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Abstract

We study price-of-anarchy type questions in two-sided misriwith combinatorial consumers and limited supply
sellers. Sellers own edges in a network and sell bandwidiileat prices subject to capacity constraints; consumers
buy bandwidth between their sources and sinks so as to mexitineir value from sending traffic minus the prices
they pay to edges. We characterize the price of anarchy acel @irstability in these “network pricing” games with
respect to two objectives—the social value (social we)fafethe consumers, and the total profit obtained by all
the sellers. In single-source single-sink networks we gjiylet bounds on these quantities based on the degree of
competition, specifically the number of monopolistic edgeshe network. In multiple-source single-sink networks,
we show that equilibria perform well only under additionasamptions on the network and demand structure.

1 Introduction

The Internet is a uniqgue modern artifact given its sheer, sinel the number of its users. Given its (continuing)
distributed and ad-hoc evolution, as well as emerging apfitins, there have been growing concerns about the effec-
tiveness of its current routing protocols in finding goodtesuand ensuring quality of service. Congestion and QoS
based pricing has been suggested as a way of combatingstiétilis distributed growth and selfish use of resources
(see, e.g., [4, 6, 7, 9, 11]). Unfortunately, the effecteenof such approaches relies on the cooperation of the-multi
ple entities implementing them, namely the owners of resmion the Internet, or the ISPs. The ISPs’ goals do not
necessarily align with the social objectives of efficienog guality of service; their primary objective is to maximiz
their own market share and profit.

In this paper we consider the following question: given géatombinatorial market such as the Internet, suppose
that the owners of resources selfishly price their produetsstdo maximize their own profit, and consumers selfishly
purchase bundles of products to maximize their own utiligw does this effect the functioning of the market as a
whole?

We consider a simple model where each edge of the networkrgdy a distinct selfish entity, and is subject to
capacity constraints. Each consumer is interested in guyamdwidth along a path from its source to its destination,
and obtains a fixed value per unit of flow that it can send altwgyfdath; consumers are therefore single-parameter
agents. The game proceeds by the sellers first picking (piedandwidth) prices for the edges they own, and then the
consumers buying their most-desirable paths (or not bugimyghing if all the paths are too expensive). An outcome
of the game (a collection of prices and the paths bought bguwmers) is called a Nash equilibrium if no seller can
improve her profit by changing her price single-handedlyteNbat the consumers already play a best-response to the
prices. We compare the performance of equilibria in thisgmhat of the best state achievable through coordination,
under two metrics—the efficiency or social value of the systend the total profit earned by all the edges.

Economists have traditionally studied the properties afildaia that emerge in pricing games with competing
firms in single-item markets (see, for example, [14, 15] afdrences therein). It is well known [10], for example,
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that in a single-good free market, oligopolies (two or a f@mpeting firms) lead to a socially-optimal equilibritim
On the other hand, a monopoly can cause a lot of inefficientlgermarket by selfishly maximizing its own profit.
Fortunately the extent of this inefficiency is bounded by galithmic factor in the ratio of the maximum consumer
utility to the minimum consumer utility, as well as by a loglamic factor in the number of consumers.

These classical economic models ignore the combinatasjgas of network pricing, namely that consumers
have different geographic sources and destinations far tifadfic, and goods (i.e., edges) are not pure substitutes,
but rather are a complex mix of substitutes and complemastdgfined by the network topology. So a timely and
basic research question is: which properties of standaed pguilbrium models carry over to network/combinatorial
settings? For example, are equilibria still guaranteecist® Are equilibria fully efficient? Does the answer depend
in an interesting way on the network/demand structure?

The network model captures the classical single-itemrggtti the form of a single-source single-sink network
with a single edge (modeling a monopoly), or multiple palatidges (modeling an oligopoly). In addition, we inves-
tigate these questions in general single-source singler@tworks, as well as multiple-source single-sink neksor
Our work can we viewed as a non-trivial first step toward ust#rding price competition in general combinatorial
markets.

Our results

We study the price of anarchy, or the ratio of the performasfdine worst Nash equilibrium to that of an optimal
state, for the network pricing game with respect to sociblezand profit. We give matching upper and lower bounds,
as a function of the degree of competition in the network, #uedratio£ of the maximum and minimum customer
valuations. For instances with a high price of anarchy, anaatiuestion is whether there exist any good equilibria for
the instance. We provide a negative answer in most such,agisegg) strong lower bounds on the price of stability,
which quantifies the ratio of the performance of thestNash equilibrium for the instance to that of an optimal
solution.

For single-source single-sink networks, we provide tighper and lower bounds on the prices of anarchy and
stability (see Section 3). Although in a network with a senghonopolistic edge, these quantities &@og L) for
social value, both become worse as the number of monopaotesdses. The price of stability, for example, increases
exponentially with the numbér of monopolies, a®(£*~!) for £ > 1. The equilibrium prices in these instances are
closely related to the min-cut structure of the instances.

With respect to profit, as is expected, networks that contaimonopolies display a large price of anarchy and
stability because competition hurts the profits of all the$y while networks with a single monopoly perform very
well. One may suspect that as competition decreases futtteenumber of monopolies gets larger), collective profit
improves. We show instead that the price of stability forfppralso increases exponentially with the number of
monopolies.

In multiple-source single-sink networks, the behavior asN equilibria changes considerably (see Section 4). In
particular, equilibria do not always exist even in very siengirected acyclic networks. When they do exist, some
instances display a high price of stability (polynomialdhdespite strong competition in the network. In addition to
the presence of monopolies, we identify other propertiegastinces that cause such poor behavior: (1) an uneven
distribution of demand across different sources, and (Byested subnetworks (congestion in one part of the network
can get “carried over” to a different part of the network ie fiorm of high prices due to the selfishness of the edges).
We show that in a certain class of directed acyclic networil no monopolies, in which equilibria are guaranteed
to exist, the absence of the above two conditions leads td gquilibria. Specifically, the price of stability for soktia
value in such networks is at mosfa wherea is the sparsity of the network. Once again, we use the sgartse-
structure of the network to explicitly construct good edpib.

170 be precise, there are two models of competition in an pligistic market—Bertrand competition, where the firms cetepon prices, and
Cournot competition, where they compete on quantity. Theaéo always leads to a socially-optimal equilibrium; thigdamay not. In this paper
we will focus on the Bertrand model. See Section 5 for a brigfukssion of the Cournot model.



Related work

The literature on quantifying the inefficiency of equilidris too large to survey here; see [13] and the references
therein for an introduction.

Recently, several researchers have studied the existaddaetficiency of equilibria in network pricing models
where consumers face congestion costs from other trafficghthe same bandwidth [8, 1, 2, 12, 16]. As in this paper,
all of these other works consider network pricing games iictvisconsumers are interested in routing their demands
over paths in a network, edges of which are owned by selfisérselrhe routing cost faced by each consumer has two
components: the price charged by each edge on the path, afat¢hcy faced by the consumer’s flow owing to con-
gestion on the path. In addition to selfish pricing, this aestmpn-based externality among consumers leads to highly
inefficient outcomes even in very simple networks (such aglsisource single-sink series-parallel networks [2]).
The cost model considered by us is a special case of thischatessed cost function, in which the latency faced by
a flow is 0 as long as all capacity constraints along the path are satisfindoo otherwise. Furthermore, in our
model, latency (congestion) costs are paid by edges, rttherby consumers, and therefore force the edges to raise
their prices just enough for the capacity constraints to ké @wing to the generality of the latency functions they
consider, these other papers study extremely simple nktwvodels. Acemoglu and Ozdaglar [1, 2], for example, as-
sume that all consumers are identical, and have unboundieebv@.e. they simply minimize their total routing cost).
They analyze the game in single-source single-sink netswarth parallel links. (Some of their results also extend to
single-source single-sink series-parallel networkskeihiise, Hayrapetyan et al. [8] consider single-sourcesiamk
networks with parallel links, but in addition allow differevalues for different consumers. In contrast, we consider
general single-source single-sink as well as multiplers®single-sink topologies with the simpler capacity-lohse
cost model. In effect, our work isolates the impact of selfisiking on the efficiency of the network in the absence
of congestion effects. Although capacity constraints inmodel mimic some congestion effects, we see interesting
behavior even in the absence of capacity constraints wheemérket contains monopolies. The instances we consider
display a large range of behavior in the performance of dyidl depending on the network and demand structure.

Another recent work closely related to ours is a network fation model introduced by Anshelevich et al. [3] in
which neighboring agents form bilateral agreements to bajhand sell bandwidth simultaneously. The game studied
by Anshelevich et al. can be thought of as a meta-level gameedlby agents when they first enter the network and
install capacities based on anticipated demand. Then,tbeagetwork is formed, a different game is played between
the agents owning edges and consumers. This second ganeededithat we analyze. Furthermore, in the model
considered by Anshelevich et al. there are no latenciespaaify constraints, instead there is a fixed cost for routing
each additional unit of flow.

2 Model & notation

A network pricing game (NPG) is characterized by a directegpG = (V, E') with edge capacitieéc.}.cr, and a
set of users (traffic matrix) endowed with values. Each edgained by a distinct ISP. (Many of our results can be
easily extended to the case where a single ISP owns multiiglese) The value associated with each chunk of traffic
represents thper-unit monetary valughat the owner of that chunk obtains upon sending this tré&ffim its source

to its destination. User values are represented in the fémemand curvésD(s,t), for every source-destination pair
(s,t), where for every, D, ;) (¢) represents the amount of traffic with value at l¢ast/hen the network has a single
source-sink pair, we drop the subsciiptt). We useD to denote the “demand suite”, or the collection of these dema
curves, one for each source-sink pair. Without loss of gaitgrthe minimum value i, thatis,D(, (1) = F?}, the
total flow between andt, for all pairs(s, t), and we use to denote the maximum value&— sup{/|D, ;(¢) > 0}.

We extend the classic Bertrand model of competition to nekydcing. The NPG has two stages. In the first stage,
each ISP (edge)picks a pricer,.. In the second stage each user picks paths between its soutcestination to send
its traffic. We assume that users can split their traffic infinitesimally small chunks, and spread it across multiple
paths, or send fractional amounts of traffic. Each user giekhs to maximize her utility, = v — minp > __ p 7,
where the minimum is over all patli3from the user’s source to its destination, anid its value (or sends no flow if
the minimum total price is larger than its valup This selection of paths determines the amount of trgffion each

2\We aggregate these curves over all users with the same smdaestination pairs.



edge. ISR’s utility is given by f.m. if f. < c., and—oo otherwise. ISPs are selfish and set prices to maximize their
utility. (We briefly discuss an alternate model of ISP bebain Section 5 based on the classic Cournot competition.)

A given state in a game (in this case consisting of a set oépiand traffic pattern) is called a Nash equilibrium if no
agent wants to deviate from it unilaterally so as to impras@wn utility. In a multi-stage game, the relevant concept
is that of asubgame-perfect Nash equilibriumhere, given any first stage strategies, the second stagegies form
a Nash equilibrium. In the NPG, users are price-takers,ish#ttey merely follow a best response to the prices set by
ISPs, and the responses of different users are decouphadttioh other. Therefore, given the first stage strategies, th
second stage strategies always form a Nash equilibriumthendynamics of the system is determined primarily by
the first stage game.

Note that by sending fractional flow, or splitting their frafacross multiple paths, users effectively mimick ran-
domized strategies. ISPs, on the other hand, always picteandimistic strategy (committing to a fixed price). There-
fore, (pure strategy) equilibria do not always exist in thgames (indeed in Section 4 we present an example where
there are no pure strategy equilibria). Nevertheless wetifyesome cases in which equilibria do exist, and character
ize their performance in those cases.

Note also that if the flowf resulting from the users’ strategies in the second part efgtime is such that the
capacity constraint on an edgés violated, users using that edge still obtain their valoeifrouting their flow, while
the edge: incurs a large penalty. Intuitively, the edgés forced to compensate those users that are denied senéce d
to capacity constraints, for not honoring its commitmergéove them at its declared price. This situation of course
does not arise at an equilibrium — any edge with a violatecci&p can improve its profit by increasing the price
charged by it.

We evaluate the Nash equilibria of these games with respéwait objectives—social value and profit. The social
value of a stat&s of the network;Val(.S) is defined to be the total utility of all the agents in the systepecifically,
the total value obtained by all the users, minus the pricasipathe users, plus the profits (prices) earned by all the
ISPs. Since prices are endogenous to the game, this is &qtit@ the total value obtained by all the users, and we
will use this latter expression to evaluate it throughowat paper. The worst such value over all Nash equilibria is
captured by the price of anarchy: the price of anarchy of tR&Nvith respect to social valuB,OA v, is defined
to be the minimum over all Nash equilibria e N of the ratio of the social value of the equilibrium to the o
achievable valu®&/al™:

minge nr(@,p) Val(S)
Val*

Here,Val® is the maximum total value achievable while satisfyingladl tapacity constraints in the network (this
can be computed by a simple flow LP). LikewifQA p,., denotes the price of anarchy with respect to profit:

POAv.(G,D) =

minSeN(G,D) PI‘O(S)
Pro*

HerePro(.S) is the total utility obtained by all the ISPs, or alternatéig total payment made by all users. The
optimal profit achievabl®ro™ is defined to be the maximum profit over all states in which sisee in equilibrium,
and capacity constraints are satisfied.

In instances with a large price of anarchy, we also study #réopmance of the best Nash equilibria and provide
lower bounds for it. The price of stability of a game is definetbe themaximurrover all Nash equilbria in the game
of the ratio of the value of the equilibrium to the optimal esiable value. We usPOSv, andPOSp,, to denote
the price of stability with respect to social value and pnafitpectively.

POAp: (G, D) =

3 The network pricing game in single-source single-sink ngtorks

In this section we study the network pricing game in singlmowdity networks, that is, instances in which every
customer has the same source and sink. As the single-iteenscagests, the equilibrium behavior of the NPG
depends on whether or not there is competition in the netwddwever, the extent of competition, specifically the
number of monopolies, also plays an important role. In theted of a network (or a general combinatorial market),
an edge monopolizes over a consumetllithe paths (bundles of items) desired by the customer cotftaiadge.



Definition 1 An edge in a given network is called a monopoly if its remoaalses the source of a commaodity to be
disconnected from its sink.

No monopoly. Inthe absence of monopolies, the behavior of the networkatogous to competition in single-item
markets. Specifically, competition drives down prices amabdes higher usage of the network, thereby obtaining good
social value but poor profit.

Theorem 1 In a single commaodity network with no monopoliP€)Av. = 1. Furthermore, there exist instances
with POSp,, = O(L).

Proof: We first note that an equilibrium supporting the optimal flawr(t. social value) always exists: consider an
optimal flow of amount, sayf in the network; lep = D~1(f) if the flow saturates the network, addtherwise; take

an arbitrary distribution over min-cuts in the network, dditribute” this price over the min-cuts; in particulangt
price on any edge ig times the probability that is in the min-cut. We claim that these prices, along with tbe/fl

f form an equilibrium. Note that customers play a best-respereach unit of flow admitted pays a total pricepof
regardless of the path it takes from the source to the déistmand a chunk of flow is admitted if and only if it has
value at leasp. On the other hand, edges cannot improve their profits byasing prices unilaterally, because their
customers can switch to a different cheaper path. Finallges with non-zero prices are saturated, and cannot gain
customers by lowering their price.

For a bound on the price of anarchy, consider any equilibifuthe given instance, and suppose that the network
is not saturated. If all the traffic is admitted, thBfDAv., = 1. Otherwise, there exists an unsaturated edge with
non-zero price that is not carrying all of the admitted flofutifiere exists a zero-price unsaturated path, then some
users are playing suboptimally). Let the edgecbeThen there is a source-sink pathin the graph carrying flow
that doesn’t contain the edge Note that all flow carrying paths charge an equal total priedgee can therefore
improve its profit by lowering its price infinitesimally andadpbing some of the flow on pafh which is not among
the cheapest paths any more. This contradicts the facttbatdtwork is in equilibrium.

For the second part of the theorem, we consider a networkumittounded capacity, and assume without loss of
generality tha1FtS°,§E = 1. Our argument above (th&#OAv, = 1) implies that in any equilibrium all the traffic is
admitted. Therefore the price charged to each user is at m@gse minimum value), and at equilibrium, the total
profit of the network isl. On the other hand, suppose that all but an infinitessimelifra of the users have valug
then a solution admitting only the high-value set of usensl @arging a price of to each user) has net profit almost
L. [ |

Single monopoly. As the following theorem shows, the best-case and worst-pagormance of single monopoly
networks is identical to that of single-link networks.

Theorem 2 In a single commodity network with a single monop@)Av. = O(log £) and POAp,, = 1.
Furthermore, there are instances for WhiBfOSv.; = ©(log £).

Proof: We prove the second part of the theorem first. This followsiimply considering thd /= demand curve from

1 to £ in a single link unbounded capacity network. The single timkn behaves like a single-item monopolist, and
without loss of generality charges a priceffresulting in a social value df. Adding an infinitesimal point mass in
the demand curve dt breaks ties among prices and ensures that this is the oniljoeigun. The optimal social value,
on the other hand, is the total value of all usjéfsl/:cd:c =log L.

For the first part of the theorem, we first note that in a sidiglle-network (i.e. a single-item market), the above
example is essentially the worst. Specifically, if at eduilim anz amount of flow is admitted, and each user pays
a price ofp, then for each valug < p, D, 1) (q) < pxz/q. Therefore, the total value foregone from not routing flow
with value less thap is at mOStflp(pa?/q —x)dq < prlogp < pxlog L. With respect to profit, a single-link network
is optimal by definition.

Now consider any equilibrium in a general single-commaodgitygle-monopoly network. Suppose that in the
equilibrium the network has non-zero residual capacityemaising an argument analogous to the proof of theorem 1,



we can argue that any non-monopoly edge in the network mustdarice ofd. The sole monopoly in the network
then behaves like a single-link network and obtains optjpnalit, as well as a social value that is at leastHiog £)
fraction of the optimal value.

Finally, suppose that at equilibrium the network is satdafhen it is obvious that the social value of the network
is equal to the optimal social value. To conclude, we argag the network also achieves optimal profit at this
equilibrium. In particular, we prove that any flow achieviogtimal profit saturates the network, so the total price
paid by each user in the two states must be equal.f et the amount of flow admitted at equilibrium, and suppose
that each admitted user in this flow paysrammount of money to non-monopoly edges. (Note that this atnisun
the same for all admitted users.) Then, since the sole mdyopthe network has no incentive to deviate, it must be
the case thaf = argmaég(Dfl(g) — m). Now suppose for the sake of contradiction that the amoufibefat a
profit-optimal solution isf’ < f, thatis, f = argmaxgD~'(g). Then,f(D~'(f) —m) > f/(D~'(f') —m) >
F'D7Y(f") — fm > f(D~(f) — m) which leads to a contradiction. [ |

Multiple monopolies. The performance of the game with multiple monopolies deggaignificantly. We first show
that the price of anarchy can be unbounded even @ithonopolies. The next lemma shows that the best Nash
equilibrium behaves slightly better but is still a polynatfactor worse than an optimal solution.

Theorem 3 For everyB, there exists a single-source single-sink instance of tA& ontaining2 monopolies, with
L =2,andPOAva., POAp,, = Q(B).

Proof: We construct the instance as follows. The network consfatsree nodes, v andt, and two edgeés, v) and

(v, t), both with a capacity of each. All customers want to route their traffic fronto ¢. The demand curv® is
given byD(¢) = 0for¢ > 2, D(¢) = 1/Bfor ¢ € (1,2] andD(¢) = 1 for £ < 1. Then, we claim that. = 1 for
each of the edges is an equilibrium. This is because in oodgett more customers, unilaterally any edge would have
to decrease its price t@ Furthermore, there is no incentive to unilaterally insegrice because then no customers
would route their flow. The social value and profit of this éipium are both2 /B, whereas the optimal social value
(with 7, = 1/2 for both the edges) it + 1/B and the optimal profit ig. |

Theorem 4 There exists a family of single-commodity instances of NRGEROSv/.1, POSp.o = Q(L’“‘l), where
k is the nunmber of monopolies. Moreover, in all single-comiitya@raphs withk > 1 monopoliesPOSv.;, POSp,o =
o(Lk—1.

Proof: For the first part of the theorem, we consider a graph comtgiaisingle source-sink path withedges and
unbounded capacities. There aresers, each endowed with a unit flow. Title user has value; with v; recursively
defined:v; = 2, vy = (1 — %)%, Vi1l = (1 — %)%01 fori e [3,71] (That iS,’UfL'Jrl = (1 — %)l ]._.[j<z' %

for i > 1.) We first claim that this network contains a single equilibr, one at which each edge charges a price of
v1/k = 2/k, and will then prove that this is a poor equilibrium.

To prove the claim, first note that. = 2/k is indeed an equilibrium: no edge can gain for raising iteeit
would lose all its flow in doing so), angl < (k — 1)= for i, k > 1 implies that in order to attract more flow any edge
must lower its price to below. Next we show that there are no other equilibria. Considgrstatte of the network in
which anm > 1 amount of flow is admitted. Then the minimum price edge aldregaath charges a priee which is
at mostv,, /k and makes a profit afm. By increasing its price tév,,,—1 — v,, + ), the edge admits at least — 1
users. We now note that,, | — v,, is strictly Iargerthar'.ler:ll)k > (m”jnl)k > 7/(m — 1). Therefore, the new
profit of the edge is strictly larger thar(1 + 1/(m — 1))(m — 1) = mm, and the edge has incentive to deviate. This
concludes the proof of the claim.

Now, since the network has unbounded capacity, the optiohatisn (with respect to social value) admits the entire
flow. Some algebra shows that = ©(n~'/*). Therefore, the social value of the optimunﬁ}} v; = Q(n'Vk) =
Q(LFY), asL = vy /v, = ©(n'/*). The total achievable profit is also at least, = Q(n!~1/¥) = Q(L£F~1). On
the other hand, the social value of the equilibrium, as weltaprofit, isv; - 1 = 2. This concludes the proof of the
first part of the theorem.




For the second part, b denote the inverse-demand curve for the network, that isseryz, anaz amount of
flow has value at leagd(x). Without loss of generalityD(0) = £, D(F) = 1, whereF = F'} is the total amount
of flow (or the capacity of the network, whichever is lessé®t »* = argmax.. .{z'/*D(z)}. We claim that the
following is a Nash equilibrium: each monopoly charges aguofp* = D(z*)/k, and each non-monopoly charges
a price of0. It is obvious that the non-monopolies do not gain anythiegifincreasing their price. So, for the rest of
the proof, we focus on the monopolies.

Suppose that a monopoly wants to deviate and change its torige= p* — D(z*) + D(z') > 0, for some
x’ € [0, F]. Then, the total price of any source-sink patiér’), and it is inmediate that the total amount of flow
admitted is no more thar!. Then, the profit of the monopoly goes frgrz* to at mostp’z’. We can express the new
profit in terms of the old one as follows:

D(z*) — — D(z*)z* [ o 2\ HE

1 (A ) * / I )R L <

px ( k: D(:v)—i—D(x))x < - x*(l k)+k e

Using the fact thatl +¢)* < 1+acforalle > —1 andforalla € (0,1), we get(Z)! V% < 14(1-1/k) (2’ /a* —1).
Therefore, the above expression becomes

E * *
o < Dl

This proves that the agent has no incentive to deviate. laiesrto show that this equilibrium achieves good social
welfare. First, note thaD(F)F'/¥ < D(z*)(z*)"/*. Therefore,F < z*(D(z*))*. Likewise, for anyy € [0, F],
D(y) < D(z*)(x* /y)'/*. So the total value of flow that is not admitted in the aboveldmgium is

y=F y=F — 2\ (2 1/k
/ D(y)dy < /: ) D(2*)(a* Jy) *dy = %(Fll/l@ ~ (a*)m R

(1 —1/k) " (D(z*)*z* — D(z*)a*) < 2(D(z*))*z*

/

(j—;(l—k)+k+(k—1)%—(k—1)> =p'z”

=x*

IN

So, the maximum social welfare achievable is strictly ldsn2(D(x*))*z* plus the social value of the above
equilibrium, while the equilibrium achieves at leaS(z*)z*. The price of stability is therefore no more than
2(D(x*))F=1 +1 < 3£F~1. Itis easy to see that the same bound holds for profit as well. [ |

4 Networks with multiple sources

Next we study the NPG in graphs with more general traffic masi Specifically different users have different sources,
but a common sink. We assume that the network is a DAG withglesigink, and focus on instances that contain no
monopolied. Theorem 1 already shows that the price of stability witlpees to profit can be quite large in this case.
The main question we address here is whether competitiorsidown prices and enables a near socially optimal
equilibrium just as in the single-commodity case.

The results are surprisingly pessimistic. We find that tlaeeenetworks that admit no pure equilibria. (To maintain
flow, we defer the proofs of Theorems 5 and 6 to Section 4.1.)

Theorem 5 There exists a multi-source single-sink instance of the Mt no monopolies that does not admit any
pure Nash equilibria.

In networks that admit pure equilibria, the price of stabifior social value can be polynomial if. This can
happen (Theorem 6 below) even when the network in questitsfisa a certain strong-competition condition, specif-
ically, (1) there is sufficient path-choice — from every nanl¢he graph, there are at least two edge-disjoint paths to
the sink, and (2) no edge dominates over a specific user irstefthe capacity available to that user — removing any
single edge reduces the amount of traffic that any user ompgobusers can route by only a constant fraction. We
therefore attempt to isolate conditions that lead to a higgepf stability, and find two culprits:

3We mainly give strong lower bounds on the price of stabilgturally, the same bounds hold for instances containingapolies.



1. Variations in demand curves across users—a very highealu traffic user can pre-empt a low value high
traffic user.

2. Congestion in the network—congestion in one part of thevokk (owing to low capacity), can get “carried
over” to a different part of the network (in the form of highiqes) due to the ISPs’ selfishness.

Each of these conditions by itself can cause the networkwe hdigh price of stability.

Theorem 6 There exists a family of multiple-source single-sink insts satisfying strong competition and con-
taining uniform demand such th&®0Svy. = Q(poly £, poly N), where N is the size of the network. There
exists a family of multiple-source single-sink instancats/ing strong competition and with sparsitysuch that
POSva = Q(poly £, poly N).

Here uniformity of demand and sparsity defined as follows.

Definition 2 An instance of the NPGZ, D) with multiple commaodities and a single sitils said to contairuniform
demandf there exists a demand curve such that for all nodes, the demand curv®, ;) is either identically zero,
or equal to a scalafF; ; timesD.

Definition 3 Given a capacitated graph and a demand matrix, the sparsityaut in the graph with respect to the
demand is the ratio of the total capacity of the cut to theltdeanand between all pairs, t) separated by the cut.
The sparsity of the graph is the minimum of these sparsities @l cuts in the graph.

Fortunately, in the absence of the two conditions given abthe network behaves well. In particular, we consider
a certain class of DAGs called traffic-spreaders in whichildgia are guaranteed to exist, and show that when each
user has an identical demand curve (in terms of the fractidrafiic with a certain value), but potentially different
amounts of traffic, the price of stability with respect to gueial value is at most/«, wherea is the sparsity of the
network. We conjecture that this bound on the price of stgliblds for all DAGs that admit pure equilibria.

Definition 4 A DAG with sinkt is said to be araffic spreadeif for every nodev in the graph, and every two distinct
pathsP; and P, fromwv to ¢, any maximal common subpath Bf and P, is a prefix of both the paths. That is, once
the two paths?;, and P “diverge” they meet again only at the sink

The main theorem of this section bounds @S+, in traffic spreaders in terms of the sparsity of the undegdyin
graph.

Theorem 7 Let (G, D) be a uniform-demand instance of the NPG wh@rés a traffic spreader and contains no
monopolies, and all sources in the graph are leaves, thaher in-degree i9). Then(G, D) always admits a pure
Nash equilibrium, an®OSva.) < 1/a, wherea is the sparsity o7 with respect taD.

We remark that the networks in the proof of Theorem 6 are traffreaders, whereas the one in the proof of The-
orem 5 is not. Note also that for the above theorem, we do goiirethe instance to satisfy strong competition. This
indicates that the amount of competition in the network Basér influence on its performance compared to its traffic
distribution.

Proof of Theorem 7We begin with some notation. Given a gra@tand a flowf in G satisfying capacity constraints,
G|[f] is the residual graph with capacitiés= c. — f.. For a grapiG = (V, E), setS of nodes, and sdf’ of edges,
we useGG \ S todenotgV \ S, E[V '\ S]), andG \ E' to denoteV, E \ E').

Given an instancéG, D), G = (V, E), satisfying the conditions in the theorem, we construct quilérium
using the algorithm below. LeF, denote the total traffic at soureg and D be a demand curve defined such that
D, = F, D for all v. The algorithm crucially exploits the sparse-cut struetnfrthe network. In particular, we use as
subroutine a procedure for computing the maximum conctifi@m in a graph with some “mandatory” demand. We
call this procedurdICFMD (for Maximum Concurrent Flow with Mandatory Demand).

The procedurdICFMD takes as input a DAG- with single sinkt, a set of sourcegl with demandsF;, at
v € A, and a set of mandatory-demand sourBewith demands\/, atv € B. The procedure returns a ofitand a



flow f. Let V> denote the set of nodes from whitlis not reachable ii7 \ C. The cutC minimizes “sparsity with
mandatory demand” defined as follows:

ZEEC Ce — ZUEBDVC M”
ZvEAﬂVC F'U

The flow f routes the entire demarnd,, of sources) € B to ¢, and routes an,,(C) fraction of every demand, at
sources € Atot.

The next lemma asserts the correctness of this procedueeifigplly, it states that sparsity is equal to maximum
concurrent flow in DAGs, even with mandatory demands, wherctimmaodities share a common sink.

ay(C) =

Lemma 8 Let (G, A, B) denote an instance for proceduM CFMD, anda = «a;,(C) be the sparsity of the cut
C produced by the procedure, as defined above. Then, thets exilow inG that satisfies all capacity constraints,
routes anM,, amount of flow from every € B tot, routes amF, amount of flow from every € A to¢, and saturates
the cutC.

Proof: We begin by proving the lemma in the case®t= (. In this case, we are simply claiming that the sparsity of
the sparsest cut in a DAG with a single common sink is equdléataximum concurrent flow in the DAG. We first
note that the maximum concurrent flow in the graph can be fduymsblving the prograrhP3 (below left). The dual

of this program (P4, below right) is a relaxation of the sparsest cut problemhensame graph.

maximize o (LP3) minimize Z TeCe (LP4)
subjectto > fp>aF, WweA subjectto Y Fys, > 1
PeP, vEA B
> fp<ce Ve S re>s, WweAPeP,
P:ecP ecP
fp=0 Yve A, PP, e >0 Ve
a>0 5,>0 YveAd

The lemma now follows from the claim that the integrality ge#ghe second program is Let the value of the
program bex. To prove the claim, consider any optimal fractional santio the dual prograrhP4, and interpret
thew. values as lengths on edges. Thepdenotes the shortest distance frorto ¢. Now, we modify the standard
argument for the integrality gap of the mincut LP — pjekiniformly at random from the rand8, 1]. Let T3 denote
the set of vertices whose shortest distanceisdess thar, andSz denote the remaining vertices. The expected size
of the cut(Ss, T3) is no more thamx. On the other hand, the expected total demand sepatf&ag},, . o, f2], is at
leastl. Therefore, there exists a valgdor which the integral cu¢Sg, T3) has sparsity no more than

Finally, to prove the lemma for a gener@| let @ = «a/(C) as in the statement of the lemma, and consider the
following instance of sparsest cut: we are given a gr@phnd set of sourced U B with F), for v € A as defined in
the original instance, anf, = M, /« for v € B. Then the sparsity of this new instance is at leasSo, as argued
above, there exists a flow i¥ for this new instance that routes anfraction of all the commodities il U B and
saturates the cuf. The flow satisfies all the requirements of the lemma. ]

Armed with the procedur®ICFMD, our algorithm for constructing an equilibrium is as follewNote that we
do not care about computational efficiency here.)

1. SetG; =G, Vi =V,C=0,B; =0,i=1. Let A; = A be the set of all sources in the instance. f.etenote
a partial flow in the graph at any instant; initialifeo 0 at each edge.



2. Repeat untid; is empty:

(a) Runthe procedufelCFMD onG; with demandsd; and mandatory demands. LetC; be the resulting
cut andf; be the resulting flow. Let; = ap(Ci), X; = 4, N Ve, Y = B; N Vg, andC = C U C;.
DefineV;, to be the set of nodes with pathsttm G \ C, andS; to be the subset df \ V;, reachable
from X; orY; in G.

(b) We now construct a partial flow frorff as follows. LetB’ = {v : Ju with (v — v) € C;}, and for all
ve B letM, = Zu:(uﬁv)eci Cluw)- L€t f; be a partial flow of amount; I, from eachv € X;, and
amount)M, from eachv € Y; to B’, given by the prefices of some of the flow pathgjnLet f = f + f;,
ArL’Jrl =A; \ X, andBiH = (B \ }/z) U B Setl; = Dil(ai).

(c) LetGiy1 = G\ S;; repeat fori = ¢ + 1.

3. Route all the flow fronB; to ¢ in G; satisfying capacity constraints. Call this flgy and setf = f + f;.

4. Assign a “height” to every nodein the graph as follows: if there exists asuch that € S;, thenh(v) =
min;.,es, {¢; }; if there is no such, thenh(v) = 0. Furthermoreh(¢) = 0 for the sink.

5. For every edge = (u — v), letm, = max{h(u) — h(v),0}.

Let I be the final value of the index Recall thatl; is the set of nodes that can readh G;. We will show that(r, f)
is a Nash equilibrium. This immediately implies the reshéicause as we argue belgivadmits any; > « fraction
of the most valuable traffic from all sourcesX. We first state some facts regarding the heigtts and the flowf.

Lemma9 f is a valid flow and routes an; fraction of the traffic from alb € X; to t. Furthermore, for every,
1 <i < I, in the above constructiom,; > a;_1, anda; > «, wherea is the sparsity of the grap8y.

Proof: We prove by induction that for evefiy o; > «;_1, and there exists a floy/ in G[f] that routes all the flow
from B, to ¢, and any; fraction of the flow at each source iy tot. (Heref = ZKZ. f;.) This immediately implies

the result. When = 1, we havef = 0 and B; = (}, and this statements holds because the sparsity of the graph
is « = a;. Consider some stef and assume that the statement holds. We will now prove it ferl. Note that
Lemma 8 implies thaf! saturates the cuf;. Now divide f/ into two partial flows—g; that routes all demand froiv

to B’ and anv; fraction of the demand fronX; to B, andg? = g; — g}. Then,g} is identical tof;. Furthermoreg?

is a valid flow for the instancéG; 1, A; 11, Bi+1) of the MCFMD, satisfies capacity constraints@f + ¢;] and

is a certificate of the fact that this instance has sparsity > «;. The existence of flovf;, ; is now guaranteed by
Lemma 8. |

Lemma 10 V(G;) = V; forall i < I, andh(v) = 0 if and only ifv € V7.

Proof: We prove the first part of the lemma by induction. The base tasé is trivial. For the inductive step, recall
thatV; 1 C V;, V(Giy1) = Vi \ S; andS; N V;; = 0. Note that every node € V; must either be reachable from
X,; UY; or be able to reachin G; \ C;, otherwise the optimality of’; for the instancéG;, A;, B;) of MCFMD is
contradicted. Thereford; C S; U V;11, and the claim follows.

For the second part of the lemma, note that V; immediately implies that for all, v & S;, thereforef(v) = 0.
On the other handy(v) = 0 implies that there is no indexsuch that € S; (because; > 0 for all ¢). Therefore,
veViandV; =V,_1\ S;—; forall i > 1, implies thatv € V; for all . [ |

Lemma 11 For every pair of nodes andv with h(u), h(v) > 0 such that there is a directed path fromto v in G,
h(u) > h(v).

Proof: We use the fact that for anyj with j > i, o; < a; (Lemma 9), and thereforé; > ¢;. Consider the smallest
indexi with v € S;; we claim that for allj > i with v € S;, we also haver € S;—for any suchj, bothu and
v are absent fronV;, and ifu is reachable fromX; or Y; in G, so isv. Now leti; = argmax{u € S;} and
io = argmax{v € S;}. Then we haveé; < iy, h(u) = ¢;, andh(v) = ¢;,, and thereforeh(v) < h(u). [ |
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The next lemma follows from noting that if is a source, then the in-degreewofs 0, and therefore there is a
uniquej, namelyj = 4, such thav € S;.

Lemma 12 For any sourcey withv € X;, h(v) = ¢;.
Lemma 13 For every node with h(v) > 0, every path fromv to ¢ is fully saturated under the floy.

Proof: h(v) > 0 implies thatv belongs taS; for some index. Thereforep ¢ V; 1 and the cuC separates from¢.
The lemma follows by noting that the final flofvsaturate€”. ]

Lemma 14 For every source with v € X;, every path from to ¢ has total price at least;. Furthermore, there exist
at least two edge-disjoint pathiy and P, fromwv to ¢ such thatzeep1 Te = Zeep2 Te = 4;.

Proof: For the first part of the lemma, note thdw) = ¢; (by Lemma 12)h(t) = 0, and for every edge = (z — y),
e > h(x) — h(y).

Consider any two disjoint paths fromto ¢, say P, and P, (these clearly exist, as the network contains no mo-
nopolies). Letr; andz, be the closest points iy to v along these paths respectively. I(gt; and@.2 denote the
prefixes of P, and P, from v to x; andz; respectively. Note thatis reachable from:; andzs in G[V7]; let Q21 and
Q)22 denote any paths i6F[V;] from 2; andx, to ¢ respectively. These paths are clearly disjoint (as the owtis
traffic spreading). Now, consider the paths = Q11 - Q21 andQs = Q12 - Q22, Where “” represents concatenation.
Then,@; and@- are disjoint; the lengths af,; and@22 are0 under the metrier; and, all nodes i), andQ1-
have non-zero heights, implying that the lengths)af andQ,2 are equal tov(v) — h(xz1) = h(v) — h(z2) = ¢;
(using Lemma 11). These facts together imply the lemma. |

Lemma 15 Let P be a flow carrying path from some sources X; tot. Then)_ _p me = £;.

Proof: Following the proof of the previous lemma, we only need tovslioat if « is the first node on patl? such
that when the algorithm terminates,c V7, then all subsequent nodes on the pBthare inV;. Letw’ be the node
preceding: in P. Then the edgéu’ — u) belongs to some cut;, andu € B, 1. Then, since: € V;, it must be the
case that, € B; for all j > 4. This implies that the partial flow of amound,, gets routed ta in the last step of the
algorithm, and the flow only uses edgesin. ]

Finally, we claim tha{w, f) is an equilibrium. First observe that we route@¥,, amount of flow for every in
X; (Lemma 9). Each chunk of traffic originating athat gets routed has value at le@st!(o;) = ¢;. Therefore,
Lemmas 14 and 15 imply that users follow best response. Mersider any edge= (u — v). Note that edge has
no incentive to increase its price — Lemma 14 ensures theteatraffic on this edge has an alternate path of equal total
price; so by increasing its priceyisks losing all of its flow. Finally, if the edge has non-zerice, the edge stands to
gain from lowering its price only if in doing so it can incresthe traffic carried by it. Let be the edgéu — v) and
C' be the mincut betweemandt. Note thath(u) > 0. Lemma 13 implies that the cat’ is saturated. Suppose that
has non-zero residual capacity (iee¢ C’) and by lowering its price, the edge gains extra traffic withdolating the
capacity of the cu€’. This means that the extra traffic emvas previously getting routed along a path that crosses the
cutC’, and furthermore shares a source with the eddéhis contradicts the fact that the network is a traffic sgeza
Therefore, no edge has an incentive to deviate. This coasltite proof of the theorem.

4.1 Multi-commodity networks with bad equilibria

We now restate and prove Theorems 5 and 6.

Theorem 5 There exists a multi-source single-sink instance of the M no monopolies that does not admit any
pure Nash equilibria.
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Proof:Consider the example in Figure 1(a). The capacities on ealgeas shown in the figure. All unlabeled edges
have unbounded capacity. LBtdenote the demand cur¥&(3) = 3, D(2) = 5, andD(1) = 6. The proof is by case
analysis. Consider any pure strategy equilibrium in thisdnce. Note first that the two edges from node 4 to node 2
must charge a price of zero—if not, then one of them can lotsgrice and gain all of the flow of the other. Second,
the total price paid by all flow getting routed from source 4sirhe at least 3, otherwise, one of the edges> 1) or

(2 — 1) is overloaded and is incentivized to raise its price. Nowlihsic idea is that the traffic from source 5 gets
routed exclusively through node 3, and the ed@iyye~ 1) faces no competition from the ed¢® — 1). This creates

a virtual monopoly in edg€3 — 1). Let us now focus on the edgés — 1) and(6 — 1). Let the price charged by
the former in equilibrium be: and that charged by the latter pe Note thatz, y < 3. For the rest of the proof for
simplicity of exposition, we assume that the ed@es~ 3) and(5 — 3) charge a price of each, although the same
argument holds even without this assumption. Suppose liastct > y. Then all the flow originating at 6 uses the
edge(6 — 1). Given the low capacity of this edge, the edge charges a pfiatleast3, contradictingr > y. Next,
suppose that < y. Then(6 — 1) carries no flow, and either = 0 (contradictinge < y), or the edge has incentive
to deviate and lower its price. Finally, suppose that y. Then ifx andy are larger than, then one of the two edges
(3 — 1) and(6 — 1) has non-zero residual capacity, and is incentivized teritgsprice and steal the other’s flow.
Otherwise;r = y = 1, butin this casé€3 — 1) has an incentive to raise its pricezpand obtain a profit 020 instead

of 18. [ |

k levels

n2 nodes

Figure 1: (a) Instance with no pure Nash equilibrium; (b}anse with high price of stability

Theorem 6 There exists a family of multiple-source single-sink insts satisfying strong competition and con-
taining uniform demand such th&®0Svy. = Q(poly £, poly N), where N is the size of the network. There
exists a family of multiple-source single-sink instancatis/ing strong competition and with sparsitysuch that
POSva = Q(poly £, poly N).

Proof:For the first part of the theorem, the family of examples, peat@rized by integers andk, 1 < k < n, is
given in Figure 1(b). The network haé = ©(n?k) nodes. Each edge in the network has capacitizet D denote
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the demand curve used in the proof of Theorem 4, that is, tn@re consumers, each with a unit amount of traffic,
and theith user endowed with valug = (1 —1/n)" "' T],_, J,g% fori > 1 andv; = 2. There arex? + k different
sources. The demand at each light-colored node in the gthph{ nodes at the lowest level) is given @y, while

the demand at each dark-colored node {heodes to the right) is given bB3nD. It is immediate that the instance
satisfies strong competition and contains uniform demand.

Let us consider an arbitrary equilibrium in this instancéeTraffic at each dark-colored nodes faces congestion
— at most &n amount of flow can be admitted from each of these source. Tdrerghe price charged by the edges
going from these sources to the sink is at léast! (1) = 2. This means that for the traffic at any light-colored node,
the path of choice is thk-hop path that goes through each of thkevels in the network, and then to the sink. Each
such path then behaves as a network ofonopolies and the results of theorem 4 apply. In particalay equilibrium
admits a total value ofn? + 4nk = O(n?) for k < n, whereas the social optimal solution admits a total value of
Q(n?n'~V* 4 dnk) = Q(n3~1/F). Noting thatC = ©(n'/*), the price of stability i€2(n! /%) = Q(L£*F1).

For the second part of the theorem, the family of example®iained by modifying the one used previously in
the following way: the demand at every dark-colored node nowsists of &n amount of flow with value (see
Figure 1(b)). The equilibria and optimal solutions in theteases remain the same. However, note that the sparsity
in the new instances is(all the flow is admitted in the optimal solution). |

5 Discussion and Open Questions

In addition to the obvious questions that remain unresofeegl extending Theorem 7 to all instances that admit pure
equilibria), we now discuss a few extensions and open pnoblelated to this work.

1. Multi-parameter users and QoS-based pricing.In the context of pricing mechanisms for the Internet, one
weakness of our work is that it does not take into accountityuad service requirements of the users. For
example, users may attach different values with differathg. These may be manifested as the differences
in preferences consumers may have over different sounéepsiths. How does market efficiency and profit
depend on the network and traffic structure in this multiapaeter case? One simple way of modeling these
preferences is to associate a global QoS parameter witheslygh which assigns an additional per-unit-flow
costto the edge. Several of our results carry over to thiggen a straightforward manner. Notably, Theorem 7
is not necessarily true in this setting. It would be intdresto determine conditions under which the price of
stability is small in this new model.

More generally, different users may attach different cesth the paths. For example, real-time video traffic
may prefer a low-jitter path, whereas file transfers mayerathigh bandwidth path. In this setting, in order for
the equilibria of the game to behave nicely, we would reqaistronger guarantee on competition, namely that
no single edge dominates any specific kind of quality of servi

2. Seller costs.In a network setting, the marginal costs to sellers for atiimgjta larger flow are negligible (subject
to capacity constraints). In a general two-sided markdiersemay have costs associated with each additional
copy of the item that they sell. Again this would modify sebehavior and may lead to better or worse equilibria
in the game.

3. Cournot competition. As mentioned earlier, an alternate model of competitionnin-sided markets is for
the sellers to commit to producing (or making available ia tharket) certain quantities of their product, and
then allow market forces to determine the demand and priGéss two-stage game is known as “Cournot
competition”. A natural question is whether Cournot coritfet leads to better or worse equilibria compared
to Bertrand competition (where sellers commit to prices)fdgtunately, in the case of combinatorial markets,
this question is ill posed—in some instances, given theéegras of sellers (the quantities that they commit to),
many different sets of prices can arise in the second stagfeeafame. Whether or not a seller is playing a
best response depends on the expected outcome of the sé@g@dB@ne such instance is a network containing
a single source-sink pair, with a single path of length twoMeen the source and the sink. Then, once the
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capacities of the two links are determined in the first stdgleeogame, the total price to be paid by the consumers
is uniquely determined; however this price may be split sgtbe two edges in the path in an arbitrary way.

What properties do the equilibria satisfy in instances ftwiclh the second stage of the game has a unique
solution? One specific class of such instances is singleesaingle-sink networks withk parallel links. In

this case, the prices of anarchy and stability with respeatotial value can be as large lag £/k, but no
larger. With respect to profit, the two ratios can be arhilirdarge. We omit the details. Is it possible to define
canonical solutions to the second stage of the game suckdhdibria in the Cournot game (for some class of
instances) are better behaved than those in the Bertraneam

4. Market evolution and investment. An important aspect of studying any market is to determine the market
evolves over time. This is especially interesting in theteghof the Internet which has and will continue to
evolve in a distributed fashion motivated by economic coeisitions. Under what conditions do existing ISPs
have incentive to invest in more bandwidth?

As the network evolves, we may expect monopolies to turnafigmpolies, thereby leading to an improvement

in social value. Alternately, the price of stability for fitanay be high enough in highly competitive markets so
as to deter entry of new ISPs (and thereby hurt social valtreifong term). Likewise, under what conditions do

existing ISPs have incentive to invest in more bandwidththtub et al. [16] recently studied these questions
in the context of latency-based network pricing games.
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A Altruistic ISPs and the optimal social value

Does inefficiency arise in network pricing games due to thiiskaess of the ISPs, or the selfishness of the users, or
both? In order to answer this question and better understendame, in this section we consider a version of the
game in which ISPs are altruistic, and try to achieve goodhsetficiency (albeit without centralized collaboration)
In particular, each ISP commits to a pricg and tries to maximize the amount of traffic it carries subjecapacity
constraints—the ISP’s utility from carrying afa amount of traffic isf. when f. < ¢, and0 otherwise. Prices on
edges are set according to market supply and demand of bdtidwi/e use the superscrigtto denote the price of
anarchy and stability in this version of the game.

In this section we assume that demand curves are step fosetith a finite number of steps. Further, to simplify
exposition, we assume that the instance contains a finitdauaf users, each with a unit amount of flow and uniform
value. (The two assumptions are equivalent.) We first charae the optimal solution to a network pricing game with
respect to social value. Then the following linear programmputes the optimum:

maximize ZEU Z fr (LP1)
u PeP,
subject to Z fp<1 Yu
PEP,
Z fP S Ce Ve
P:ecP
fp >0 Yu, P € P,

Herew indexes users, arB, denotes the set of source-sink paths available towsand/,, denotes the user’s
per-unit value. The dual to this program defines prices stipgthe optimal solution:

minimize D mece+ Y su (LP2)
subject to Z Te > Uy — Su Yu, P € Py,
ecP
Te > 0 Ve
Sy >0 Yu



The variables in this dual program can be interpreted asvistir. is the price charged by edgges,, is the surplus
of useru after it has paid the price on a min-price path.

We now show that when ISPs are altruistic, all possible éaqidal constitute feasible solutions to the programs
LP1 andLP2 that together satisfy complementary slackness. The LHtdtla¢orem then implies that all equilibria
in this game are optimal with respect to value.

Theorem 16 In any network, the set of Nash equilibria for NPGs identical to the set of optimal solutions to the
primal and dual program&P1 andLP2 above, i.e POAZ,; = POS3,, = 1.

Proof: First we note that any pair of optimal solutions to the abauaal and dual form a Nash equilibrium—as noted
before, users are not motivated to deviate; furthermomaptementary slackness implies that any ISP with non-zero
residual capacity charges a price of zero, therefore, nlatenal deviation on part of the ISP can lead to higher flow
on its edge.

Next, consider any equilibrium. Then, any edge with norezesidual capacity and non-zero price can lower
its price and potentially improve its usage. Therefore,atildrium all edges with non-zero prices are saturated.
Furthermore, any — ¢ path that is not a least cost— ¢ path has zero flow along it. In other words, flow and prices
together satisfy complementary slackness conditionsaemtherefore optimal. ]
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