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Abstract

We consider a pricing problem where a buyer is in-
terested in purchasing/using a good, such as an app
or music or software, repeatedly over time. The con-
sumer discovers his value for the good only as he uses
it, and the value evolves with each use. Optimizing
for the seller’s revenue in such dynamic settings is
a complex problem and requires assumptions about
how the buyer behaves before learning his future
value(s), and in particular, how he reacts to risk. We
explore the performance of a class of pricing mecha-
nisms that are extremely simple for both the buyer
and the seller to use: the buyer reacts to prices myopi-
cally without worrying about how his value evolves
in the future; the seller needs to optimize for rev-
enue over a space of only two parameters, and can
do so without knowing the buyer’s risk profile or fine
details of the value evolution process. We present
simple-versus-optimal type results, namely that un-
der certain assumptions, simple pricing mechanisms
of the above form are approximately optimal regard-
less of the buyer’s risk profile.

Our results assume that the buyer’s value per
usage evolves as a martingale. For our main result,
we consider pricing mechanisms in which the seller
offers the product for free for a certain number of
uses, and then charges an appropriate fixed price per
usage. We assume that the buyer responds by buying
the product for as long as his value exceeds the fixed
price. Importantly, the buyer does not need to know
anything about how his future value will evolve, only
how much he wants to use the product right now.
Regardless of the buyers’ initial value, our pricing
captures as revenue a constant fraction of the total
value that the buyers accumulate in expectation over
time.
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1 Introduction

A common assumption in auction theory and mech-
anism design is that a consumer knows how much
he values an item at the moment he is considering a
purchase and that he has an accurate prior over how
much he will value that item in the future (if not
precise knowledge). The consumer is then modeled
as a utility maximizer, where the utility is typically
quasi-linear — equal to the consumer’s valuation mi-
nus payments made by him.

In this paper, we explore scenarios where the
consumer discovers his valuation for a good as he uses
it. For example, consider a consumer buying a video
game. The consumer’s valuation of the game depends
on how much pleasure he derives from playing and
how many times he ends up wanting to play it.
The consumer does not know these quantities ahead
of time, and only discovers them as he repeatedly
plays the game. Indeed the consumer’s enjoyment
of the game, rather than being constant over time,
may evolve as he plays more and more. At some
point of time, the consumer may tire of playing the
game altogether and stop using it. The principle of
value evolution applies to a wide range of products,
including apps, songs, and cable TV.

We model such scenarios by having a value per
usage. We use Vt to denote the value to the consumer
for the t+ 1st usage. The consumer discovers Vt only
when he is considering using the good for t+1st time.
Note that t denotes usage and not real time: if the
consumer does not use the product his valuation for
the next usage doesn’t change. The initial value V0 is
drawn from an arbitrary distribution with bounded
support.

How should such a good be priced? The prevalent
mechanism for selling songs, apps, software, and
other digital goods is to offer a one-time “contract” to
the consumer for unlimited usage of the product. We
call such a mechanism a “Buy-It-Now” (BIN) scheme.
BIN pricing is straightforward in our value evolution
model, as long as the seller knows the distribution
of initial values and the stochastic process governing
the value evolution. Specifically, if the buyer is risk-
neutral, the pricing problem can be reduced to the



standard problem of pricing an item in a one-shot
game: the seller computes the buyer’s cumulative
value,1 as a function of V0, defined as C(v) :=
E[
∑
t≥0 Vt|V0 = v], and then chooses the price p that

maximizes2

pP [C(v) ≥ p] .
Alternatively, one could consider a dynamic mecha-
nism, that interacts with the buyer and adjusts prices
with each usage. Optimizing for the seller’s revenue
in the dynamic setting can be quite complex, and de-
pends on the fine details of the value evolution pro-
cess, and the buyer’s risk profile. For certain types of
value evolution processes, optimal mechanisms have
been derived, e.g. by Kakade et al. [13] and Pavan
et al. [16]. (See Section 2 for a more detailed dis-
cussion of related work.) However, these results are
somewhat complex, assume that the buyer is risk-
neutral, depend on the assumption that both the
buyer and seller know the precise stochastic process
governing the buyer’s value evolution, and in some
cases require the buyer to solve complex MDPs. (The
buyer needs to know the evolution process because
these mechanisms guarantee only interim individual
rationality.)

In this paper, we take a different point of view.
We focus on the performance of only the simplest
mechanisms: simple for the seller to find, simple
for the seller to implement, simple for the buyer to
understand, and simple for the buyer to optimize
over. In particular, we consider schemes in which the
seller sets a price pt for the (t+ 1)-st usage, and the
buyer knows the sequence {pt}∞t=0 up front. We call
such a mechanism a “Pay-Per-Play” (PPP) scheme.
We restrict our attention to a particularly simple class
of PPP mechanisms where the seller offers a free trial
to the buyer for the first T uses, and then charges
a constant price of c per usage thereafter, that is,
pt = 0 for t < T , and pt = c for t ≥ T .

Faced with a PPP scheme, a buyer buys the item
for at least as long as his value exceeds the current
price: Vt ≥ pt; Let T ∗ = (min{t : Vt < pt}−1) denote
the length of this time period. During this period
the buyer’s utility steadily increases. When his value
dips below the current price, the buyer’s purchase
behavior depends on his beliefs about his future value
for the item and his risk profile. In order to obtain
a revenue guarantee that is robust against buyer
behavior, in accounting for the revenue of the seller,

1One could also consider a discounted model where C(v) :=

E[
∑
t≥0 δ

tVt|V0 = v] for some discount parameter δ > 0.
2This assumes that C(v) is weakly increasing with the initial

value v.

we disregard any revenue accrued beyond time T ∗.
Specifically, we use the term risk-robust revenue,

defined as
∑T∗

t=0 pt, to denote a lower bound on the
seller’s revenue regardless of the buyer’s risk profile.

Can a PPP scheme obtain good risk-robust rev-
enue? To get a feel for the problem, consider the sim-
plest possible PPP scheme: a constant price pt = p
per usage for all t. Suppose, for example, that the
buyer’s initial value is v ∈ (0, 1), and evolves accord-
ing to a simple symmetric random walk3 on the val-

ues {iδ}1/δi=0 with reflection at 1 and absorption at
0. Simple calculations4 show that C(v) = Ω(v/δ2)
whereas no constant price PPP scheme can get arisk-
robust revenue more than O(v2/δ2). The latter can
be much smaller than C(v) if v is small. (Recall that
v ∈ (0, 1).)

Of course, the astute reader has observed that
this is an apples and oranges comparison: we are
comparing the revenue of a seller facing, essentially,
an infinitely risk-averse buyer in the PPP case to the
expected cumulative value of the buyer. What hope
is there for PPP to be constant-competitive for this
type of comparison?

1.1 Formal model and results

We consider the following general model of value
evolution. Our main result shows that a very simple
pricing scheme guarantees the seller an expected risk-
robust revenue equal to a constant fraction of the
buyer’s expected cumulative value for any sequence
Vt under this model.

The bounded martingale model:

We assume that the evolution of Vt satisfies the
following properties.

1. V0 ∈ (0, 1) and Vt ∈ [0, 1] for t > 0.

2. 0 is an absorbing state: Vt = 0 implies Vt+1 =
0. In other words, the buyer loses interest
in the product and does not want to continue
purchasing it at any price.

3. (Martingale.) If Vt ∈ (0, 1), then the value
evolution satisfies the martingale property, i.e.,
E[Vt+1|V0, V1, . . . , Vt] = Vt. We use ∆t to denote
the difference Vt+1 − Vt.

3For 0 < i < 1/δ, Vt+1 = Vt + δ with probability 1/2 and
Vt − δ with probability 1/2.

4See Section 3



4. (Bounded step size.) There is a sufficiently
small constant ε > 0 which is an upper bound
on |∆t| for every t ≥ 0.

5. (Minimum variance.) The second moment
of ∆t is bounded from below everywhere except
when the value reaches 0. Thus, there is δ ∈
(0, ε) such that Vt ∈ (0, 1] implies

(1.1) E

[
∆2
t

∣∣∣∣ V0,∆0, · · · ,∆t−1

]
≥ δ2.

The simple symmetric random walk mentioned
earlier is an example of a bounded martingale process.
As another example, consider a buyer repeatedly
playing a video game. With each usage, the buyer has
the potential to discover new features, improve his
skill level, or be exposed to new competitors. Suppose
that each of these adds a small random shock of mean
zero to his value, but this shock could depend on the
entire history of game play up to that time including
his current valuation. Such a process fits into our
model.

Let RT,c denote the expected risk-robust revenue
of the PPP mechanism with a free trial period of T
uses and a per-play price of c thereafter, faced with a
buyer whose value evolves according to the bounded
martingale model. Let RT,c|V0=v denote the seller’s
expected risk-robust revenue when the buyer’s initial
value is v. Our main result is as follows.

Theorem 1.1. Suppose that ε2/δ is a sufficiently
small constant. Then there exist constants T and c,
depending only on ε and δ but independent of any
further details of the value evolution process or its
initial value v = V0, such that

∀v ∈ [0, 1], RT,c|V0=v = Ω
(

(δ/ε)
3 C(v)

)
.

Thus if δ = Ω(ε), the free trial scheme obtains
revenue which is a constant fraction of C(v).

For the special case of value evolution processes
with independent increments ∆t, the constant in the
approximation ratio to C(v) can be improved, and the
requirement that ε2/δ is a sufficiently small constant
can be removed. However, this comes at the cost of
requiring the seller to know the variance lower bounds
δ2t for each t. For the details, see Theorem B.1 in the
appendix.

1.2 Some remarks on the model

As in any single buyer mechanism design setting, it
is instructive to think of the buyer as being drawn

randomly from a heterogenous population. In this
context, our model possesses some nice properties and
limitations that we now discuss.

• While we require every buyer in the population
to satisfy the stated properties, our model allows
each buyer in the population to have a different
value evolution process as well as a different
starting value. Indeed, the change in a buyer’s
value over time can depend on his entire history
of value evolution.

• Our model requires every buyer to have the
same upper bound on value (normalized to 1),
however, our results are robust to variations in
this upper bound. If the seller prices the product
with respect to the smallest value upper bound,
our approximation factor worsens by the square
of the ratio of the largest possible upper bound
to the smallest possible upper bound.

• A limitation of our model is that the Assump-
tions 3-5 along with the value upper bound at 1
impose significant restrictions on what the value
evolution process can look like when the value
is very close to 1. (For values at most 1 − 2ε,
Assumptions 3-5 are not affected by the upper
bound at all.)

Relaxing these assumptions, particularly when
the value is close to the upper bound, is an in-
teresting direction for future work. For digital
goods it is quite reasonable to assume that per-
usage values are bounded. However, another in-
teresting direction is to remove the value up-
per bound altogether and to analyze the time-
discounted revenue5 of the seller. Finally, a very
compelling direction for future work is to allow
for super- or sub-martingale processes for value
evolution.

1.3 Some remarks on the main theorem

• We view our main theorem as a “simple-versus-
optimal” type result, namely that in our model,
simple pricing mechanisms of the above form are
approximately optimal regardless of the buyer’s
risk profile.

• As is apparent from the theorem statement, the
buyer need not know anything about the process
governing the evolution of his own value Vt.

5Time-discounting accounts for the fact that in the absence
of an upper bound the buyer’s cumulative value is unbounded.
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Thus, our revenue bounds hold even under the
strongest definition of risk aversion for the buyer.

• Most positive results in mechanism design rely
on knowledge of the distribution of buyers’ types.
In contrast, our model is almost detail-free, that
is, it requires very little distributional informa-
tion; It suffices for the seller to possess (conserva-
tive) estimates of the parameters δ and ε satisfied
by the value evolution processes of each buyer in
the population. Moreover, in order to obtain the
revenue guarantee, the seller needs to optimize
over a space of only two parameters (T and c).
The downside of detail-freeness is that the seller
does not exploit information that might lead to
considerable improvement in revenue.

• In this value evolution model, even against a risk-
neutral buyer, the optimal BIN scheme cannot
always get an expected revenue which is a con-
stant fraction of E[C(V0)]. Intuitively, one reason
that our free-trial pricing scheme is able to do so
well in comparison is that it price discriminates
between buyers: those that retain their interest
in the product for longer pay more than those
who lose interest quickly. It is worth noting,
however, that this price discrimination is envy-
free6 and therefore, fair.

• Another reason that our free-trial PPP can beat
out BIN in terms of revenue is that the mitiga-
tion of buyer risk yields a larger pool of buy-
ers. Indeed, both the seller and the buyers
benefit from PPP in the following sense: while
a BIN pricing immediately excludes low-initial-
value buyers from using the product, in the free-
trial PPP scheme, every buyer, regardless of his
initial value, gets to explore the product for some
amount of time; in the event that the buyer’s
value climbs up during the free-trial, both the
buyer and seller obtain greater utility from con-
tinued usage. This is particularly important
in competitive markets where many sellers sell
identical/similar products and marketshare be-
comes an important consideration. We formalize
this intuition in the context of another natural
model of value evolution that we call the binary
value model (see appendix Section A).

• In the special case where the buyer’s value fol-
lows a simple random walk, coming up with a

6meaning that no buyer prefers the price and allocation
received by another buyer to their own

good pricing is not too difficult: depending on
the buyer’s starting value, it is possible to ob-
tain fairly tight bounds on how long the random
walk stays alive, and how much value it accu-
mulates. Our model, however, allows for much
more general processes: the change in value at
a step t may depend in a complex way on the
entire history of value evolution. Consequently,
all the random variables of interest, such as how
large the value is at any given point of time, the
amount of time that the value remains positive,
or the total amount of value accumulated by the
buyer, can be poorly behaved, especially when
subject to conditioning of any kind.

Moreover, our goal is to obtain a single PPP
pricing that obtains a point-wise guarantee for
revenue regardless of the buyer’s initial value:
for every possible starting value of a buyer, we
obtain a constant fraction of the total value he
will accumulate in the future in expectation.
This is especially challenging when the buyer’s
starting value is very low7. In that case, there
is a high probability that the value will quickly
decrease to zero. However, there is also a small
probability that the value becomes very large,
and our PPP scheme must exploit this event
in order to remain competitive. We need to
simultaneously avoid having the buyer drop out
in the initial “ramp-up” phase, as well as charge
a high enough price in the following “sustained-
high-value” phase, without sufficient information
on how long each of these phases last.

• Finally, in Section 3 we show that if we relax
any of the modeling Assumptions 3-5, then there
is no PPP scheme (with any sequence {pt})
that yields the seller an expected revenue of
Ω(E[C(V0)]).

Simulations. Owing to the generality of our
model, our approximation factors are quite large. In
Appendix C, we present the results of simulations,
experimentally evaluating the gap between PPP rev-
enue and cumulative value for two models of value
evolution: (a) a simple random walk model; (b) the
binary value model, namely, where the value remains
equal to the initial value for a random number of
steps, and then drops to zero. In the former setting,
PPP obtains at least 17% of the buyer’s cumulative

7For example, even if we knew the initial value, in this
case, charging a constant price equal to initial value does not
guarantee a constant fraction of cumulative value.



value regardless of the initial value in all of our ex-
periments. In the latter setting, we show that PPP
obtains more revenue for the seller as well as gen-
erates more utility for the buyer, compared to the
optimal BIN scheme.

2 Related Work

Our paper is closely related to the literature on dy-
namic mechanism design. Initiated by the work
of Baron and Besanko [4], there have been a num-
ber of papers [7, 11, 5, 6] that consider mechanism
design where the private information of the agents
evolves over time. Eso and Szentes [12] consider a set-
ting where the seller controls information that helps
the buyer determine his valuation, and the problem
is how to optimally use this power to maximize rev-
enue. Bergemann and Strack [6] and Athey and Se-
gal [1] consider very general value evolution models
where the evolution could depend on the action of the
mechanism. They characterize the welfare maximiz-
ing mechanism, a generalization of the VCG mecha-
nism to dynamic settings. These papers mostly fo-
cus on characterizing the revenue/welfare maximiz-
ing mechanism, typically under an interim-IR type
condition. (The condition is ex-post over the history
up to any time but ex-ante over the future.) This
could lead to elaborate contracts, or require the buyer
and/or seller to solve computationally expensive op-
timization problems.

The work that is most closely related to our
model is that of Kakade et al. [13] and Pavan et al.
[16]. They consider a revenue-optimal dynamic mech-
anism design problem where the buyer valuation
changes over time, based on the signals that the buy-
ers get with each time period. Both works assume
that buyers are risk neutral, and construct mecha-
nisms that are interim IR.

Kakade et al. [13] characterize the optimal
Bayesian incentive compatible (BIC) and interim IR8

mechanism for many bidders, for value evolution pro-
cessses that satisfy one of two separability conditions.
Roughly, their additive separability condition is that
Vt = V0 + Mt where Mt is some random process,
independent of V0. The process we consider does
not satisfy this condition because of boundary condi-

8They call their mechanism ex-post IR, but what this means

is that for every period, the expected utility conditioned on the
history up to that point and the expectation taken over all the
signals in the future is non-negative. Ex-post IR (at the end)
would mean that the utility at the end of the mechanism is

non-negative and per period ex-post IR would mean that the
utility in every period is non-negative.

tions.9 Their multiplicative separability condition is
that Vt = V0Mt.

Pavan et al. [16] identify a set of sufficient
conditions on the value evolution process under
which envelope theorems can be used to characterize
incentive-compatible allocation and payment rules.
They then characterize perfect Bayesian equilibrium-
implementable allocation rules in Markov environ-
ments. The mechanisms from Kakade et al. [13] and
Pavan et al. [16] apply in many settings to which our
model does not apply, but are computationally more
complex, both for the seller and the buyers. They
also require detailed distributional information, and
would not work for risk-averse buyers.

Another major focus in dynamic mechanism de-
sign is on revenue/welfare maximization when buyers
arrive sequentially, with either adversarial value dis-
tributions, or values drawn from a known/unknown
distribution [15, 3, 10, 14, 9, 2]. A special case is dy-
namic pricing where the seller posts a price for each
buyer (as opposed to more general schemes like auc-
tions). There is a huge body of work on dynamic
pricing and revenue management problems in the Op-
erations Research literature. See [8] and references
there in. The book by Vohra and Krishnamurthi [17]
compares various pricing strategies like posted-prices,
auctions, and haggling in the presence/absence of
competition. This line of work is mostly unrelated
to the problem we consider.

3 The necessity of assumptions in the
bounded martingale model

We now present an example showing that a constant
price PPP (without a free trial) cannot obtain a con-
stant approximation against the buyer’s cumulative
value, as well as some examples demonstrating that
the assumptions we make about the value evolution
model are necessary.

Free trial is necessary: Consider a setting
where the value evolves according to a simple random
walk with steps of size δ, with reflection at 1 and
absorption at 0, where 1/δ ∈ Z. In this model
we have ε = δ, and thus our main theorem states
that free trial + PPP should get a constant factor
approximation. However, we show that without free
trial, the approximation factor for a starting value
of V0 = δ is Θ( 1

δ ). First we note that starting at
V0 = δ, the expected time to absorption at 0 is

9The following is an easy way to see this is. With additive

separability, the processes with different initial V0s have differ-
ent maxima and minima, whereas the maxima/minima for our
process are the same for all initial values.
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δ(2−δ)/δ2 < 2/δ (see Lemma 4.6). In order to obtain
non-zero revenue, any constant price PPP scheme
must charge a price of at most δ, and therefore gets
revenue no more than δ times 2/δ, which is O(1).
On the other hand, we can compute the cumulative
value for an initial value of v by solving the following

system of equations: C(v) = v + C(v+δ)+C(v−δ)
2

for v = iδ, i ∈ {1, · · · , 1/δ − 1}, C(0) = 0, and
C(1) = 1 + C(1− δ). Solving this system, we obtain
C(v) ≥ 2v

3δ2 ,10 and therefore, C(δ) ≥ 2
3δ .

Martingale assumption (3) is necessary:
Let δ, η > 0 be some sufficiently small numbers.
Let Vt be either η or η + δ, uniformly at random
and independent of all previous values. Let the
process have a fixed horizon of T (after which, say
it is deterministically 0). It is easy to see that
this satisfies all assumptions except that it is not a
martingale. The expected value at any time t ≤ T
is E[Vt] = η + δ/2, and so the cumulative value is
T (η+ δ/2). We claim that no PPP scheme, even one
with time-varying prices, can obtain a revenue more
than Tη + δ. For η � δ, this gives an approximation
ratio of Ω(T ), which is unbounded. To prove the
claim, we note that at every step, the optimal PPP
scheme offers a price of either η or η + δ. The total
revenue from time periods in which the price is η+δ is
at most η+δ, since in each such time period the buyer
stops buying with probability 1/2. The revenue from
each time period in which the price is η is exactly η.
Therefore, the total revenue obtained by PPP is at
most Tη + δ.

Minimum variance assumption (5) is nec-
essary: Let µ be a random variable drawn from the
“equal revenue” distribution over the set [n], i.e.,
Pr[µ ≥ i] = 1

i , Consider a bin with µ red balls and
n − µ blue balls, and draw these balls one by one
uniformly at random, without replacement. For all
t ∈ [n], let Xt := 1 if the tth ball drawn is red, and 0
otherwise. Note that

∑n
t=1Xt = µ by definition.

Suppose that there is only one type of buyer
whose value evolves as follows. Let for all t ∈ [n],

Vt := E[µ|X1, . . . , Xt−1]/n.

For all t ∈ {n + 1, n + 2, . . . , n + T}, Vt := Vt−1.
(The process has a finite horizon.) This is a Doob
martingale with bounded differences, and hence it
satisfies the martingale and step size assumptions. It
is, by definition, in the interval [0, 1], and 0 is trivially
an absorbing state (since it is never reached). Hence

10The unique solution to this system of equations is C(v) =
v

3δ2
(3 + δ2 − v2).

it satisfies all the properties except for the minimum
variance property (5).

The cumulative value of the buyer is (n +
T )E[µ]/n = Hn(1 + T/n) = O(T lnn/n), for T � n.
We will now argue that no PPP scheme (including
ones that can have a different price for every step)
can get a revenue more than O(T/n). Note that Vn
(and hence Vt for any t > n) is exactly equal to µ, by
definition. For any fixed time t > n, and any price
p = i/n, Pr[Vt ≥ i/n] = Pr[µ ≥ i] = 1

i . The ex-
pected revenue in the tth step is hence equal to 1/n
for all such prices. Further, the continuation prob-
ability is maximized when p = 1/n, therefore the
optimal PPP scheme in rounds t > n is to set a price
of 1/n for all time steps and get a revenue of T/n.
For T � n, the total revenue of the PPP scheme is
at most n+ T/n = O(T/n).

Dependence on the ratio of ε to δ (assump-
tions (4) and (5)): We now show that the approx-
imation factor achieved by free trial + PPP must
depend on the ratio of the upper bound on the step
size (ε), and the square root of the lower bound on
the variance (δ). We construct an example where
ε = 1, and show that any free trial + fixed price PPP
obtains an approximation factor of Ω(log2( 1

δ )).11

Let the initial value be distributed according to
an equal revenue distribution as follows: let δ =
2−N ; for k = 0, . . . , N , the initial value is 2kδ with
probability 1

2k+1 ; The remaining mass of 1
2N+1 is at 0.

The value evolves as follows: for k = 0, . . . , N − 1,
when the current value is 2kδ, the next value is
2k+1δ with probability 1

2 and 0 with probability 1
2 .

When the current value is 1, the next value is 0
with probability 1. Given this value evolution, the
cumulative value starting at an initial value of 2kδ can
be computed to be (N − k + 1)

/
2N−k. Therefore,

the expected cumulative value C is
∑N
k=0

1
2k+1 ·

N−k+1
2N−k = Θ(N2δ).

We will now show an upper bound on the revenue
of any free trial + fixed price PPP scheme. First,
we argue that it is suboptimal for the PPP scheme
to offer any free trial period. This follows from the
following observation: the probability distribution
of Vt, given the above initial distribution over V0
and the evolution process, stochastically dominates
the distribution of Vt+1, even when conditioned on
Vt being above a certain price. Consequently, for
any T, p, the revenue from offering a free trial for T

11We remark that for the example we construct, variable
price PPP can obtain an approximation factor of Θ(log( 1

δ
)),

but no better; This is essentially the familiar revenue versus

social welfare gap for the equal revenue value distribution.



rounds, followed by a per-round price of p is no larger
than that from offering no free trial and a fixed price
of p. Finally, let 2kδ be the price charged by the fixed-
price PPP scheme. The revenue of such a scheme is

∑N+1
r=1 2kδ

∑N+1
z=k+r

1
2z =

N+1∑
r=1

δ

2r−1

(
1− 1

2N+2−k−r

)
≤ 2δ.

Thus, the gap from cumulative value is Θ(N2) =
Θ(log2( 1

δ )).

4 Proof of the main theorem

In this section we will present the proof of Theo-
rem 1.1 which claims that there is a free trial period
pricing scheme (i.e. T and c) that yields the seller
a constant fraction of the expected cumulative value,
for δ/ε = Ω(1). We begin with some notation:

• Throughout, we condition on V0 = v.

• Let c denote the value in [0, 1] that will end up
being the PPP price that we charge once the free
trial period ends.

• Define w = δ
ε , and c = c′ δε for some constant

c′ ∈ (0, 1].

• We will consider the following stopping times.

τ : the first time t such that Vt ≥ w or Vt = 0;

τ1 : the first time after τ that Vt = 1 or Vt < c,

conditioned on Vτ ≥ w;

τ2 : the first time after τ1 that the value reaches c,

conditioned on Vτ ≥ w and Vτ1 = 1.

The lemmas in the next subsection present analysis
of the martingale process that we need. The key tool
here is the optional stopping theorem, applied to a
number of different martingales derived from Vt.

4.1 Analysis of the value evolution process

The first lemma determines the probability that
the process reaches w before dying out and being
absorbed at 0. Note that w is a constant that depends
on the ratio between δ and ε. The second and third
lemma show that conditioned on reaching w before
0, the expected time to reach w is relatively small.
It is this last lemma that enables us to set the free
trial period length T . The goal is to ensure that
there is a reasonable chance that τ occurs before the

free trial period ends. The fourth lemma shows that
conditioned on reaching w before 0, the value has
sufficient probability of reaching 1 before dropping
below the PPP price. The fifth lemma shows that
conditioning on these latter events, the expected time
between hitting 1 and dropping below c (i.e., the
length of the period during which the PPP scheme
is making money), is sufficiently large.

Lemma 4.1. The probability of crossing w before 0
starting at v, i.e. Pr[Vτ ≥ w|V0 = v], is at least
v/(w + ε) and at most v/w.

Proof. τ is a stopping time and Vt is a martingale in
[0, τ − 1], so by the optional stopping theorem

E [Vτ ] = E [V0]

= v

= P [Vτ ≥ w]E [Vτ |Vτ ≥ w]

+ (1−P [Vτ ≥ w])E [Vτ |Vτ = 0]

∈ [w,w + ε]P [Vτ ≥ w] ,

which yields this fact. �

Lemma 4.2. Let τ be the first time Vt is either 0 or
crosses w. Then

E[
∑i=τ−1
i=0 ∆2

i

∣∣ V0 = v] ≤ v
(
(w+ε)2/w − v

)
.

Proof. Xt = V 2
t −
∑t−1
j=0 ∆2

t is a martingale. Applying
optional stopping at τ yields

v2 = E
[
V 2
τ

]
−E

τ−1∑
j=0

∆2
t


≤ (w + ε)2v/w −E

τ−1∑
j=0

∆2
t

 ,
which implies the lemma. �

Lemma 4.3. Let τ be the first time Vt is either 0 or
crosses w. Conditioned on the fact that Vt crosses w
before 0 (i.e. Vτ ≥ w), the expected time to cross w
is “small”:

E
[
τ
∣∣ Vτ ≥ w] ≤ 1/3ε2

(
1 + ε2/δ

)3 (
1 + 3ε2/δ

)
.

Proof. Define Mt as follows:

Mt := V 3
t − 3Vt

∑t−1
j=0 ∆2

j + 2
∑t−1
j=0 ∆3

j .
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Then Mt is a martingale in [0, τ − 1]. To see this,
observe that

Mt+1 −Mt = (Vt + ∆t)
3 − V 3

t − 3(Vt + ∆t)
∑t
j=0∆2

j

+ 3Vt
∑t−1
j=0∆2

j + 2∆3
t

= (3Vt∆
2
t + 3V 2

t ∆t + ∆3
t )− 3Vt∆

2
t

− 3∆t

∑t
j=0∆2

j + 2∆3
t

= 3∆t

(
V 2
t −

∑t−1
j=0∆2

j

)
.

Since E[∆t|V0, . . . , Vt] = 0, we have that
E[Mt+1|V0, . . . , Vt] = Mt. Applying the optional
stopping theorem, we obtain

E[M0] = v3 = E [Mτ ]

≤ (w + ε)3 P [Vτ ≥ w]− 3E

Vτ τ−1∑
j=0

∆2
j


+ 2E

τ−1∑
j=0

∆3
j

 .
Next we recall that for all j, ∆j ≤ ε, and therefore,
∆3
j ≤ ε∆2

j . Thus, using Vτ ∈ {0} ∪ [w,w + ε]
and v/(w + ε) ≤ P[Vτ ≥ w] ≤ v/w, and applying
Lemma 4.2,

v3 ≤ (w + ε)3 P [Vτ ≥ w]

− 3wE
[∑τ−1

j=0∆2
j

∣∣ Vτ ≥ w]P [Vτ ≥ w]

+ 2εE
[∑τ−1

j=0∆2
j

]
≤ (w + ε)3

v

w
− 3w

v

w + ε
E
[∑τ−1

j=0∆2
j

∣∣ Vτ ≥ w]
+ 2εv

(
(w + ε)2

w
− v
)
.

Dividing by 3vw/(w + ε) we obtain

E

τ−1∑
j=0

∆2
j

∣∣ Vτ ≥ w


≤ (w + ε)2

3w2

(
(w + ε)2 + 2ε(w + ε)− v(v + 2ε)

w

w + ε

)
≤ 1

3w2
(w + ε)3(w + 3ε).

The lemma then follows by noting that
E[∆2

j |∆0, · · · ,∆j−1] ≥ δ2 for all j, and substi-
tuting the value of w = δ/ε. �

We use the following corollary of this lemma.

Corollary 4.1. Suppose that w = δ/ε and ε2/δ <
1/9. Then,

E
[
τ
∣∣ Vτ ≥ w] ≤ 5/8ε2.

The following lemma follows from an argument
similar to the proof of Lemma 4.1.

Lemma 4.4. Conditioned on Vτ ≥ w, and any his-
tory up to time τ , the value reaches 1 before c with
sufficient probability:

Pr[Vτ1 = 1
∣∣ Vτ ≥ w] ≥ w−c

1−c ≥
δ
ε (1− c′).

Lemma 4.5. Conditioned on Vτ1 = 1 and any history
up to time τ1, let τ2 be the first time Vt < c for t ≥ τ1.
Then the time between τ1 and τ2 is large:

E[τ2 − τ1
∣∣ Vτ1 = 1] ≥ (1−c)2−cε

ε2 .

Proof. Suppose that Vτ1 = 1. We apply a version
of the reflection principle for simple random walks:
Consider the martingale Xt that is coupled with Vt.
X0 = Vτ1 (conditioned on the history). For t > 0,
when Vτ1+t < 1, Xt+1 = Vτ1+t+1. When Vτ1+t = 1,
with probability 1/2, we set Xt+1 = Vτ1+t+1, and
with probability 1/2, we set it to 2− Vτ1+t+1. When
Xt > 1, we set Xt+1 = 2 − Vτ1+t+1. One can check
that Xt is a martingale with absorbing states at 0
and 2.

Now, let us suppose that X0 = 1, and determine
the expected time it takes to reach either a value less
than c or a value greater than 2−c for some c ∈ [0, 1).
This time, τ2− τ1, is a stopping time. Note that each
of these possibilities happen with probability 1/2.

Consider the martingale Zt = X2
t −

∑i=τ1+t−1
i=τ1

∆2
i .

Then, we have

1 = E [Z0] = E [Zτ2−τ1 ]

≥ (c−ε)2/2 + (2−c)2/2−E

[
i=τ2−1∑
i=τ1

∆2
i

]
.

Rearranging this expression, and using ∆i ≤ ε for all
i, implies the lemma. �

4.2 Upper bound on cumulative value

The following lemma bounds the buyer’s cumulative
value: we use the variance in the value evolution
process to argue that the value gets absorbed at zero
before too long.

Lemma 4.6. The cumulative value starting at v is

not too large: C(v) ≤ v(2−v)
δ2 .



Proof. Let τ̃ be the first time that Vt is 0. We will
prove that starting at value v, the expected value of
τ̃ is at most v(2 − v)/δ2. This implies the theorem
because at every step, while the value is non-zero, the
cumulative value accrues an amount no larger than
1.

To prove the claim, as in the proof of Lemma B.4,
let us define a martingale Xt that is coupled with Vt.
X0 = V0. For t > 0, when Vt < 1, Xt+1 = Vt+1.
When Vt = 1, with probability 1/2, we set Xt+1 =
Vt+1, and with probability 1/2, we set it to 2− Vt+1.
When Xt > 1, we set Xt+1 = 2 − Vt+1. One can
check that Xt is a martingale with absorbing states
at 0 and 2.

Now, let us compute the expected time that Xt

takes to reach 0 or 2 (which is E[τ̃ ]). Applying
the optional stopping theorem, the probability that
we hit 2 before 0 is v/2. Consider the martingale

Zt = X2
t −

∑i=t−1
i=0 δ2i . Then, we have

v2 = E [Z0] = E [Zτ̃ ] = 4
v

2
−E

[
i=τ̃−1∑
i=0

δ2i

]
.

Rearranging this expression and using δ2j ≥ δ2 for all
j implies the claim. �

4.3 Proof of Theorem 1.1

We will assume that ε2/δ < 1/9. Set the free trial
period length to be

T := 3/4ε2 ≥ 6/5E
[
τ
∣∣ Vτ ≥ w] ;

(The above inequality follows from Corollary 4.1.)
Thus, by Markov’s inequality,

(4.2) Pv
[
τ < T

∣∣ Vτ ≥ w] ≥ 1/6.

Let T ′ be the length of time after the free trial
period ends for which Vt is at least c: T ′ = min{t−T :
t > T, and, Vt+1 < c}. We will condition on the event

E = {Vτ ≥ w and τ ≤ T and Vτ1 = 1}.

Note that conditioned on E, we have T ′ ≥ τ2 −
max{τ1, T} ≥ τ2 − τ1 − T .

Thus, for a buyer with starting value V0 = v we
obtain

RT,c ≥ E [c(τ2 − τ1 − T ) | E] ·Pv [E]

≥ cE [τ2 − τ1 − T | E] · Pr[Vτ1 = 1|τ < T, Vτ ≥ w]

· Pr[τ < T |Vτ ≥ w] · Pr[Vτ ≥ w|V0 = v]

For v < w, we simplify this using the following facts:

1	
  

w	
  

c	
  
V0	
  =	
  v	
  

Va
lu
e	
  

Time	
  

T	
  τ	

 τ1	

 τ2	



Value	
  evolu,on	
  

Free	
  trial	
  period	
  

PPP	
  price	
  =	
  c	
  

Buyer	
  stops	
  buying	
  

Figure 1: The figure illustrates the event E that we
are conditioning on.

• By Lemma 4.1, Pr[Vτ > w|V0 = v] ≥ v εδ .

• By inequality (4.2): Pv[τ < T |Vτ ≥ w] ≥ 1
6 .

• By Lemma 4.4, Pr[Vτ1 = 1|τ < T, Vτ > w] ≥
δ
ε (1 − c′). (Notice that the extra conditioning
on τ < T does not affect anything except the
history: since T is a constant, this event is
determined at time τ .)

Together, these imply that the probability of E, i.e.
the value reaches 1 before the buyer stops buying the
product, is at least v εδ ·

1
6 ·

δ
ε (1− c′) = 1

6v(1− c′).
Finally, we apply Lemma 4.5. Again, we observe

that, since T is a constant, the event τ < T is
determined at time τ , and thus affects only the
history before time τ1 in Lemma 4.5. Therefore, we
have

RT,c|V0=v ≥ cE [τ2 − τ1 − T |E] · 1

6
v(1− c′)

≥ c
(
(1− c)2 − cε− 3/4

)
ε2

1

6
v(1− c′)

= Ω

(
δ

ε3
v

)
.

The final equality follows by substituting c = c′δ/ε,
picking a c′ small enough and simplifying.
For v ≥ w, define τ = 0, and condition on the event

9



Vτ1 = 1. Using a similar analysis, we obtain

RT,c|v≥w ≥ cE [τ2 − τ1 − T |Vτ1 = 1]

· Pr[Vτ1 = 1|V0 = v]

≥ c
(
(1− c)2 − cε− 3/4

)
ε2

· v − c
1− c

= Ω

(
δ

ε3
v

)
.

Finally, using Lemma 4.6, for any value of V0, we
obtain the theorem.
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A Binary value model

In this section we consider an alternate model of
value evolution, which we call the binary value
model. In this model, Vt = V0 for all t ≤ T (V0)
and is 0 otherwise, where T (V0) is a random variable
that depends on V0. We assume that E[T (V0)|V0]
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is monotone non decreasing in V0. This captures
scenarios where the buyer’s value per usage doesn’t
change with usage, but the number of times he uses
the product is uncertain. Buyers with higher value
per usage tend to use the product more.

For this model, we compare the revenue of a
simple constant-price PPP scheme with that of an
optimal BIN scheme with a risk neutral buyer. In
the BIN scheme, a price pBIN is offered for unlimited
usage of the product and the buyer accepts this price
if his expected total value E[V0T (V0)] is at least pBIN.
In the constant price PPP scheme with price p, each
buyer with V0 ≥ p keeps buying the product upto
time T (V0). We show that there exists a price p for
which, PPP gets more revenue as well as more buyer
utility as compared to the optimal BIN.

Theorem A.1. In the binary value model there is
a constant price PPP scheme that gets at least as
much risk-robust revenue, as much social welfare, and
as much buyer utility as the revenue optimal BIN
scheme with a risk-neutral buyer.

Proof. In the binary value model the buyer’s ex-
pected cumulative value is C(V0) = V0 E[T (V0)|V0].
The optimal BIN price is the monopoly price for
the distribution of this random variable where V0 is
drawn from some distribution F . Since E[T (V0)|V0]
is non-decreasing in V0, there is a threshold initial
value vBIN such that the risk neutral buyer purchases
in this BIN scheme if and only if V0 ≥ vBIN. The
price of this BIN scheme is then pBIN = C(vBIN) =
vBIN E[T (vBIN)].

Now consider a constant price PPP scheme with
price p equal to vBIN. At this price, any buyer
with V0 ≥ vBIN purchases the product for T (V0)
periods, i.e., the same set of buyers purchase the
product in the optimal BIN scheme as well as this
one. However, a buyer with initial value V0 pays a
total of vBIN E[T (V0)], which is at least as large as
vBIN E[T (vBIN)] = pBIN. Thus, the revenue of PPP
is at least that of BIN. Further, the two schemes
generate the same total social welfare.

Now, consider gradually decreasing the per-play
price in the PPP scheme to below vBIN. Then, the
social welfare generated by PPP increases, while its
revenue may or may not decrease. We can continue
decreasing the price as long as the revenue of PPP
stays above that of BIN, and at some point, both
the revenue and the buyer utility (which is social
welfare − revenue) of PPP exceed the corresponding
quantities for BIN, since revenue eventually becomes
0 at a price of 0. �

B Martingales with independent increments

In this section, we consider a special case of the
martingale model where the increments ∆t = Vt+1 −
Vt are independent of the current value Vt and of each
other. In this case, we can get a sharper bound.

B.1 Preliminary lemmas

We develop the analogues of the lemmas used in
Section 4. The proofs are very similar, but we are
able to control the random quantities more easily
because of the independence across steps. This
allows us to replace certain random variables by their
expectations. Let τ denote the first time that the Vt
hits 0 or 1. Conditioned on Vτ being 1, we will use
τ ′ > τ to denote the first time after τ that the value
becomes less than or equal to c (the PPP price). Also
let

δ2t := E
[
∆2
t

]
.

Lemma B.1. The probability of hitting 1 before 0
starting at v, i.e. Pr[Vτ = 1|V0 = v], is v.

In the analysis of this section, we use
E[
∑i=τ−1
i=0 δ2i ] as a proxy of sorts for the time it takes

for the random walk to reach 0 or 1. The following
lemma bounds this expectation.

Lemma B.2. Let τ be the first time Vt is either 0 or
1. Then

E

[
i=τ−1∑
i=0

δ2i

∣∣∣∣ V0 = v

]
= v(1− v).

Lemma B.3. Let τ be the first time Vt is either 0 or
1. Conditioned on the fact that Vt hits 1 before 0 (i.e.
Vτ = 1), the expected time to hit 1 is “small”:

E

[
i=τ−1∑
i=0

δ2i

∣∣∣∣ Vτ = 1

]
≤ 1 + ε

3
.

Lemma B.4. Let τ be the first time Vt is either 0 or
1. Let τ ′ be the first time after τ that Vt drops below
c conditioned on Vτ = 1. The the time between τ and
τ ′ is large:

E

i=τ ′−1∑
i=τ

δ2i

∣∣∣∣ Vτ = 1

 ≥ (1− c)2 − cε.

B.2 Proofs of key lemmas

Proof of Lemma B.1. τ is a stopping time and Vt
is a martingale in [0, τ − 1], so applying the optional
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stopping theorem, and noting Vτ ∈ {0, 1},

E [Vτ ] = E [V0]

= v

= P [Vτ = 1]E [Vτ |Vτ = 1]

+ (1−P [Vτ = 1])E [Vτ |Vτ = 0] .

which yields this fact.

Proof of Lemma B.2. Consider the random variable

Xt = V 2
t −

t−1∑
j=0

δ2t .

Xt is a martingale. Applying optional stopping at τ
yields

v2 = E [X0] = E [Xτ ] = E
[
V 2
τ

]
−E

τ−1∑
j=0

δ2t


= v −E

τ−1∑
j=0

δ2t

 .
Here the last inequality follows by noting V 2

τ ∈ {0, 1},
and applying Lemma B.1. Rearranging the equation
implies the lemma.

Proof of Lemma B.3. Define Mt as follows:

Mt := V 3
t − 3Vt

t−1∑
j=0

δ2j −
t−1∑
j=0

γ3j ,

where γj = E[∆3
t ]. Then Mt is a martingale in

[0, τ − 1]:

Mt+1 −Mt = (Vt + ∆t)
3 − V 3

t − 3(Vt + ∆t)

t∑
j=0

δ2j

+ 3Vt

t−1∑
j=0

δ2j − γ3t

= (3Vt∆
2
t + 3V 2

t ∆t + ∆3
t )− 3Vtδ

2
t

− 3∆t

t∑
j=0

δ2j − γ3t

= 3∆t(V
2
t −

t∑
j=0

δ2j ) + 3Vt(∆
2
t − δ2t )

+ (∆3
t − γ3t ).

Thus,

E [Mt+1 −Mt|V0, . . . , Vt] = 0.

Applying the optional stopping theorem, we obtain

E [M0] = v3

= E [Mτ ]

= P [Vτ = 1]− 3E

Vτ τ−1∑
j=0

δ2j

−E

τ−1∑
j=0

γ3j

 .
Next we recall that for all j, ∆j ≥ −ε, and therefore,
γ3j ≥ (−ε)δ2j . Thus, using Vτ ∈ {0, 1} and P[Vτ =
1] = v,

v3 ≤ P [Vτ = 1]− 3E

τ−1∑
j=0

δ2j

∣∣∣∣ Vτ = 1

P [Vτ = 1]

+ εE

τ−1∑
j=0

δ2j


= v − 3vE

τ−1∑
j=0

δ2j

∣∣∣∣ Vτ = 1

+ εE

τ−1∑
j=0

δ2j



Dividing by 3v and applying Lemma B.2, we obtain

E

τ−1∑
j=0

δ2j

∣∣∣∣ Vτ = 1

 ≤ 1

3

(
1− v2 + ε(1− v)

)
≤ 1 + ε

3
.

Proof of Lemma B.4. Let Vτ = 1. We apply
the reflection principle by considering the following
martingale Xt that is coupled with Vt. X0 = Vτ . For
t > 0, when Vτ+t < 1, Xt+1 = Vτ+t+1. When Vτ+t =
1, with probability 1/2, we set Xt+1 = Vτ+t+1, and
with probability 1/2, we set it to 2− Vτ+t+1. When
Xt > 1, we set Xt+1 = 2 − Vτ+t+1. One can check
that Xt is a martingale with absorbing states at 0
and 2.

Now, let us suppose that X0 = 1, and determine
the expected time it takes to reach either a value less
than c or a value greater than 2−c for some c ∈ [0, 1).
This time, τ ′ − τ , is a stopping time. Note that each
of these possibilities happen with probability 1/2.

Consider the martingale Zt = X2
t −

∑i=τ+t−1
i=τ δ2i .



Then, we have

1 = E [Z0] = E [Zτ ′−τ ]

≥ (c− ε)2

2
+

(2− c)2

2
−E

i=τ ′−1∑
i=τ

δ2i

 .
Rearranging this expression implies the lemma.

B.3 Main Theorem

We can now prove the main theorem in this setting.

Theorem B.1. There exist constants T and c inde-
pendent of v = V0, such that the expected seller rev-
enue from a PPP pricing scheme with a free trial
priod of length T and PPP price c for a risk averse
buyer is a constant fraction of the buyer’s expected
cumulative value:

∀v ∈ [0, 1], RT,c|V0=v = Ω

((
δ

ε

)2

C(v)

)
.

Proof. Recall that τ is the time at which the value
first becomes 0 or 1, and conditioned on Vτ = 1, τ ′

is the first time the value drops below c. Let T be
defined to be the smallest time such that

i=T−1∑
i=0

δ2i ≥
2

3
(1 + ε).

Note that the right hand side of this inequality is at
least 2E[

∑i=τ−1
i=0 δ2i |Vτ = 1] by Lemma B.3, so by

Markov’s inequality,

(B.1) Pv

[
i=τ−1∑
i=0

δ2i ≤
i=T−1∑
i=0

δ2i

∣∣∣∣ Vτ = 1

]
≥ 1

2
.

Let T ′ be the length of time after the free trial
period ends for which Vt is at least c: T ′ = min{t−T :
t > T, and, Vt+1 < c}. Note that conditioned on
τ < T and Vτ = 1, we have T ′ ≥ τ ′ − T . Then,
RT,c = E[cT ′].

For a buyer with starting value V0 = v we obtain

RT,c ≥ Ev [cT ′ | Vτ = 1 and τ ≤ T ]

·Pv [τ ≤ T | Vτ = 1]Pv [Vτ = 1]

≥ cE [τ ′ − T | Vτ = 1]

·Pv

[
i=τ−1∑
i=0

δ2i ≤
i=T−1∑
i=0

δ2i

∣∣∣∣ Vτ = 1

]
v

≥ cE [τ ′ − T | Vτ = 1]
1

2
v

≥ c · (1− c)2 − cε− 2/3(1 + ε)

ε2
· v

2
(B.2)

The second inequality here follows from Lemma B.1.
The third is (B.1). The last inequality applies
Lemma B.4 to get that

E

i=τ ′−1∑
i=T

δ2i

 ≥ (1− c)2 − cε− 2

3
(1 + ε),

and then uses δ2i ≤ ε2 for all i.
Finally, we get that for sufficiently small c and ε,

the RHS of (B.2) is Ω
(
v
ε2

)
. Lemma 4.6 then implies

the lemma. �

C Simulations

In this section, we report the results of computer
simulations we performed to empirically measure
the performance of our PPP schemes. While our
theorems already establish the benefits of such pricing
schemes, the results of simulations are stronger, and
favor PPP even more. In particular, for the binary
value model, our theorem shows PPP schemes that
simultaneously get more revenue and higher utility
for buyers (in expectation over buyer types) than
a Buy-It-Now scheme (BIN). Our simulations show
that even for distributions very close to worst case,
there are PPP schemes that simultaneously get more
revenue and higher utility for each buyer type (not
just in expectation over buyer types) than BIN. For
the martingale model, we focus on the simple random
walk as a special case and our simulations show that
the constant factors are significantly smaller than
what we get in our theorems, and we also identify
distributions where PPP gets more revenue than BIN.

C.1 Binary value model

In the binary value model, we performed simulations
for the initial value distributions being normal and
uniform. When the initial value distribution is a
point mass, it is impossible to obtain more revenue
than a Buy-It-Now scheme because BIN revenue is
the entire cumulative value. However, simulations
show that even if there is a tiny spread in the ini-
tial value, say a Normal distribution with a small
standard deviation, PPP already performs better in
all dimensions. Thus, we perform simulations for
Normal distributions with various means and stan-
dard deviations, and observe good performance even
with tiny standard deviations. The improvement in
revenue gets even better when the spread in initial
value is more. To demonstrate this, we simulate the
Uniform in [0, 1] distribution and show the markedly
higher improvement in revenue. Apart from revenue,
we also measure the improvement in the number of
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buyers that PPP brings in. The percentage improve-
ment in the number of buyers is even higher than that
of revenue.

Simulation Details. Since we want our PPP
schemes to get higher utility (than BIN) for each
buyer type, our PPP schemes stop charging a buyer
once he has paid the BIN optimal price in total.
We call this PPP-CAP. This immediately gives us
the required pointwise guarantee on buyer utility.
To measure revenue and buyer pool improvement,
we consider 10000 samples from Normal distribution
truncated between 0 and 1, with values discretized to
multiples of 0.05. The three parameters of interest
are the mean, standard deviation and the expected
time alive (the expected time for which the initial
value lasts at where it is, before it hits 0). As for
expected time alive, our theorem just required that
it is increasing in initial value. For our simulations,
we fix time alive to be a polynomial in initial value,
and vary the exponent in the polynomial. We begin
with time alive = initial value0.5.

1. Normal with varying standard deviation:
In Figure 2, we consider a Normal distribution
with mean 0.2, and vary standard deviation from
0.2 to 0.02 (from mean to one-tenth of mean). If
the standard deviation were 0, we get a point
mass distribution and it is impossible to get any
revenue improvement in this deterministic case.
However, even with a small standard deviation
like 0.02, PPP already gets a close to 5% revenue
improvement, and more than a 5% increase in
number of buyers.

2. Normal with varying mean: In Figure 3 we
vary the mean from 0 to 1, fixing a small stan-
dard deviation of 0.02. As expected, the in-
crease in revenue and number of buyers drops
as mean increases. This is because, for a fixed
standard deviation, as mean increases, the dis-
tribution looks closer and closer to a point-mass
distribution.

3. Normal with varying time alive: Finally, in
Figure 4, we vary the exponent q in expected
time alive from 0 to 1, and observe that the in-
crease in revenue and number of buyers increases
with q. This is expected because as q increases,
the expected time alive drops quicker as the ini-
tial value decreases, making BIN obtain revenue
from a small fraction of high valed buyers. On
the other hand, PPP-CAP will charge a low per-
round price that greatly increases the pool of
buyers, and still manages to get higher revenue

because the high valued buyers, though they pay
a small per-round price, pay it till their value hits
the BIN price, and the revenue from large pool
of smaller valued buyers is additional.

4. Uniform: We also simulate the U [0, 1] distribu-
tion, with values discretized to multiples of 0.05,
and observed a 13% increase in revenue and 25%
increase in number of buyers.
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PPP-CAP vs BIN, with initial values drawn from Normal 
(µ=0.2, σ = µ/c), and time alive = (initial value)^0.5

% Revenue Increase from PPP-CAP

% Increase in number of buyers from PPP-CAP

Figure 2: Binary value model, with initial values Nor-
mally distributed, and varying standard deviation.
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PPP-CAP vs BIN, with initial values drawn from Normal 
(μ = 0.05 to 0.5, σ= 0.02), and time alive = (initial value)^0.5

% Revenue Increase from PPP-CAP

% Increase in number of buyers from PPP-CAP

Figure 3: Binary value model, with initial values
Normally distributed, and varying mean.

C.2 Random walk model

For our main results in this paper, we studied a
general martingale evolution of values. Here, we fix
a special case of this, namely, a simple random walk
between 0 and 1, with step size of δ = 0.05. The
walk is reflected at 1 and is absorbed at 0. This
corresponds to the case of ε = δ = 0.05 in our model.
We simulate this random walk, starting with different
initial value distributions, and measure the revenue of
free-trial+PPP scheme as a fraction of BIN revenue



Initial value distribution Rev(PPP) as Percentage of Rev(BIN))
Point mass anywhere in [0.05, 1] 17%
Normal, with µ ∈ [0.05, 1], σ = 0.1 21%
Uniform [0, 1] 32%

Table 1: Revenue of free trial + PPP scheme as a fraction of BIN revenue
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PPP-CAP vs BIN, with initial values drawn from Normal 
(μ = 0.2, σ= 0.02), and time alive = (initial value)^q, for q = 0.1 to 1

% Revenue Increase from PPP-CAP

% Increase in number of buyers from PPP-CAP

Figure 4: Binary value model, with initial values
Normally distributed, and varying time alive.

(and sometimes cumulative value). For every fixed
initial value, we perform our simulations over 10000
samples of random walk trajectories and average over
them. We summarize our results in Table 1.

1. Point mass: The worst-case is when the initial
values are just point masses, in which case

BIN will extract the entire cumulative value as
revenue. Even in this extreme case, PPP gets
more than 17% of the cumulative value, with a
free trial period that is agnostic to the initial
value, and a per-round price that is also agnostic
to the initial value. This corresponds to at most
a factor 6 approximation, that is stronger than
what the theorems suggest.

2. Normal: When we move slightly away from
the worst-case, to have initial values drawn from
Normal distributions, with means ranging from 0
to 1, and standard deviation of 0.1, PPP already
gets more than 21% of BIN revenue, using the
same initial-value-agnostic price and free trial
period as in the point mass case above.

3. Uniform: This percentage increases further to
32% as we move to the Uniform [0, 1] distribu-
tion, again using the same price and free trial
period as for the point mass case.
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