bids is a best response, by equation (1), to the distribution of
bids. As the distribution of bids is observed, and given suitable continuity assumptions, this best
response function can be inverted.

The value distribution can be equivalently specified by distribution function F (·) or value func-
tion v(·); the bid distribution can similarly be specified by the bid function b(·). For rank-based
auctions (as considered by this paper) the allocation rule x(·) in quantile space is known pre-
cisely (i.e. it does not depend on the value function v(·)). Assume these functions are monotone,
continuously differentiable, and invertible.

Inference for first-price auctions Consider a first-price rank-based auction with a symmetric
bid function b(q) and allocation rule x(q) in BNE. To invert the bid function we solve for the bid
that the agent with any quantile would make. Continuity of this bid function implies that its
inverse is well defined. Applying this inverse to the bid distribution gives the value distribution.

The utility of an agent with quantile q as a function of his bid z is

u(q, z) = (v(q)− z)x(b−1(z)). (3)

Differentiating with respect to z we get:

d
dzu(q, z) = −x(b−1(z)) +

(
v(q)− z

)
x′(b−1(z)) d

dz b
−1(z).

Here x′ is the derivative of x with respect to the quantile q. Because b(·) is in BNE, the derivative
d
dzu(q, z) is 0 at z = b(q). Rarranging, we obtain:

v(q) = b(q) + x(q) b′(q)
x′(q) (4)

Inference for all-pay auctions We repeat the calculation above for rank-based all-pay auctions;
the starting equation (3) is replaced with the analogous equation for all-pay auctions:

u(q, z) = v(q)x(b−1(z))− z. (5)

Differentiating with respect to z we obtain:

d
dzu(q, z) = v(q)x′(b−1(z))

d

dz
b−1(z)− 1,

Again the first-order condition of BNE implies that this expression is zero at z = b(q); therefore,

v(q) = b′(q)
x′(q) . (6)
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Known and observed quantities Recall that the functions x(q) and x′(q) are known precisely:
these are determined by the rank-based auction definition. The functions b(q) and b′(q) are ob-
served. The calculations above hold in the limit as the number of samples from the bid distribution
goes to infinity, at which point these obserations are precise.

3.3 Statistical Model and Methods

Our framework for counterfactual predictions is based on directly using the distribution of bids for
inference. The main error in estimation of the bid distribution is the sampling error due to drawing
only a finite number of samples from the bid distribution.

The analyst obtains N samples from the bid distribution. Each sample is the corresponding
agent’s best response to the true bid distribution. We assume that the number of samples N is
roughly polynomial in n, the number of agents in a single auction.

We can estimate the quantile function of the equilibrium bid distribution b(q) as follows. Let
b̂1, · · · , b̂N denote the N samples drawn from the bid distribution. Sort the bids so that b̂1 ≤ b̂2 ≤
· · · ≤ b̂N and define the estimated bid distribution b̂(·) as

b̂(q) = b̂i ∀i ∈ N, q ∈ [i− 1, i)/N (7)

Definition 1. For function b(·) and estimator b̂(·), the uniform mean absolute error is defined as

Eb̂

[
supq

∣∣b(q)− b̂(q)∣∣] .
The main object that will arise in our further analysis will be the weighted quantile function of

the bid distribution where the weights are determined by the allocation rule of the auction under
consideration. Our statistical results stem from the previous work on the uniform convergence of
quantile processes and weighted quantile processes in Csorgo and Revesz (1978), Csörgö (1983),
Cheng and Parzen (1997). It turns out that the our main object of interest for inference is the
weighted quantile function of the bid distribution. The weight is proportional to the inverse deriva-
tive of the allocation rule. This feature leads to highly desirable proprties of the

√
N -normalized

mean absolute error, making it bounded by a universal constant.

Lemma 3.2. The uniform mean absolute error of the empirical quantile function b̂(·) weighted by
its derivative is bounded as N →∞

E
[
supq

∣∣√N(b′(q))−1(b(q)− b̂(q))
∣∣] < 1

2
.

The derivative of the quantile function of the bid distribution is determined by the derivative of the
allocation rule and the quantile function of the value distribution. Recalling that v(q) ≤ 1 for all
quantiles q, we obtain the following expressions for weighted uniform absolute error in terms of the
allocation function.

(i) In the first-price auction the allocation rule-weighted uniform absolute error in the quantile

function of bids bids can be evaluated as E
[
supq

∣∣√N x(q)
x′(q)

(
b(q)− b̂(q)

) ∣∣] ≤ 1
2 .

(ii) In the all-pay auction the allocation rule-weighted uniform absolute error in the quantile func-

tion of bids can be evaluated as E
[
supq

∣∣√N(x′(q))−1
(
b(q)− b̂(q)

) ∣∣] ≤ 1
2 .
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Equations (4) and (6) enable the value function, or equivalently, the value distribution, to be
estimated from the estimated bid function and an estimator for the derivative of the bid function,
or equivalently, the density of the bid distribution. Estimation of densities is standard; however, it
requires assumptions on the distribution, e.g., continuity, and the convergence rates in most cases
will be slower. Our main results do not take this standard approach.

4 Inference methodology and error bounds for all-pay auctions

We will now develop a methodology and error bounds for estimating the revenue of one rank-based
auction using bids from another rank-based auction. There are two reasons behind our assumption
that the auction that we run (that generates the observed bids) is a rank-based auction. First,
the allocation rule (in quantile space) of a rank based auction is independent of the bid and value
distribion; therefore, it is known and does not need to be estimated. Second, the allocation rules
that result from rank-based auctions are well behaved, in particular their slopes are bounded, and
our error analysis makes use of this property.

Recall from Section 3.1 that the revenue of any rank-based auction can be expressed as a linear
combination of the multi-unit revenues P1, . . . , Pn with Pk equal to the per-agent revenue of the
highest-k-bids-win auction. Therefore, in order to estimate the revenue of a rank-based auction, it
suffices to estimate the Pks accurately.

In the following section we describe a function mapping the observed bids to the revenue es-
timate. In Sections 4.2 and 4.3 we develop error bounds on our estimate for the revenue of a
multi-unit auction and a general position auction respectively.

4.1 Inference equation

Consider estimating the revenue of an auction with allocation rule y from the bids of an all-pay
position auction. The per-agent revenue of the allocation rule y is given by:

Py = Eq

[
y′(q)R(q)

]
= Eq

[
y′(q)v(q)(1− q)

]
Let x denote the allocation rule of the auction that we run, and b denote the bid distribution in

BNE of this auction. Recall that for an all-pay auction format, we can convert the bid distribution
into the value distribution as follows: v(q) = b′(q)/x′(q). Substituting this into the expression for
Py above we get

Py = Eq

[
y′(q)(1− q) b

′(q)

x′(q)

]
= Eq

[
Zy(q)b

′(q)
]

where Zy(q) = (1− q) y
′(q)
x′(q) .

This expression allows us to derive the revenue using the empirical bid distribution. However,
it leads to a large error because the derivative of the bid distribution, b′(·), cannot be estimated
with a good convergence rate. We get around this issue by modifying the expression so it becomes
a simple weighted average of the empirical bid distribution.

Specifically, writing the expectation as an integral and integrating by parts we obtain the
following lemma. Here we note that b(0) = 0 and Zk(1) = 0.
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Lemma 4.1. The per-agent revenue of a rank-based auction with allocation rule y can be written
as a linear combination of the bids in an all-pay auction:

Py = Eq

[
−Z ′y(q)b(q)

]
where Zy(q) = (1−q) y

′(q)
x′(q) depends on the allocation rule x of the mechanism and is known precisely.

This formulation allows us to estimate Py directly as a weighted average of the observed bids.

Specifically, recalling that b̂(·) denotes the estimated bid distribution, we can write the estimate of
Py as:

P̂y = Eq

[
−Z ′y(q)b̂(q)

]
(8)

and, using that b̂ is a step function,

=

N∑
i=1

Ẑy,ib̂i (9)

where b̂i is the ith smallest of the N bids obtained from auction x, and,

Ẑy,i =

(
1− i− 1

N

)
y′( i−1

N )

x′( i−1
N )
−
(

1− i

N

)
y′( i

N )

x′( i
N )
.

A consequence of (9) is that our estimator for Py is linear in y′, which, if y is a position
auction, in turn depends linearly on the position weights. Therefore a relative error in estimating
the position weights in y translates into the same relative error in estimating Py, in addition to the
error bounds given below.

4.2 Error bound for the multi-unit revenues

We will now develop an error bound for the estimator for Lemma 4.1 for the case of the multi-unit
revenues. In the following, denote the allocation rule of the highest-k-bids-win auction as xk (for
an implicit number n of agents), and let Zk = Zxk . We can therefore express the error in the
estimation of Pk in terms of the error in estimating the bid distribution.

|P̂k − Pk| =
∣∣∣Eq

[
−Z ′k(q)(̂b(q)− b(q))

]∣∣∣ (10)

A weak upper bound on the error. We first give a simple but weak analysis of the error. The
following inequality separates the error bound into two components, each of which we can bound
separately.

|P̂k − Pk| =
∣∣∣Eq

[
−Z ′k(q)(̂b(q)− b(q))

]∣∣∣ ≤ Eq

[
|Z ′k(q)|

]
sup
q
|̂b(q)− b(q)|

So, the mean absolute error in Pk can be written as:

Eb̂

[
|P̂k − Pk|

]
≤ Eq

[
|Z ′k(q)|

]
Eb̂

[
sup
q
|b̂(q)− b(q)|

]

11



Lemma 3.2 gives the following bound on the mean absolute error for the bid function with the
second inequality following from the fact that b′(q) = v(q)x′(q) and v(q) ≤ 1:

Eb̂

[
sup
q
|b̂(q)− b(q)|

]
≤

supq b
′(q)

√
2N

≤
supq x

′(q)
√

2N

We now proceed to bound Eq[|Z ′k(q)|]. We recall that x is a convex combination over the allocation
rules of the multi-unit highest-bids-win auctions, and use this to prove that Zk has a single local
maximum (see the appendix for a proof).

Lemma 4.2. Let xk denote the allocation function of the k-highest-bids-win auction and x be any
convex combination over the allocation functions of the multi-unit auctions. Then the function

Zk(q) = (1− q)x
′
k(q)

x′(q) achieves a single local maximum for q ∈ [0, 1].

Let Z∗k = supq Zk(q). Then, we can bound Eq[|Z ′k(q)|] by 2Z∗k . We get the following theorem:

Proposition 4.3. Let xk denote the allocation function of the k-highest-bids-win auction and x
be the allocation function of any rank-based auction. Then for all k, the mean absolute error in
estimating Pk from N samples from the bid distribution for an all-pay auction with allocation rule
x is bounded by:

Eb̂

[
|P̂k − Pk|

]
≤
√

2

N
sup
q
{x′(q)} sup

q

{
x′k(q)

x′(q)

}
To understand this error bound, we note that the maximum slope of the multi-unit allocation

rules xk, and therefore also that of any rank-based auction, is always bounded by n, the number
of agents in the auction (summarized as Fact 4.4, below). This bounds the supq x

′(q) term.

Fact 4.4. The maximum slope of the allocation rule x of any n-agent position auction is bounded by
n: supq x

′(q) ≤ n. The maximum slope of the allocation rule xk for the n-agent highest-k-bids-win
auction is bounded by

sup
q
x′k(q) ∈

[
1√
2π
,

1√
π

]
n− 1√

min{k − 1, n− k}
= Θ

(
n√

min{k, n− k}

)
.

The quantity supq

{
x′k(q)

x′(q)

}
on the other hand may be rather large, even unbounded, if x′(·) is

near zero at some q. In Section 6.1 we take the approach of explicitly designing x with position
weight w′k > ε (i.e., to mix xk into x) to ensure this latter term is bounded.

A stronger bound on the error. We will now develop a stronger bound on the error in Pk

with better dependence on the quantity supq

{
x′k(q)

x′(q)

}
. We start with Equation (10) and partition

the expectation on the right hand side of the equation as follows for some α > 0:

|P̂k − Pk| =
∣∣∣Eq

[
−Z ′k(q)(̂b(q)− b(q))

]∣∣∣
≤ Eq

[
(log(1 + Zk(q)))

α

Zk(q)
|Z ′k(q)|

]
sup
q

∣∣∣∣ Zk(q)

(log(1 + Zk(q)))
α (b̂(q)− b(q))

∣∣∣∣
An appropriate choice of α gives us the following theorem. We defer the proof to the appendix.
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Theorem 4.5. Let xk denote the allocation function of the k-highest-bids-win auction and x be the
allocation function of any rank-based auction. Then for all k, the mean absolute error in estimating
Pk from N samples from the bid distribution for an all-pay auction with allocation rule x is bounded
by:

Eb̂

[
|P̂k − Pk|

]
≤ 20√

N
sup
q
{x′k(q)} log max

{
sup

q:x′k(q)≥1

x′(q)

x′k(q)
, sup
q

x′k(q)

x′(q)

}
.

Invoking Fact 4.4, we note that the error in Pk given by Theorem 4.5 can be bounded by

Eb̂

[
|P̂k − Pk|

]
= O

(
n√

min{k, n− k}

)
1√
N

log max

{
sup

q:x′k(q)≥1

x′(q)

x′k(q)
, sup
q

x′k(q)

x′(q)

}
.

To understand the above error bound better, we make the following observations:

• When x = xk, we get an error bound of O(supq x
′
k(q)/

√
N), which is the same (within constant

factors) as the statistical error in bids.

• We also get a good error bound when x and xk are close enough without being identical:
when εx′k ≤ x′ ≤ x′k/ε, we get a bound of O(log(1/ε) supq x

′
k(q)/

√
N).

• Finally, as long as x′ ≥ εx′k, that is, the highest-k-bids-win auction is mixed in with ε prob-
ability into x, we observe via Fact 4.4 that supq:x′k(q)≥1 x

′(q)/x′k(q) ≤ supq x
′(q) ≤ n, and

obtain an error bound of O(log(n/ε) supq x
′
k(q)/

√
N).

4.3 Error bound for arbitrary rank-based revenues

We now develop an error bound for our estimator for the revenue, Py, of an arbitrary position
auction with allocation rule y from the bids of another position auction x. Let us write y as a
position auction with weights w:

y =
∑

k
w′k xk

Py =
∑

k
w′k Pk

Accordingly, the error in Py is bounded by a weighted sum of the error in Pk:

Eb̂

[
|P̂y − Py|

]
≤
∑

k
w′k Eb̂

[
|P̂k − Pk|

]
applying Theorem 4.5,

≤ 20√
N

∑
k
w′k sup

q
{x′k(q)}

(
log n+ log

1

w′k
+ log sup

q

y′(q)

x′(q)

)
= O

(
n log n√

N
log sup

q

y′(q)

x′(q)

)
(11)

Unfortunately, the above bound can be quite loose, as the following simple example demonstrates.
Suppose that x = y and w′k = 1/n for all k. Then the above approach (via a tighter bound on
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the sum over k) leads to an error bound of O(
√
n log n/

√
N), whereas, the true error bound should

be O(1/
√
N), arising due to the statistical error in bids. Furthermore, it is desirable to obtain an

error bound that depends directly on supq y
′(q), rather than on the constituent supq x

′
k(q); The

latter can be much larger than the former. Below, we analyze the error in Py directly, leading to a
slightly tighter bound.

Theorem 4.6. The expected absolute error in estimating the revenue of a position auction with
allocation rule y using N samples from the bid distribution for an all-pay position auction with
allocation rule x is bounded as below; Here n is the number of positions in the two position auctions.

Eb̂

[
|P̂y − Py|

]
≤ 20√

N

√
n log n sup

q
{y′(q)} log max

{
sup

q:y′(q)≥1

x′(q)

y′(q)
, sup
q

y′(q)

x′(q)

}

+
O(1)

N
sup
q
{x′(q)} sup

q

{
y′(q)

x′(q)

}
Note that the first term in the error bound in Theorem 4.6 dominates, and this term is identical

to the bound in Theorem 4.5, except for an extra
√
n log n term. Moreover, when supq y

′(q) <
√
n,

Theorem 4.6 gives us a tighter error bound than Equation (11). We will now prove the theorem.
Here we provide an outline for the proof; The complete argument can be found in the appendix.

Proof Sketch: As for the multi-unit revenues,

|P̂y − Py| =
∣∣∣Eq

[
Zy(q)(̂b

′(q)− b′(q))
]∣∣∣ =

∣∣∣Eq

[
Z ′y(q)(̂b(q)− b(q))

]∣∣∣
In order to simplify our analysis of the error in Py, we will break up the error into two compo-

nents: the bias in the estimator P̂y and the deviation of P̂y from its mean.

|P̂y − Py| ≤
∣∣∣P̂y −E

[
P̂y

]∣∣∣+
∣∣∣E[P̂y]− Py∣∣∣

=
∣∣∣Eq

[
Z ′y(q)(̂b(q)− b̃(q))

]∣∣∣+
∣∣∣Eq

[
Z ′y(q)(b̃(q)− b(q))

]∣∣∣ (12)

Here, b̃ is a step function that equals the expectation of the empirical bid function b̂:

b̃(q) = E
[
b̂(q)

]
The bias of the estimator P̂ (i.e. the second term in (12)) is easy to bound. We prove in the
appendix that b̃(q)− b(q) is at most O(1)/N times supq{x′(q)}. This implies the following lemma.

Lemma 4.7. With b̃ defined as above,∣∣∣E[P̂y]− Py∣∣∣ =
∣∣∣Eq

[
Z ′y(q)(b̃(q)− b(q))

]∣∣∣ =
O(1)

N
sup
q
{x′(q)} sup

q

{
y′(q)

x′(q)

}
.

We now focus on the first term in (12), namely the integral over the quantile axis of Z ′y(q)(̂b(q)−
b̃(q)). The approach of Section 4.2 does not provide a good upper bound on this quantity, because
a counterpart of Lemma 4.2 fails to hold for Zy. Instead, we will express the integral as a sum over
several independent terms, and show that it is small in expectation.
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To this end, we first identify the set of quantiles at which the function b̂ “crosses” the function b̃
from below. This set is defined inductively. Define i0 = 0. Then, inductively, let i` be the smallest
integer strictly greater than i`−1 such that

b̂

(
i` − 1

N

)
≤ b̃

(
i` − 1

N

)
and b̂

(
i`
N

)
> b̃

(
i`
N

)
.

Let ik−1 be the last integer so defined, and let ik = N . Let I denote the set of indices {i0, · · · , ik}.
Let Ti,j denote the following integral:

Ti,j =

∫ q=j/N

q=i/N
Z ′y(q)(̂b(q)− b̃(q)) dq

Then, our goal is to bound the quantity Eb̂[|T0,N |] where T0,N can be written as the sum:

T0,N =
`=k−1∑
`=0

Ti`,i`+1
.

We now claim that conditioned on I and the maximum bid error, this is a sum over independent
random variables. In the following, let G denote the bid distribution, and Ĝ the empirical bid
distribution.

Lemma 4.8. Conditioned on the set of indices I and ∆ = supq |Ĝ(b(q)) − G(b(q))|, over the
randomness in the bid sample, the random variables Ti`,i`+1

are mutually independent.

Then we apply Chernoff-Hoeffding bounds, coupled with the approach from Section 4.2 to
bound each individual Ti`,i`+1

, to obtain a bound on the proability that Eb̂[|T0,N | | I,∆] exceeds
some value a > 0.

Lemma 4.9. With I = {i0, · · · , ik} and Ti,j defined as above, for any a > 0,

Pr [|T0,N | ≥ a | I,∆] ≤ exp

(
− a2

n(40∆C)2

)
, where C = sup

q
{y′(q)} log max

{
sup

q:y′(q)≥1

x′(q)

y′(q)
, sup
q

y′(q)

x′(q)

}
.

Combining this lemma with an absolute bound on |T0,N |, and removing the conditioning on I
and ∆, we obtain the Theorem 4.6.

5 Simulation evidence

We now present some simulation evidence to support our theoretical results. Our focus will be the
inference for the revenues from an auction with a particular allocation rule y(·) from the observations
of bidding in an auction with another allocation rule x(·) which is constructed as mixture of the
auction with the allocation rule y(·) with weight 0 < ε < 1 and another allocation rule with weight
1− epsilon. We consider the following three designs.

• Design 1: y(q) = q (uniform allocation rule), x(q) = (1 − ε) qn−1 + ε q (a mixture of the 1
unit auction and the uniform allocation rule).
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• Design 2: y(q) = qn−1 (1 unit auction allocation rule), x(q) = (1 − ε)q + ε qn−1 (a mixture
of the 1 unit auction and the uniform allocation rule).

• Design 3: y(q) = qn−1 (1 unit auction allocation rule), x(q) = (1−ε) (1−(1−q)n−1)+ε qn−1

(a mixture of the 1 unit auction and the (n− 1)-unit auction allocation rule).

Our focus in this exercise is the inference for Py for the allocation rule defined by each of th e
three designs. The simulation is designed in the following way. We consider the grid over quantiles
with the cell size ∆ such that for each grid point p q(p) = ∆ p. For a given number of players
n we compute the allocation functions for each allocation rule x(·) and y(·) on the grid yielding
x(p) = x(q(p)) and y(p) = y(q(p)) for each grid point.

The derivatives of allocation rules x(·) and y(·) are computed analytically. Function Zy(·) and
its first derivative are approximated on the same grid as

Zy(p) = (1−∆ p)
y′p
x′p

and Z ′y(p) =
Zy(p+1) − Zy(p−1)

2∆
.

We take the distribution of values to be the beta distribution with parameters α = β = 2. This
distribution of values is supported on [0, 1], it is unimodal with the mode and the mean at 1/2 and
it is symmetric about the mean.

To compute the equilibrium distribution of bids, we compute the quantile function of the value
distribution on the grid as

v(p) = v(∆ p).

Then for the all-pay auction with the allocation rule x(·) we compute the approximated quantile
function of the bid distribution b(·) as

b(p) =
∑
l≤p

v(l)(x(l) − x(l−1)) ≈
∫ ∆ p

0
v(q)x′(q) dq.

Using the same grid summation technique we compute the “true” revenue from the k-unit auction
of interest as

Py =
∑

(1−∆ p)v(p)y
′
p.

To perform simulations, at each simulation round, we generate a sample of bids from the
equilibrium distribution of bids by drawing uniformly a vector of N integers between 1 and [1/∆]
and for each such integer s the corresponding simulated draw of the bid is b(s). In each N -sample

{bi}Ni=1 we order the bids and then compute the estimator for Pk as

P̂y = − 1

N

N∑
i=1

Z ′y(i)b
(i:N).

For each choice of the number of players n and the size of the sample used N we re-sample the bids
from the bid distribution Ns = 1000 times and then compute the average mean absolute deviation
of the estimated P̂y from the computed Py across simulations.

The simulation results for various choices of the number of players and the number of auctions
are presented in Table 5 for different designs.
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Table 1: Mean absolute deviation for P̂y across Monte-Carlo simulations normalized by
√
N/n

y(q) = q, x(q) = (1− ε)x(1:n)(q) + ε y(q)

n = N = Theorem 4.5

2 101 102 103 104 105 upper bound

22 1.2534 0.3874 0.3625 0.3573 0.3535 0.3481 2.7111
23 0.3915 0.4336 0.4829 0.4994 0.5041 0.4918 2.3479
24 0.3025 0.3634 0.3982 0.4045 0.4088 0.4187 1.9170
25 0.1831 0.2690 0.2825 0.2821 0.2798 0.2901 1.5155
26 0.1437 0.2369 0.1929 0.1917 0.1898 0.1890 1.1739
27 0.1316 0.1902 0.159 0.1432 0.1407 0.1441 0.9431
28 0.1276 0.1462 0.149 0.1248 0.1226 0.1198 0.8155
29 0.1247 0.1267 0.1488 0.1207 0.1100 0.11500 0.6884
210 0.1215 0.1176 0.1616 0.1165 0.1114 0.1124 0.5702

y(q) = x(1:n)(q), x(q) = (1− ε) q + ε y(q)

n = N = Theorem 4.5

2 101 102 103 104 105 upper bound

22 0.1416 0.0716 0.0586 0.0589 0.0578 0.059 3.4539
23 0.1281 0.0789 0.0637 0.0643 0.0670 0.0624 4.0295
24 0.079 0.0821 0.0596 0.0584 0.0591 0.0583 4.3173
25 0.0427 0.0687 0.0488 0.0472 0.0452 0.0490 4.4613
26 0.0224 0.0483 0.0369 0.0337 0.0337 0.0355 4.5332
27 0.0116 0.0259 0.0290 0.0237 0.0232 0.0236 4.5692
28 0.0059 0.0132 0.0230 0.0162 0.0157 0.0156 4.5872
29 0.003 0.0067 0.0186 0.0115 0.0107 0.0104 4.5962
210 0.0015 0.0034 0.0107 0.0094 0.0084 0.0081 4.6007

y(q) = x(1:n)(q), x(q) = (1− ε)x(n−1:n)(q) + ε y(q)

n = N = Theorem 4.5

2 101 102 103 104 105 upper bound

22 0.1522 0.1978 0.2127 0.2104 0.2113 0.2101 3.4539
23 0.1177 0.1200 0.1061 0.1056 0.1064 0.0998 4.0295
24 0.0759 0.1116 0.1067 0.1046 0.1019 0.1029 4.3173
25 0.0424 0.0866 0.0817 0.0798 0.0809 0.08 4.4613
26 0.0224 0.0499 0.0604 0.0602 0.0604 0.0581 4.5332
27 0.0116 0.0259 0.0474 0.0443 0.0434 0.0447 4.8063
28 0.0059 0.0132 0.0356 0.0323 0.0324 0.0322 5.5196
29 0.0030 0.0067 0.0209 0.0226 0.0226 0.0235 6.2242
210 0.0015 0.0034 0.0107 0.0171 0.0168 0.0161 6.9237
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The values in Table 5 are normalized by the factor
√
N/n that reflects the dependence of the

median absolute error in the estimation of Py from the overall sample size. By replicating the
Monte carlo sampling we ensured that the Monte Carlo sample size leads to the relative error of
at most 6%. From the table we note that for a given row (corresponding to a fixed number of
bidders in the auction n) the normalized mean absolute deviation does not significantly vary across
different numbers of samples N . However, there is a visible dependence of the normalized mean
absolute deviation from the number of players n. For the design where the auction of interest is
the uniform allocation rule demonstrates an initial increase in the normalized mean squared error
which then stabilizes to a constant for large n. The designs where the allocation rule is the 1-unit
n-player auction allocation rule, the normalized mean absolute error decreases with n reflecting
the convergence of the revenue from that allocation rule to the upper boundary of support of the
distribution of values. The table also contrasts the empirical performance of our estimator with
the theoretical upper bound given in Theorem 4.5. The bound exceeds the measured mean squared
error, suggesting that it can be tightened further as a function of the number of bidders in each
auction if we elaborate the actual bound for the specific auction designs.

We also illustrate the dependence of the estimation error on the choice of the mixture weight ε for
the three considered designs. We fix the number of players n = 32 and the sample size N = 1000 and
choose the grid over ε varying it from 0 to 1 excluding the end points. On Figure 1 we demonstrate
the dependence of the median absolute error computed as the ratio of the median absolute error
of estimated revenue over the course of 1000 Monte Carlo replications and the theoretical revenue
computed using the numerical integration. The figure demonstrates that for the third design where
the auction used for inference is the mixture of 1 and n− 1-unit auctions yields an approximately
equal relative error over different values of ε. At the same time, design 1 (where a mixture of a
1-unit auction and an auction with uniform allocation rule is used to infer the revenue from the
auction with the uniform allocation rule) demonstrates an increase in the error with the growth of
ε, while the design 2 leads to an opposite tendency.

6 Applications to A/B testing

We now discuss applications of the inference approach we developed in Section 4.

6.1 Estimating revenues of novel mechanisms

Let us consider the setup described in the introduction where an auction house running auction A
would like to determine the revenue of a novel mechanism B. The typical approach for doing so is
to run the auction B with some probability ε > 0 and A with the remaining probability. Ideally,
if in doing so, the auction house obtains εN bids in response to the auction B out of a total of N
bids, the revenue of B can be estimated within an error bound of

Θ

(
1√
ε

)
supq{x′B(q)}
√
N

(13)

where xB denotes the allocation rule corresponding to B.
In practice, however, instead of obtaining bids in response to B alone, the seller obtains bids

in response to the aggregate mechanism C = (1 − ε)A + εB. We can then use (9) to estimate
the revenue of B. As a consequence of Theorem 4.6, and noting that for positions auctions with
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Figure 1: Dependence of the relative median absolute error from the mixture weight ε

The graph shows the dependence of the median absolute error in estimation of the revenue of auction with

allocation rule y(·) from the sample generated by the auction with allocation rule x(·) for one of the three

designs. The sample size is fixed at 1000 while the number of bidders per auction is chosen to be 32. Each

value on the graph is the ratio of the median absolute error and the theoretical revenue. The values are

obtained using 1000 independent draws from the distribution of valuations.
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n positions, x′C(q) ≤ n and x′B(q)/x′C(q) ≤ 1/ε for all quantiles q, we obtain the following error
bound

Corollary 6.1. The revenue of a rank based mechanism B can be estimated from N bids of a
rank-based mechanism C = (1− ε)A+ εB with absolute error bounded by

O(1)
√
n log n log(n/ε)

supq{x′B(q)}
√
N

. (14)

Relative to the ideal situation described above, our error bound has a better dependence on ε
and a worse dependence on n. Note that when ε is very small, our error bound (14) may be smaller
than the ideal bound in (13). This is not surprising: the ideal bound ignores information that we
can learn about the revenue of B from the (1− ε)N bids obtained when B is not run.

When B is a multi-unit auction, we obtain a better error bound which is closer to the ideal
bound in (13).

Corollary 6.2. The revenue of the highest-k-bids-win mechanism B can be estimated from N bids
of a rank-based mechanism C = (1− ε)A+ εB with absolute error bounded by

O(1) log(n/ε)
supq{x′B(q)}
√
N

. (15)

6.2 Comparing revenues

We have considered the case where the empirical task was to recover the revenues for one mechanism
(y) using the sample of bids responding to another mechanism (x). In many practical situations the
empirical task is simply the verification of whether the revenue from a given mechanism is higher
than the revenue from another mechanism. Or, equivalently, the task could be to verify whether
one mechanism provides revenue which is a certain percentage above that of another mechanism.
We now demonstrate that this is a much easier empirical task in terms of accuracy than the task
of inferring the revenue.

Suppose that we want to compare the revenues of mechanisms B1 and B2 by mixing them in to
an incumbent mechanism A, and running the composite mechanism M = εB1 + εB2 + (1 − 2ε)A.
Specifically, we would like to determine whether PB1 > αPB2 for some α > 0. Consider a binary
classifier γ̂ which is equal to 1 when PB1 > αPB2 and 0 otherwise. Let γ = 1{PB1 − αPB2 > 0} be
the corresponding “ideal” classifier for the case where the distribution of bids from mechanism M
is known precisely. To evaluate the accuracy of the classifier, we need to evaluate the probability
Pr(γ̂ = 1|γ = 0), and likewise, Pr(γ̂ = 0|γ = 1). The classifier will give the wrong output if the
sampling noise in estimating P̂B1 − α P̂B2 is greater than |PB1 − αPB2 |.

Our main result of this section says that keeping α, the difference |PB1−αPB2 |, and the number
of positions n constant, the probability of incorrect output decreases exponentially with the number
of bids N .

Theorem 6.3. Suppose that N bids from a mechanism M = εB1 + εB2 + (1− 2ε)A for arbitrary
rank-based mechanisms B1, B2, and A, are used to estimate the classifier γ = 1{PB1 − αPB2 > 0}
that establishes whether the revenue of mechanism B1 exceeds α times the revenue of mechanism
B2. Then the error rate of the binary classifier is bounded from above by

exp

(
−O

(
Na2

α2n3 log(n/ε)

))
,
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where a = |PB1 − αPB2 |. In other words, once the number of samples is polynomially large in n,
the error rate decreases exponentially with the number of samples.

Proof. We need to bound the probability that the error in estimating P̂B1 − αP̂B2 is greater than
|PB1 − αPB2 |. This error can in turn be decomposed into the error in estimating PB1 and that in
estimating PB2 . Denote a = |PB1 − αPB2 | > 0. Then,

Pr
(
|(P̂B1 − α P̂B2)− (PB1 − αPB2)| > a

)
≤ Pr

(
|P̂B1 − PB1 | > a/2

)
+ Pr

(
|P̂B2 − PB2 | > a/2α

)
.

Let x denote the allocation rule of the mechanism M that we are running, and let b be the
corresponding bid function. Now, recall that for

∆ = sup
q
|Ĝ(b(q))−G(b(q))|, and C = sup

q
{x′B1

(q)} log max

 sup
q:x′B1

(q)≥1

x′(q)

x′B1
(q)

, sup
q

x′B1
(q)

x′(q)

 ,

Equation (12), Lemma 4.7, and Lemma 4.9 together imply that (conditional on ∆)

Pr
(
|P̂B1 − PB1 | > a/2

)
≤ 2 exp

(
− 1

n(40 ∆C)2

(a
2
−O

( n

εN

))2
)
.

Now recall that C < n log(n/ε), and ∆ < constant/
√
N with high probability (Lemma 3.2). As a

result, we establish that for a = ω(n/εN),

Pr
(
|P̂B1 − PB1 | > a/2

)
≤ exp

(
−O

(
Na2

n3 log(n/ε)

))
.

Likewise,

Pr
(
|P̂B2 − PB2 | > a/2α

)
≤ exp

(
−O

(
Na2

α2n3 log(n/ε)

))
.

We obtain a similar error bound when our goal is to estimate which of r different novel mecha-
nisms obtains the most revenue, for any r > 1:

Corollary 6.4. Suppose that our goal is to determine which of r position auctions, B1, B2, · · · , Br,
obtains the most revenue while running incumbent mechanism A, by running each of the novel mech-
anisms with probability ε/r. Then the error probability of the corresponding classifier constructed
using N bids from composite mechanism M =

∑r
i=1 ε/rBi + (1− ε)A is bounded from above by

r exp

(
−O

(
Na2

n3 log(rn/ε)

))
,

where a is the absolute difference between the revenue obtained by the best two of the r mechanisms.
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7 Applications to optimization

In the previous sections we discussed the econometric properties of rank-based auctions, showing
that the revenue of a rank-based auction can be estimated with small error using bids from another
rank-based auction. In this section we shift our focus to instrumented optimization, asking: how
can we use inference to optimize for the seller’s revenue. In Section 7.1 we develop a theory for
optimizing revenue over the class of all rank-based auctions that resembles Myerson’s theory for
optimal auction design. Our optimization requires knowing all of the multi-unit revenues Pk. Where
Myerson’s theory employs ironing by value and value reserves, our approach analogously employs
ironing by rank and rank reserves. To implement this approach, in Section 7.2 we extend the
approach of Section 4 to develop a “universal B-test” that can be used to estimate all of the multi-
unit revenues Pk simultaneously. Finally, in Section 7.3 we show that the revenue of an optimal
rank-based auction approximates the revenue of the optimal auction. Putting these together gives
a simple uniform procedure for revenue optimization subject to inference.

We begin by recalling our framework for position environments and rank-based auctions. In a
rank-based auction the allocation to an agent depends solely on the ordinal rank of his bid among
other agents’ bids, and not on the cardinal value of the bid. For a position environment, a rank-based
auction assigns agents (potentially randomly) to positions based on their ranks. Consider a position
environment given by non-increasing weights w = (w1, . . . , wn). For notational convenience, define
wn+1 = 0. Define the cumulative position weights W = (W1, . . . ,Wn) as Wk =

∑k
j=1wj , and

W0 = 0. We can view the cumulative weights as defining a piece-wise linear, monotone, concave
function given by connecting the point set (0,W0), . . . , (n,Wn).

Multi-unit highest-bids-win auctions form a basis for position auctions. Consider the marginal
position weights w′ = (w′1, . . . , w

′
n) defined by w′k = wk − wk+1. The allocation rule induced

by the position auction with weights w is identical to the allocation rule induced by the convex
combination of multi-unit auctions where the k-unit auction is run with probability w′k.

A randomized assignment of agents to positions based on their ranks induces an expected weight
to which agents of each rank are assigned, e.g., w̄k for the kth ranked agent. These expected weights
can be interpreted as a position auction environment themselves with weights w̄. As for the original
weights, we can define the cumulative position weights W̄ as W̄k =

∑k
j=1wj . An important issue

for optimization of rank-based auctions is to characterize the inducible class of position weights.

Lemma 7.1 (e.g., Devanur et al., 2013). There is a rank-based auction with induced position
weights w̄ for position environment with weights w if and only if their cumulative weights satisfy
W̄k ≤Wk for all k, denoted W̄ ≤W .

Any feasible weights w̄ can be constructed fromw by a sequence of the following two operations.

rank reserve For a given rank k, all agents with ranks between k + 1 and n are rejected. The
resulting weights w̄ are equal to w except w̄k′ = 0 for k′ > k.

iron by rank Given ranks k′ < k′′, the ironing-by-rank operation corresponds to, when agents
are ranked, assigning the agents ranked in an interval {k′, . . . , k′′} uniformly at random to
these same positions. The ironed position weights w̄ are equal to w except the weights on
the ironed interval of positions are averaged. The cumulative ironed position weights W̄ are
equal to W (viewed as a concave function) except that a straight line connects (k′−1, W̄k′−1)
to (k′′, W̄k′′). Notice that concavity of W (as a function) and this perspective of the ironing
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procedure as replacing an interval with a line segment connecting the endpoints of the interval
implies that W ≥ W̄ coordinate-wise, i.e., Wk ≥ W̄k for all k.

7.1 Optimal rank-based auctions

In this section we describe how to optimize for expected revenue over the class of rank-based
auctions. Recall that rank-based auctions are linear combinations over k-unit auctions. The char-
acterization of Bayes-Nash equilibrium, cf. equation (2), shows that revenue is a linear function of
the allocation rule. Therefore, the revenue of a position auction can be calculated as the convex
combination of the revenue Pk from the k-highest-bids-win auction for k ∈ 1 . . . n− 1.

Given these multi-unit revenues, P = (P0, . . . , Pn), the problem of designing the optimal rank-
based auction is well defined: given a position environment with weights w, find the weights w̄ for
an rank-based auction with cummulative weights W̄ ≤W maximizing the sum

∑
k(w̄k− w̄k+1)Pk.

This optimization problem is isomorphic to the theory of envy-free optimal pricing developed by
Hartline and Yan (2011). We summarize this theory below; a complete derivation can be found in
Appendix A.

Define the multi-unit revenue curve as the piece-wise linear function connecting the points
(0, P0), . . . , (n, Pn). This function may or may not be concave. Define the ironed multi-unit revenues
as P̄ = (P̄0, . . . , P̄n) according to the smallest concave function that upper bounds the multi-unit
revenue curve. Define the multi-unit marginal revenues, P ′ = P ′1, . . . , P

′
n and P̄

′
= P̄ ′1, . . . , P̄

′
n,

as the left slope of the multi-unit and ironed multi-unit revenue curves, respectively. I.e., P ′k =
Pk − Pk−1 and P̄ ′k = P̄k − P̄k−1.

Theorem 7.2. Given a position environment with weights w, the revenue-optimal rank-based auc-
tion is defined by position weights w̄ that are equal to w, except ironed on the same intervals as P
is ironed to obtain P̄ , and set to 0 at positions k for which P̄ ′k is negative.

As is evident from this description of the optimal rank-based auction, the only quantities that
need to be ascertained to run this auction is the multi-unit revenue curve defined by P . Therefore,
an econometric analysis for optimizing rank-based auctions need not estimate the entire value
distribution; estimation of the multi-unit revenues is sufficient.

Optimal rank-based auctions with strict monotonicity

Position auctions, by definition, have non-increasing position weights w. The ironing in the iron-by-
rank optimization of the preceding section converted the problem of optimizing multi-unit marginal
revenue subject to non-increasing position weight, to a simpler problem of optimizing multi-unit
marginal revenue without any constraints. In this section, we describe the optimization of rank-
based auctions (i.e., ones for which position weights can be shifted only downwards or discarded)
subject to strictly decreasing position weights. This strictness insures good inference properties,
the details of which are formalized in Section 6.1 (see, e.g., Corollary 6.2).

As described by Lemma 7.1, position weights w̄ are feasible as a rank-based auction in position
environment w if the cumulative position weights satisfy Wk ≥ W̄k for all k. Suppose we would
like to optimize w̄ subject to strict monotonicity constraints: w̄′k = w̄k − w̄k+1 ≥ εk for all k, for
some given ε1, · · · , εn ≥ 0. We call an allocation rule satisfying these monotonicity constraints
an ε-strictly-monotone allocation rule, where ε = (ε1, · · · , εn). As non-trivial ironing by rank
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always results in consecutive positions with the same weight, i.e., w̄′k = 0 for some k, the optimal
rank-based mechanism will require overlapping ironed intervals.

To our knowledge, performance optimization subject to a strict monotonicity constraint has not
previously been considered in the literature. At a high level our approach is the following. We start
with w which induces the cumulative position weights W which constrain the resulting position
weights w̄ of any feasible rank-based auction via its cumulative W̄ . We view w̄ as the combination
of two position auctions. The first has weakly monotone weights ȳ = (ȳ1, . . . , ȳn); the second has
strictly monotone weights (E1, E2, . . . , En), where Ei =

∑
j≥i εj for 1 ≤ i < n and En = 0; and the

combination has weights w̄k = ȳk + Ek for all k. The revenue of the combined position auction is
the sum of the revenues of the two component position auctions. Since the second auction has fixed
position weights, its revenue is fixed. Since the first position auction is weakly monotone and the
second is strictly, the combined position auction is strictly monotone and satisfies the constraint
that w̄′k ≥ εk for all k.

This construction focuses attention on optimization of ȳ subject to the induced constraint
imposed by w and after the removal of the ε-strictly-monotone allocation rule. I.e., w̄ must be
feasible for w. The suggested feasibility constraint for optimization of ȳ is given by position weights
y defined as yk = wk −Ek. Notice that, in this definition of y, a lesser amount is subtracted from
successive positions. Consequently, monotonicity of w does not imply monotonicity of y.

To obtain ȳ from y we may need to iron for two reasons, (a) to make ȳ monotone and (b)
to make the multi-unit revenue curve monotone. In fact, both of these ironings are good for
revenue. The ironing construction for monotonizing y constructs the concave hull of the cumulative
position weights Y . This concave hull is strictly higher than the curve given by Y (i.e., connecting
(0, Y0), . . . , (n, Yn)). Similarly the ironed multi-unit revenue curve given by P̄ is the concave hull
of the multi-unit revenue curve given by P . The correct order in which to apply these ironing
procedures is to first (a) iron the position weights y to make it monotone, and second (b) iron
the multi-unit revenue curve P to make it concave. This order is important as the revenue of the
position auction with weights ȳ is only given by the ironed revenue curve P̄ when the ȳ′ = 0 on
the ironed intervals of P̄ .

Theorem 7.3. The optimal ε-strictly-monotone rank-based auction for position weights w has
position weights w̄ constructed by

1. defining y by yk = wk − Ek for all k, where Ei =
∑

j≥i εj for 1 ≤ i < n.

2. averaging position weights of y on intervals where y should be ironed to be monotone.

3. averaging the resulting position weights on intervals where P should be ironed to be concave
to get ȳ

4. setting w̄ as w̄k = ȳk + Ek.

Proof. The proof of this theorem follows directly by the construction and its correctness.

The rank-based auction given by w̄ in position environment given by w can be implemented
by a sequence of iron-by-rank and rank-reserve operations. Such a sequence of operations can be
found, e.g., via an approach of Alaei et al. (2012) or Hardy et al. (1929).
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7.2 Universal B test

In Section 6.1 we discussed how to estimate the revenue of a single auction B from the bids
of an auction C. We now consider the problem of estimating all of the multi-unit revenues Pk
simultaneously from the bids of a single auction. What properties should the auction C have in
order to enable this? We first note that, as a simple consequence of Corollary 6.2, it suffices to
mix the k-unit auction for every k into C with some small probability. This gives us the following
result.

Corollary 7.4. N bids from a mechanism C with xC = (1− ε)xA +
∑n

k=1
ε
nxk can be used to si-

multaneously estimate all of the multi-unit revenues, and consequently all position auction revenues
with absolute error bounded by

O(1)
n log(n/ε)√

N
.

Next we observe that in fact we can get similar results by mixing in just a few of the multi-unit
auctions. In particular, in order to estimate Pk accurately, it suffices to mix in a multi-unit auction
with no more than k units, and another one with no less than k units. This gives us a more efficient
universal B test for simultaneously inferring all of the multi-unit revenues (see Corollary 7.6).

Lemma 7.5. The revenue of the highest-k-bids-win mechanism B can be estimated from N bids
of a rank-based all-pay auction C = (1 − 2ε)A + εB1 + εB2 where A is an arbitrary rank-based
auction, and B1 and B2 are the highest-k1-bids-win and highest-k2-bids-win auctions respectively,
with k1 ≤ k ≤ k2. The absolute error of the estimate is bounded by

20(n+ log(1/ε))
supq{x′k(q)}√

N
.

Proof. We begin by noting that for any j and k, k ≤ j,

x′k(q)

x′j(q)
=

(
j−1
k−1

)(
n−1−k
n−1−j

) ( q

1− q

)j−k
When k ≤ j and q ≥ 1/2, this ratio is less than 2n. Likewise, we can show that when k ≥ j and

q ≤ 1/2, the ratio
x′k(q)

x′j(q)
is less than 2n. Therefore, for any q, and C = (1 − 2ε)A + εB1 + εB2

where B1 and B2 are the highest-k1-bids-win and highest-k2-bids-win auctions respectively, with
k1 ≤ k ≤ k2, we have

x′k(q)

x′C(q)
≤ 1

ε
2n

Next we note that supq x
′
C(q) ≤ n, and therefore, supq:x′k(q)≥1

x′C(q)

x′k(q)
≤ n. Putting these quantities

together with Theorem 4.5, we get that the absolute error in estimating Pk from bids drawn from
C is at most

Eb̂

[
|P̂k − Pk|

]
≤ 20√

N
sup
q
{x′k(q)} (n+ log 1/ε)
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Corollary 7.6. Given N bids of an all-pay auction C = (1 − 2ε)A + εB1 + εBn−1 where A is an
arbitrary rank-based auction, and B1 and Bn−1 are the highest-bid-wins and highest-(n−1)-bids-win
auctions respectively, we can estimate the revenue of any rank-based auction with absolute error
bounded by

20n(n+ log(1/ε))√
N

.

7.3 Approximation via rank-based auctions

In this section we show that the revenue of optimal rank-based auction approximates the optimal
revenue (over all auctions) for position environments. Instead of making this comparison directly
we will instead identify a simple non-optimal rank-based auction that approximates the optimal
auction. Of course the optimal rank-based auction of Theorem 7.2 has revenue at least that of this
simple rank-based auction, thus its revenue also satisfies the same approximation bound.

Our approach is as follows. Just as arbitrary rank-based mechanisms can be written as convex
combinations over k-highest-bids-win auctions, the optimal auction can be written as a convex
combination over optimal k-unit auctions. We begin by showing that the revenue of optimal k-unit
auctions can be approximated by multi-unit highest-bids-win auctions when the agents’ values are
distributed according to a regular distribution (Lemma 7.7, below). In the irregular case, on the
other hand, rank-based auctions cannot compete against arbitrary optimal auctions. For example,
if the agents’ value distribution contains a very high value with probability o(1/n), then an optimal
auction may exploit that high value by setting a reserve price equal to that value; On the other hand,
a rank-based mechanism cannot distinguish very well between values correspond to quantiles above
1 − 1/n. We show that rank-based mechanisms can approximate the revenue of any mechanism
that does not iron the quantile interval [1−1/n, 1] (but may arbitrarily optimize over the remaining
quantiles). Theorem 7.9 presents the precise statement.

Lemma 7.7. For regular k-unit n-agent environments, there exists a k′ ≤k such that the highest-
bid-wins auction that restricts supply to k′ units (i.e., a rank reserve) obtains at least half the
revenue of the optimal auction.

Proof. This lemma follows easily from a result of Bulow and Klemperer (1996) that states that
for agents with values drawn i.i.d. from a regular distribution the revenue of the k′-unit n-agent
highest-bid-wins auction is at least the revenue of the k′-unit (n − k′)-agent optimal auction. To
apply this theorem to our setting, let us use OPT(k, n) to denote the revenue of an optimal k-unit
n-agent auction, and recall that nPk is the revenue of a k-unit n-agent highest-bids-win auction.

When k ≤ n/2, we pick k′ = k. Then,

nPk ≥ OPT(k, n− k) ≥ (n− k)

n
OPT(k, n) ≥ 1

2
OPT(k, n),

and we obtain the lemma. Here the first inequality follows from Bulow and Klemperer’s theorem
and the third from the assumption that k ≤ n/2. The second inequality follows via by lower

bounding OPT(k, n − k) by the following auction which has revenue exactly (n−k)
n OPT(k, n):

simulate the optimal k-unit n-agent on the n− k real agents and k fake agents with values drawn
independently from the distribution. Winners of the simulation that are real agents contribute to
revenue and the probability that an agent is real is (n− k)/n.
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When k > n/2, we pick k′ = n/2. As before we have:

nPn/2 ≥ OPT(n/2, n/2) =
1

2
OPT(n, n) ≥ 1

2
OPT(k, n).

Lemma 7.8. In any n-agent setting with an arbitrary (possibly irregular) value distribution with
revenue curve R(·), and quantile q ≤ 1 − 1/n, there exists an integer k ≤ (1 − q)n such that the
revenue of the k-highest-bids-win auction is at least a quarter of nR(q), the revenue from posting a
price of v(q).

Proof. First we get a lower bound on Pk for any k. For any value z, the total expected revenue of
the k-highest-bids-win auction is at least zk times the probability that at least k + 1 agents have
value at least z. The median of a binomial random variable corresponding to n Bernoulli trials
with with success probability (k+ 1)/n is k+ 1. Thus, the probability that this binomial is at least
k + 1 is at least 1/2. Combining these observations by choosing z = v(1− (k + 1)/n) we have,

nPk ≥ v(1− (k + 1)/n) k/2.

Choosing k = b(1− q)nc − 1, for which v(1− (k + 1)/n) ≥ v(q), the bound simplifies to,

nPk ≥ v(q) k/2.

The ratio of Pk and R(q) = (1− q) v(q) is therefore at least

k

2(1− q)n
>

k

2(k + 2)
,

which for q ≤ 1− 3/n (or, k ≥ 2) is at least 1/4.
For q ∈ (1 − 3/n, 1 − 1/n], we pick k = 1. Then, P1 is at least 1/n times v(q) times the

probability that at least two agents have a value greater than or equal to v(q). We can verify for
n ≥ 2 that

P1 ≥
v(q)

n

(
1− qn − n(1− q)qn−1

)
≥ 1

4
(1− q) v(q).

Theorem 7.9. For regular value distributions and position environments, the optimal rank-based
auction obtains at least half the revenue of the optimal auction. For any value distribution (possibly
irregular) and position environments, the optimal rank-based auction obtains at least a quarter of
the revenue of the optimal auction that does not iron or set a reserve price on the quantile interval
[1− 1/n, 1].

Proof. In the regular setting, the theorem follows from Lemma 7.7 by noting that the optimal
auction (that irons by value and uses a value reserve) in a position environment is a convex combi-
nation of optimal k-unit auctions: since the revenue of each of the latter can be approximated by
that of a k′-unit highest-bids-win auction with k′ ≤ k, the revenue of the convex combination can
be approximated by that of the same convex combination over k′-unit highest-bids-win auctions;
the resulting convex combination over k′-unit auctions satisfies the same position constraint as the
optimal auction.
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In the irregular setting, once again, any auction in a position environment is a convex combi-
nation of optimal k-unit auctions. The expected revenue of any k-unit auction is bounded from
above by the expected revenue of the optimal auction that sells at most k items in expectation.
The per-agent revenue of such an auction is bounded by R̄(1 − k/n), the revenue of the optimal
allocation rule with ex ante probability of sale k/n. Here R̄(·) is the ironed revenue curve (that
does not iron on quantiles in [1 − 1/n, 1]). R̄(1 − k/n) is the convex combination of at most two
points on the revenue curve R(a) and R(b), a ≤ 1−k/n ≤ b < 1−1/n. Now, we can use Lemma 7.8
to obtain an integer ka < n(1 − a) such that Pka is at least a quarter of R(a), likewise kb for b.
Taking the appropriate convex combination of these multi-unit auctions gives us a 4-approximation
to the optimal auction k-unit auction (that does not iron over the quantile interval [1 − 1/n, 1]).
Finally, the convex combination of the multi-unit auctions with ka and kb corresponds to a position
auction with that is feasible for a k unit auction (with respect to serving the top k positions with
probability one, service probability is only shifted to lower positions).

8 Inference methodology and error bounds for first-price auctions

While most of our analysis so far has focused on the case of all-pay auctions, our methodology and
results extend as-is to first-price auctions as well. Here we sketch the differences between the two
cases.

Recall that in a first-price auction, we can obtain the value distribution from the bid distribution
as follows: v(q) = b(q) + x(q)b′(q)/x′(q). Substituting this into the expression for Py we get:

Py = Eq

[
(1− q)y′(q)b(q) +

(1− q)y′(q)x(q)b′(q)

x′(q)

]
= Eq

[
(1− q)y′(q)b(q) + Zy(q)x(q)b′(q)

]
where, as before, Zy(q) = (1−q)y′(q)

x′(q) .
Integrating the second expression by parts, we get∫ 1

0
Zy(q)x(q)b′(q) dq = Zy(q)x(q)b(q)|10 −

∫ 1

0
(Z ′y(q)x(q) + Zy(q)x

′(q))b(q) dq

= −
∫ 1

0
Z ′y(q)x(q)b(q) dq −

∫ 1

0
(1− q)y′(q)b(q) dq

When we put this back in the expression for Py two of the terms cancel, and we get the following
lemma.

Lemma 8.1. The per-agent revenue of an auction with allocation rule y can be written as a linear
combination of the bids in a first-pay auction:

Py = Eq

[
−x(q)Z ′y(q)b(q)

]
where Zy(q) = (1− q) y

′(q)
x′(q) and x(q) are known precisely.

As in the case of the all-pay auction format, we can write the error in Py as:

|P̂y − Py| = Eq

[∣∣∣−x(q)Z ′y(q)(̂b(q)− b(q))
∣∣∣]

≤ E

[
(log(1 + Zy(q)))

α

Zy(q)
|Z ′y(q)|

]
sup
q

∣∣∣∣x(q)
Zy(q)

(log(1 + Zy(q)))
α (b̂(q)− b(q))

∣∣∣∣
With an appropriate choice of α we obtain the following theorem.
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Theorem 8.2. The expected absolute error in estimating the revenue of a position auction with
allocation rule y using N samples from the bid distribution for a first-pay position auction with
allocation rule x is bounded as below; Here n is the number of positions in the two position auctions.

Eb̂

[
|P̂y − Py|

]
≤ 20√

N

√
n log n sup

q
{y′(q)} log max

{
sup

q:y′(q)≥1

x′(q)

y′(q)
, sup
q

y′(q)

x′(q)

}

+
O(1)

N
sup
q
{x′(q)} sup

q

{
y′(q)

x′(q)

}
.

When y is the highest-k-bids-win allocation rule, the error improves to:

Eb̂

[
|P̂k − Pk|

]
≤ 20√

N
sup
q
{x′k(q)} log max

{
sup

q:x′k(q)≥1

x′(q)

x′k(q)
, sup
q

x′k(q)

x′(q)

}
.

Because the error bounds in Theorem 8.2 are identical to those in Theorems 4.5 and 4.6,
Lemma 7.5, Corollaries 6.1, 6.2, 7.4, 7.6, and Theorem 6.3 continue to hold when bids are drawn
from a first-price auction.

9 Discussion and Conclusions

We conclude with some observations and discussion.

• Good inference requires careful design of the mechanism. Perfect inference and perfect opti-
mality cannot be achieved together.

• We cannot achieve good accuracy in infering the revenue of an arbitrary mechanism, or in
infering the entire revenue curve. In contrast, the multi-unit revenues Pk are special functions
that depend linearly on the bid distribution (and not, for example, on bid density). This
property enables them to be learned accurately.

• Rank based mechanisms achieve a good tradeoff between revenue optimality and quality of
inference in position environments: (1) They are close to optimal regardless of the value dis-
tribution; (2) Optimizing over this class for revenue requires estimating only n parameters
Pk that, by our observation above, are “easy” to estimate accurately; (3) Rank based mech-
anisms satisfy the necessary conditions on the slope of the allocation function that enable
good inference.
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A Finding the optimal iron by rank auction

Recall that iron by rank auctions are weighted sums of multi-unit auctions. Therefore, their revenue
can be expressed as a weighted sum over the revenues Pk of k-unit auctions. We consider a position
environment given by non-increasing weightsw = (w1, . . . , wn), with w0 = 0, w1 = 1, and wn+1 = 0.
Define the cumulative position weights W = (W1, . . . ,Wn) as Wk =

∑
j≤iwj .

Define the multi-unit revenue curve as the piece-wise constant function connecting the points
(0, P0, . . . , (n, Pn). This function may or may not be concave. Define the ironed multi-unit revenue
curve as P̄ = (P̄1, . . . , P̄n) the smallest concave function that upper bounds the multi-unit revenue
curve. Define the multi-unit marginal revenues as P ′ = P ′1, . . . , P

′
n and P̄

′
= P̄ ′1, . . . , P̄

′
n as the left

slope of the multi-unit and ironed multi-unit revenue curves, respectively. I.e., P ′k = Pk−Pk−1 and
P̄ ′k = P̄k − P̄k−1.
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We now see how the revenue of any position auction can be expressed in terms of the multi-unit
revenue curves and marginal revenues.

E[revenue] =
n∑
k=0

Pk w
′
k =

n∑
k=0

P ′k wk

≤
n∑
k=0

P̄k w
′
k =

n∑
k=0

P̄ ′k wk.

The first equality follows from viewing the position auction with weights w as a convex combina-
tion of multi-unit auctions (where its revenue is the convex combination of the multi-unit auction
revenues). The second and final inequality follow from rearranging the sum (an equivalent ma-
nipulation to integration by parts). The inequality follows from the fact that P̄ is defined as the
smallest concave function that upper bounds P and, therefore, satisfies P̄k ≥ Pk for all k. Of course
the inequality is an equality if and only if w′k = 0 for every k such that P̄ ′k > P ′k.

We now characterize the optimal ironing-by-rank position auction. Given a position auction
weights w we would like the ironing-by-rank which produces w̄ (with cumulative weights satisfying
W ≥ W̄ ) with optimal revenue. By the above discussion, revenue is accounted for by marginal
revenues, and upper bounded by ironed marginal revenues. If we optimize for ironed marginal
revenues and the condition for equality holds then this is the optimal revenue. Notice that ironed
revenues are concave in k, so ironed marginal revenues are monotone (weakly) decreasing in k.
The position weights are also monotone (weakly) decreasing. The assignment between ranks and
positions that optimizes ironed marginal revenue is greedy with positions corresponding to ranks
with negative ironed marginal revenue discarded. Tentatively assign the kth rank agent to slot
k (discarding agents that correspond to discarded positions). This assignment indeed maximizes
ironed marginal revenue for the given position weights but may not satisfy the condition for equality
of revenue with ironed marginal revenue. To meet this condition with equality we can randomly
permute (a.k.a., iron by rank) the positions that corresponds to intervals where the revenue curve
is ironed. This does not change the surplus of ironed marginal revenue as the ironed marginal
revenues on this interval are the same, and the resulting position weights w̄ satisfy the condition
for equality of revenue and ironed marginal revenue.

B Proofs for Section 3

Proof of Lemma 3.2. Consider estimation of the bid function using the sorted bids b(1) ≥ b(2) ≥
. . . ≥ b(N). Then the bid function is estimated as

b̂(q) = b([qN ]),

where [·] is the floor integer. Let G(·) be the population cdf of the distribution of bids and Ĝ(·) =
1
n

∑n
i=1 1{· ≤ bi} be its empirical analog. Note that the derivative of the quantile function of the

distribution of bids b′(·) is the inverse of the bid density. We now impose the restriction on the
population distribution of bids ensuring its desirable smoothness.

Assumption 1. For any b1, b2 ∈ [0, 1] such that |b2 − b1| < δ

|G(b2)−G(b1)− b′(b−1(b1))(b2 − b1)| = o(δ).
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Then, we have by definition Ĝ(̂b(q)) = q = G(b(q)),where G(·) is the cdf of bids and Ĝ(·) is the
empirical cdf.

Now we decompose Ĝ(̂b(q))−G(b(q)) as

0 = Ĝ(̂b(q))−G(b(q)) = Ĝ(̂b(q))−G(̂b(q)) +G(̂b(q))−G(b(q)). (16)

We can bound the first term on the right as follows. By the Donsker theorem
√
N(Ĝ(t) − G(t))

converges to a tight mean zero stochastic process G(t) over t with covariance function such that
H(t, t) = G(t)(1−G(t)). Note that

sup
t
|H(t, t)| ≤ 1

4
.

This means that

E

[∣∣∣∣√N sup
t

(Ĝ(t)−G(t))

∣∣∣∣] ≤ 1

2
.

Next, we can relate the second term on the right hand side of (16) to the error in the bid estimator.
Consider the following expansion:

G(̂b(q))−G(b(q)) = g(b(q))(̂b(q)− b(q)) + o(|̂b(q)− b(q)|2).

Combining this result together with the decomposition above and recalling that b′(q) = 1/g(b(q)),
we write √

N (̂b(q)− b(q)) = −b′(q)
√
N(Ĝ(̂b(q))−G(̂b(q))) + op(1).

Then we write

E

[∣∣∣∣√N sup
q

(̂b(q)− b(q))
∣∣∣∣] ≤ sup

q
b′(q)E

[∣∣∣∣√N sup
t

(Ĝ(t)−G(t))

∣∣∣∣] .
This means that the mean absolute error in bids is bounded by

supq b
′(q)

2

1√
N
.

Then, recalling that v(q) ≤ 1 and v(q)− b(q) ≤ 1, we can replace the upper bound on b′(q) by x′(q)
for an all-pay auction and by x′(q)/x(q) for the first-price auction.

C Proofs for Section 4

Proof of Lemma 4.2. Consider the function A(q) = 1/Zk(q) = x′(q)/(1 − q)x′k(q). x′(q) is a
weighted sum over x′j(q) for j ∈ {1, · · · , n− 1}. So, A(q) is a weighted sum over terms x′j(q)/(1−
q)x′k(q). Let us look at these terms closely.

x′j(q)

(1− q)x′k(q)
= αk,jq

k−j(1− q)j−k−1

where αk,j is independent of q. The functions qk−j(1− q)j−k−1 are convex. This implies that A(q)
which is a weighted sum of convex functions is also convex. Consequently, it has a unique minimum.
Therefore, Zk(q) = 1/A(q) has a unique maximum.
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Proof of Theorem 4.5. Recall that for α > 0 we can write4

|P̂k − Pk| ≤ E
[

(log(1 + Zk(q)))
α

Zk(q)
|Z ′k(q)|

]
sup
q

∣∣∣∣ Zk(q)

(log(1 + Zk(q)))
α (b̂(q)− b(q))

∣∣∣∣
We start by considering the first term. Lemma 4.2 shows that Z ′k(·) changes sign only once.
Consider the region where the sign of Z ′k(·) is constant and make the change of variable t = Zk(q).
Recall that Z∗k = supq Zk(q) and we note that infq Zk(q) ≥ 0. Then we can evaluate the first term
as

E

[
(log(1 + Zk(q)))

α

Zk(q)
|Z ′k(q)|

]
≤ 2

∫ Z∗k

0

(log (1 + t))α

t
dt

Note that for any t > 0, log(1 + t) ≤ t. Thus,∫ δ

0

(log (1 + t))α

t
dt <

δα

α

Now split the integral into two pieces as∫ Z∗k

0

(log (1 + t))α

t
dt =

∫ 1

0

(log (1 + t))α

t
dt+

∫ Z∗k

1

(log (1 + t))α

t
dt

We just proved that the first piece is at most 1/α. Now we upper bound the second piece and
consider the integrand at t ≥ 1. First, note that

(log (1 + t))α =

(
log t+ log(1 +

1

t
)

)α
≤
(

log t+
1

t

)α
≤ (log t+ 1)α.

Thus, the integral behaves as∫ Z∗k

1

(log (1 + t))α

t
dt ≤

∫ Z∗k

1

(log (t) + 1)α

t
dt =

1

1 + α
(log Z∗k + 1)1+α.

Thus, we just showed that

E

[
(log(1 + Zk(q)))

α

Zk(q)
|Z ′k(q)|

]
≤ 2

α
+

2

1 + α
(log Z∗k + 1)1+α,

which is at most 2(1 + e)/α for α < 1/ log Z∗k .
Now consider the term

sup
q

∣∣∣∣ Zk(q)

(log(1 + Zk(q)))
α (b̂(q)− b(q))

∣∣∣∣
Note that log(1 + t) ≥ min{1, t}/2. So the first term can be bounded from above as

Zk(q)

(log(1 + Zk(q)))
α ≤ 2α max

{
Zk(q), (Zk(q))

1−α}
The second term behaves as

(b̂(q)− b(q)) = −x′(q)v(q)(Ĝ(b(q))−G(b(q)))

4In this entire proof the logarithms are natural logarithms.
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whereG and Ĝ are the real and empirical bid distributions, respectively. We recall that E
[
supq

∣∣∣Ĝ(b(q))−G(b(q))
∣∣∣] ≤

1
2
√
N

. Thus

E

[
sup
q

∣∣∣∣ Zk(q)

(log(1 + Zk(q)))
α (b̂(q)− b(q))

∣∣∣∣] ≤ 2α sup
q

(
max

{
x′k(q), (x′k(q))

1−α(x′(q))α
}) 1

2
√
N

≤ 2α sup
q

(
x′k(q)

)
max

(
1, sup
q:x′k(q)≥1

x′(q)

x′k(q)

)
︸ ︷︷ ︸

=:A


α

1

2
√
N

Now we combine the two evaluations together and pick α = min{1/ logA, 1/ logZ∗k}, with A
defined as above, to obtain

E
[
|P̂k − Pk|

]
≤ 2(1 + e)

α
2αAα

1

2
√
N

sup
q

(
x′k(q)

)
≤ 20√

N
sup
q
{x′k(q)} max

{
logA, log sup

q

{
x′k(q)

x′(q)

}}

Proof of Lemma 4.7. We can write the function b̃(i/N) as

b̃

(
i

N

)
=

N !

(i− 1)!(N − i)!

∫
G(t)i−1(1−G(t))N−ig(t)t dt

=
N !

(i− 1)!(N − i)!

∫
ti−1(1− t)N−ib(t) dt

Note that
N !

(i− 1)!(N − i)!
ti−1(1− t)N−i

is the density of the beta-distribution with parameters α = i and β = N−i+1. Denote this density
f(t;α, β). Then we can write

b̃

(
i

N

)
=

∫ 1

0
b(t)f(t;α, β) dt.

Now let q ∈ [i/N, (i+ 1)/N ], and consider an expansion of b(t) at q such that

b(t) = b(q) + b′(q)(t− q) +O((t− q)2)

Now we substitute this expansion into the formula for b̃(·) above to get

b̃

(
i

N

)
= b(q) + b′(q)

∫ 1

0
(t− q)f(t;α, β) dt+O(

∫ 1

0
(t− q)2f(t;α, β) dt)

The mean of the beta distribution is α/(α+ β) and the variance is αβ/((α+ β)2(α+ β+ 1)). This
means that

b̃

(
i

N

)
− b(q) = b′(q)

(
i

N + 1
− q
)

+O

(
1

N2

)
.
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Thus

sup
q∈[i/N,(i+1)/N ]

∣∣∣∣b̃( i

N

)
− b(q)

∣∣∣∣ ≤ sup
q
b′(q)

2

N
+O

(
1

N2

)
.

Therefore, the expectation
∣∣∣P̂y −E

[
P̂y

]∣∣∣ is at most O(1)/N supq{x′(q)} supq Zy(q).

Proof of Lemma 4.8. Fix I and `, and note that the function b̃ is fixed (that is, it does not
depend on the empirical bid sample). Then, the sum Ti`,i`+1

depends only on the empirical bid

values b̂(q) for quantiles in the interval [i`/N, i`+1/N). By the definition of I, we know that the
smallest i` bids in the sample are all smaller than b̃((i`−1)/N) ≤ b̃(i`/N), and the largest N − i`+1

bids in the sample are all larger than b̃(i`+1/N) ≥ b̃((i`+1−1)/N). On the other hand, the empirical
bids b̂(q) for q ∈ [i`/N, i`+1/N) lie within [b̃(i`/N), b̃((i`+1 − 1)/N)]. Therefore, conditioned on i`
and i`+1, the latter set of empirical bids is independent of the former set of empirical bids.

Proof of Lemma 4.9 and Theorem 4.6. We will use Chernoff-Hoeffding bounds to bound the
expectation of T0,N over the bid sample, conditioned on I and ∆ = supq∈[0,1] |Ĝ(b(q)) − G(b(q))|.
We first note that T0,N has mean zero because for any integer i ∈ [0, N ], Esamples

[
b̂(i/N)

]
= b̃(i/N).

Next we note that the Ti,j ’s are bounded random variables. Specifically, let Q be an interval

of quantiles over which the difference b̂(q) − b̃(q) does not change sign. Then, following the proof
of Theorem 4.5, we can bound

|TQ| =
∣∣∣∣∫
Q
Z ′y(q)(̂b(q)− b̃(q)) dq

∣∣∣∣
≤ 20∆ sup

q
{y′(q)} log max

{
sup

q:y′(q)≥1

x′(q)

y′(q)
, sup
q

y′(q)

x′(q)

}
︸ ︷︷ ︸

=:C

.

Likewise, over an interval Q where Z ′y does not change sign, we again get |TQ| ≤ 20∆C with C
defined as above. Moreover, for an interval Q over which Z ′y changes sign at most t times, we have∫

Q
|Z ′y(q)(̂b(q)− b̃(q))|dq ≤ t · 20∆C.

Finally, noting that Zy is a weighted sum over the n functions Zk defined for the k-unit auctions,
and that by Lemma 4.2 each Zk has a unique maximum, we note that Z ′y changes sign at most 2n
times.

We now apply Chernoff-Hoeffding bounds to bound the probability that the sum
∑`=k−1

`=0 Ti`,i`+1

exceeds some constant a. With τ` denoting the upper bound on |Ti`,i`+1
|, this probability is at

most

exp

(
− a2∑

` τ
2
`

)
.

By our observations above, for all `, τ` ≤ 40∆C, and
∑

` τ` ≤
∫ 1

0 |Z
′
y(q)(̂b(q)− b̃(q))| dq ≤ 40n∆C.

Therefore,
∑

` τ
2
` ≤ n(40∆C)2. We can now choose a =

√
n log n 40∆C to make the above proba-

bility at most 1/n.
Putting everything together, we get that conditioned on I and ∆, the expected value of |T0,N |

over the bid sample is at most a+1/n·40n∆C = O(1)
√
n log n∆C. Since this bound is independent
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of I, the same bound holds when we remove the conditioning on I. The theorem now follows by
plugging in the expected value of ∆ from Lemma 3.2.
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