
On the Limits of Black-Box Reductions in Mechanism
Design

Shuchi Chawla∗

University of Wisconsin -
Madison

shuchi@cs.wisc.edu

Nicole Immorlica†

Northwestern University
nicimm@gmail.com

Brendan Lucier
MSR New England

brlucier@microsoft.com

ABSTRACT
We consider the problem of converting an arbitrary approx-
imation algorithm for a single-parameter optimization prob-
lem into a computationally efficient truthful mechanism. We
ask for reductions that are black-box, meaning that they
require only oracle access to the given algorithm and in
particular do not require explicit knowledge of the prob-
lem constraints. Such a reduction is known to be possible,
for example, for the social welfare objective when the goal
is to achieve Bayesian truthfulness and preserve social wel-
fare in expectation. We show that a black-box reduction for
the social welfare objective is not possible if the resulting
mechanism is required to be truthful in expectation and to
preserve the worst-case approximation ratio of the algorithm
to within a subpolynomial factor. Further, we prove that for
other objectives such as makespan, no black-box reduction
is possible even if we only require Bayesian truthfulness and
an average-case performance guarantee.

Categories and Subject Descriptors
J.4 [Social And Behavioral Sciences]: Economics

General Terms
Theory

Keywords
Mechanism design, algorithms, social welfare, makespan

1. INTRODUCTION
Mechanism design studies optimization in the presence

of selfish agents, where the goal is to design a system in

∗This author was supported in part by NSF awards CCF-
0830494, CCF-0643763, and CCF-1101429.
†This author was supported in part by NSF CAREER grant
AF-1055020, a Microsoft New Faculty Fellowship, and an
Alfred P. Sloan Foundation Fellowship.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’12, May 19–22, 2012, New York, New York, USA.
Copyright 2012 ACM 978-1-4503-1245-5/12/05 ...$10.00.

which agents’ individual selfish behaviour leads to global
optimization of a desired objective. A central theme in al-
gorithmicmechanism design is to reconcile the incentive con-
straints of selfish agents with the requirement of computa-
tional tractability and to understand whether the combina-
tion of these two considerations limits algorithm design in a
way that each one alone does not. In the best-case scenario,
one might hope for a sort of equivalence between the re-
quirements of algorithm design and mechanism design, man-
ifested via reductions that convert arbitrary algorithms into
incentive compatible mechanisms. One example is the sem-
inal work of Vickrey, Clark, and Groves for converting exact
algorithms into mechanisms for the social welfare objective.
Much recent research has focused on generalizing such re-
ductions to encompass approximation algorithms. Recently,
striking positive results have been obtained for many im-
portant cases, especially single-parameter problems, in both
Bayesian [12, 11, 4] and ex post (i.e. non-Bayesian) [15, 3,
8, 10, 14] settings. Given this progress and the notable lack
of impossibility results for single-parameter problems, it is
tempting to guess that a fully general reduction1 is possible.

In this paper, we show that there is no such general black-
box reduction, even for single-parameter problems. By black-
box reduction we mean a mechanism that is given query
access to an algorithm, and must return an allocation dis-
covered by querying the algorithm. Our two main results
address mechanisms in two different settings:

1. For the standard optimization objective of social wel-
fare, or sum of agents’ values, we prove that no general
black-box reduction can guarantee ex post truthfulness
while approximately preserving the worst-case approx-
imation of the underlying algorithm.

2. In the Bayesian setting, we prove that there are mono-
tone2 optimization objectives (including makespan) for
which no black-box reduction can guarantee truthful-
ness while approximately preserving the average-case
approximation of the underlying algorithm.

Our results stand in contrast to existing constructions in
Bayesian mechanism design [12, 11, 4]. In that prior work,
it was shown that general black-box reductions for social
welfare exist in a Bayesian setting, where the input is drawn
from a commonly known distributionF and the optimization

1That is, a reduction that applies to single-parameter opti-
mization problems with arbitrary feasibility constraints.
2An objective is monotone if exact optimization leads to a
truthful (i.e. monotone) allocation rule; see eq. (1).

435

and incentive compatibility requirements are with respect to
F. Our first result demonstrates that no such reduction is
possible when the solution concept is ex post incentive com-
patibility (i.e. truthfulness in dominant strategies) and the
optimization goal is worst-case approximation. Specifically,
we show that every black-box mechanism must degrade the
worst-case performance of some algorithms (including con-
stant approximations) by an unbounded amount. Our im-
possibility holds also for randomized transformations that
aim to achieve truthfulness in expectation over their ran-
dom bits3.

In the Bayesian setting, we ask whether the known con-
structions for social welfare can be extended to other mono-
tone objectives. In our second result, we prove that for
the objective of makespan minimization, any black-box re-
duction from mechanism design to algorithm design must
worsen the algorithm’s performance by a factor that is poly-
nomial in the problem size, even when we only desire Bayesian
incentive compatibility with respect to a known distribution
F and measure the algorithm’s performance in expectation
over F. Our construction serves to demonstrate that mech-
anisms like those known for social welfare cannot exist for
arbitrary monotone objectives even under the weakest pos-
sible requirements on truthfulness and approximability.

Finally, we ask whether there are objectives that lie be-
tween the linear welfare objective and the highly non-linear
makespan objective that admit reductions. Roughly speak-
ing, known black-box mechanisms for Bayesian social welfare
perform “ironing” operations for each agent independently,
fixing non-monotonicities in the algorithm’s output in a lo-
cal fashion without hurting the overall social welfare. One
property of social welfare that enables such an approach
is that it is additive across agents. In our final result we
show that, even restricting attention to objectives that are
additive across agents, for almost any objective other than
social welfare no per-agent ironing procedure can simulta-
neously ensure Bayesian incentive compatibility as well as
a bounded loss in performance. The implication for mech-
anism design is that any successful reduction must take a
holistic approach over agents and look very different from
those known for social welfare.

Our results and techniques.
The existence of a black-box reduction from mechanism

design to algorithm design can depend on the objective func-
tion to be optimized, the incentive requirements, and the
performance metric. We distinguish between social welfare
and arbitrary monotone objectives, and between the average
performance of the algorithm (over a distribution of inputs)
and its worst case performance. We further distinguish be-
tween two kinds of incentive requirements (defined formally
in Section 2). Bayesian incentive compatibility (BIC) im-
plies that truthtelling forms a Bayes-Nash equilibrium given
the agents’ value distributions. The stronger notion of truth-
fulness in expectation (TIE) implies that every agent maxi-
mizes her expected utility by truthtelling regardless of oth-
ers’ actions, with expectation taken over any randomness in
the mechanism.

Table 1 below summarizes our findings as well as known
results along these three dimensions. We find that there is

3In this case, we use the usual definition of an algorithm’s
approximation ratio: in expectation over the random bits
but in worst case over the input.

a dichotomy of settings: some allow for essentially lossless
transformations whereas others suffer an unbounded loss in
performance.

Objective: social welfare
Avg-case approx Worst-case approx

BIC Yes [12, 4, 11] ?
TIE ? No (Section 3)

Objective: arbitrary monotone (e.g. makespan)
Avg-case approx Worst-case approx

BIC No (Section 4) No
TIE No No

Table 1: A summary of our results on the existence
of black-box transformations. A “yes” indicates that
a reduction exists and gives an arbitrarily small loss
in performance; a “no” indicates that every reduc-
tion satisfying incentive constraints suffers a poly-
nomially large loss in performance.

One way to establish our impossibility results would be to
find single-parameter optimization problems for which there
is a gap in the approximating power of arbitrary algorithms
and incentive compatible algorithms. This is an important
open problem that has resisted much effort by the algorith-
mic mechanism design community, and is beyond the scope
of our work. Instead, we focus on the black-box nature of
a reduction from mechanism design to algorithm design. In
our model, a black-box mechanism has full knowledge of
the problem instance including the distribution from which
agents’ values are drawn. In addition it is given oracle ac-
cess to an algorithm that it can query at any input. Given
an input value vector, the goal of the mechanism is to query
the algorithm polynomially many times and return an out-
come (allocation) that is nearly as good as the one that
the original algorithm returns on the same input and is also
consistent across inputs in that it satisfies the monotonicity
conditions necessary for incentive compatibility.

Since the mechanism is meant to be “black-box,” we will
require that it can only output an allocation that it has
observed while querying the algorithm at different vectors4.
This last property is crucial in our constructions and allows
us to “hide” good allocations from the transformation.

While the restriction to black-box mechanisms may ap-
pear strong at first glance, we note that many existing con-
structions for general mechanisms satisfy these requirements.
For instance, the standard technique of maximal in range
(MIR) mechanism design proceeds by restricting the range
of outcomes to a subset of feasible allocations and then solv-
ing the optimization problem exactly over this range. An
appropriate set of outcomes can be constructed by querying
a given algorithm A at representative inputs [10, 14]. An
alternative technique [12, 11, 4] proceeds by constructing
a mapping π between input profiles: given input vector v,
the mechanism returns the original algorithm’s allocation at
vector π(v). In both cases, the mechanism always satisfies
any feasibility constraints of the problem, since it always
returns an allocation in the range of the given algorithm.

4We can think of this requirement as being necessitated by
the presence of arbitrary feasibility constraints that are not
known to the mechanism, but are satisfied by the algorithm.

436

To prove our impossibility result for social welfare, we de-
scribe a class of “public project” optimization problems and
show that achieving ex post incentive compatibility essen-
tially requires a MIR approach. Furthermore, an underly-
ing algorithm can hide a “long-distance” non-monotonicity
in such a way that, at some value vectors, the transforma-
tion must either query the algorithm at exponentially many
inputs in order to detect the non-monotonicity, or return
a default outcome that guarantees monotonicity but has a
poor approximation ratio.

For our impossibility result in the Bayesian setting, we
show that the per-agent mapping approach of [12] must fail
for almost any objective other than social welfare. We con-
sider the makespan objective, and construct a constant ap-
proximation algorithm for which any polytime BIC transfor-
mation must have large expected makespan. The key to our
construction is that the algorithm will return good alloca-
tions only on typical (i.e. concentrated) inputs; this limits a
mechanism’s ability to explore the allocation space by quer-
ing at atypical inputs.

All of our constructions involve simple instances with sym-
metric value spaces: each agent has a high or a low value
and gets a high or a low (or medium in one case) allocation.
The complexity in our constructions lies in the feasibility
constraints satisfied by the algorithm to be transformed. In
particular, our constructions involve feasibility constraints
that are asymmetric across agents. This is essential: when
agents have few possible types, good mechanisms can always
be constructed in the absence of a feasibility constraint, or
when the constraint is symmetric across agents5.

Related Work.
Reductions from mechanism design to algorithm design

in the Bayesian setting were first studied by Hartline and
Lucier [12], who showed that any approximation algorithm
for a single-parameter social welfare problem can be con-
verted into a Bayesian incentive compatible mechanism with
arbitrarily small loss in expected performance. This was ex-
tended to multi-parameter settings by Hartline, Kleinberg
and Malekian [11] and Bei and Huang [4].

Some reductions from mechanism design to algorithm de-
sign are known for prior-free settings, for certain restricted
classes of algorithms. Lavi and Swamy [15] consider mecha-
nisms for multi-parameter packing problems and show how
to construct a (randomized) TIE β-approximation mecha-
nism from any β-approximation that verifies an integrality
gap. Dughmi, Roughgarden and Yan [9] extend this ap-
proach and obtain TIE mechanisms for a broad class of sub-
modular combinatorial auctions. Dughmi and Roughgarden
[8] give a construction that converts any FPTAS algorithm
for a social welfare problem into a TIE mechanism.

Babaioff et al. [3] provide a technique for turning a β-
algorithm for a single-valued combinatorial auction problem
into a truthful β(log vmax/vmin)-approximation mechanism,
when agent values are restricted to lie in [vmin, vmax]. Huang
et al. [14] prove that any algorithm for a symmetric single-
parameter social welfare problem can be converted into a

5In particular, when agents have few possible types and the
feasibility constraint is symmetric, an input profile is de-
termined entirely by the number of agents of each type, of
which there are only polynomially many such choices. One
can therefore implement a MIR mechanism that queries the
given algorithm on every type profile, up to permutation.

truthful MIR mechanism with arbitrarily small loss in ap-
proximation, building upon a reduction with logarithmic loss
due to Goel et al. [10].

Many papers have explored the limitations of truthful
mechanisms for approximating social welfare in settings with
multi-parameter types. Papadimitriou, Schapira and Singer
[16] show a gap between the power of deterministic algo-
rithms and truthful mechanisms, and a similar gap was es-
tablished by Dobzinski [7] for randomized TIE mechanisms.
However, prior to our work, it was not known whether a loss-
less black-box reduction could exist for the class of single-
parameter problems.

For the makespan objective in multi-parameter settings
(i.e. when the sizes of jobs on different machines are un-
related), Ashlagi et al. [2] proved a gap between the ap-
proximating power of algorithms and“anonymous” incentive
compatible mechanisms. The situation for single-parameter
(a.k.a. related machines) settings is quite different: a line
of work on incentive compatible mechanisms [1, 6] recently
culminated in the development of a deterministic truthful
PTAS by Christodoulou and Kovács [5], matching the ap-
proximation of the best possible approximation algorithm
[13]. Our negative result for makespan minimization dif-
fers in that we consider black-box mechanisms in a setting
where the underlying algorithm may satisfy an additional
feasibility constraint.

2. PRELIMINARIES
Optimization Problems. In a single-parameter op-

timization problem we are given as input a value vector
v = (v1, v2, . . . , vn), where each vi is drawn from a known
set Vi ⊆ R. Let V = V1 × · · · × Vn denote the input space.
The goal is to choose an allocation x ∈ F ⊆ R

n from a set
of feasible allocations F such that a given objective func-
tion φ : F × V → R is optimized (i.e. either maximized or
minimized, depending on the nature of the problem). We
think of the feasibility set F and the objective function φ as
defining an instance of the optimization problem. For ex-
ample, the social welfare objective is φ(x,v) = x ·v and the
makespan objective is φ(x,v) = maxi xi/vi.

An algorithm A defines a mapping from input vectors v
to outcomes x. We will write A(v) for the allocation re-
turned by A as well as the value it obtains. In general A
can be randomized, in which case A(v) is a random vari-
able. Given an instance (F , φ), we will write OPTF (v) for
the allocation in F that optimizes φ(x,v). Let approxF(A)
denote the worst-case approximation ratio of A for problem

F . That is, approxF(A) = minv∈V
E[A(v)]

OPTF (v)
for a maximiza-

tion problem, where the expectation is over any randomness
in A. Note that approxF(A) ≤ 1 for all F and A.

In the Bayesian version of our optimization problem, there
is publicly-known product distribution F = F1 × . . . × Fn

over input vectors. Given F, the expected objective value of
algorithm A is φ(A) = Ev∼F[φ(A(v),v)]. The goal in this
setting is to optimize the expected objective value.

Mechanisms. We consider a mechanism design setting
with n rational agents, where each agent possesses one value
from the input vector as private information. An outcome x
represents an allocation to the agents, where xi is the alloca-
tion to agent i. A mechanism proceeds by eliciting declared
values b ∈ R

n from the agents, then applying an allocation
algorithm A : Rn → F that maps b to an allocation x, and

437

a payment rule that maps b to a payment vector p. We
will write x(b) and p(b) for the allocations and payments
that result on input b. The utility of agent i, given that the
agents declare b and his true private value is vi, is taken to
be vixi(b)− pi(b).

A mechanism is truthful in expectation (TIE) if each agent
maximizes its expected utility by reporting its value truth-
fully, regardless of the reports of the other agents, where ex-
pectation is taken over any randomness in the mechanism.
We say that an algorithm is TIE if there exists a payment
rule such that the resulting mechanism is TIE. It is known
that an algorithm is TIE if and only if it is monotone: that
is, for all i, all v−i, and all vi ≤ vi

′,

E[xi(vi,v−i)] ≤ E[xi(vi
′,v−i)]. (1)

We say that a mechanism is Bayesian incentive compatible
(BIC) for distribution F if each agent maximizes its expected
utility by reporting its value truthfully, given that the other
agents’ values are distributed according to F (and given any
randomness in the mechanism). We say that an algorithm
is BIC if there exists a payment rule such that the resulting
mechanism is BIC. It is known that an algorithm is BIC if
and only if, for all i and all vi ≤ vi

′,

Ev−i [xi(vi,v−i)] ≤ Ev−i [xi(vi
′,v−i)]. (2)

Transformations. A transformation T is an algorithm
that has black-box access to some algorithmA. Write T (A,v)
for the output of T on input v, given that its black-box ac-
cess is to A. We write T (A) for the allocation rule6 T (A, ·).
Note that T is not parameterized by F ; informally speak-
ing, T has no knowledge of the feasibility constraint F , so
in particular we can assume that T (A,v) is always an al-
location observed by querying A. We do assume that T is
aware of the objective function φ, the input domain V , and
(in Bayesian settings) the distribution F.

Transformation T is truthful in expectation (TIE) if T (A)
is TIE for all A. Likewise, T is Bayesian incentive compati-
ble (BIC) for distribution F if, for all A, T (A) is BIC for F.
Note that whether or not T is TIE or BIC is independent
of the objective φ and feasibility constraint F .

3. A LOWER BOUND FOR TIE TRANSFOR-
MATIONS

We will prove the following theorem, which states that
any TIE transformation must convert some constant factor
approximate algorithms into mechanisms with polynomial
approximation factors.

Theorem 3.1. There are constants c1, c2 such that, for
any polytime TIE transformation T , there is an algorithm
A and problem instance F with approxF(A) ≥ c1 such that
approxF(T (A)) ≤ 1/nc2 .

Before describing our construction, let us build some in-
tuition for the requirements of Theorem 3.1. Our goal is to
construct an algorithm A that is difficult to monotonize (i.e.
satisfy (1)). Since T is limited to making a polynomial num-
ber of queries on each input, a natural approach is to hide a

6Note that a polynomial-time transformation can make only
polynomially many queries to compute T (A,v) for each v,
but T (A) may depend on the behaviour of A on a super-
polynomially large subset of the input space.

non-monotonicity in the (exponentially large) input space.
This idea is impeded by the locality of the monotonicity re-
quirement: on input v, transformation T can query A on
each input that differs from v on a single coordinate, and
hence find any pair v,v′ that violates (1).

Alternatively, one could embed a “high-dimensional” non-
monotonicity into A by choosing input vectors v,v′ that
differ on many coordinates and setting Ai(v) > Ai(v

′) for
each agent i with vi < vi

′. Such a situation seems harder to
detect, but does not directly imply non-truthfulness. For ex-
ample, if A satisfies A(1, 1) = (10, 10) and A(2, 2) = (5, 5),
then condition (1) is not necessarily violated: it may be
that A(1, 2) = (4, 11) and A(2, 1) = (11, 4). However, if we
additionally impose a feasibility constraint that the agents
involved in the high-dimensional non-monotonicity always
receive the same allocation, then we could infer that (1)
must be violated somewhere. Thus, under certain feasibil-
ity constraints, T must find and correct high-dimensional
non-monotonicities.

Motivated by this observation, our approach to proving
Theorem 3.1 is as follows. We will construct an approx-
imation algorithm A containing a high-dimensional non-
monotonicity and a feasibility constraint that together im-
ply that A is not TIE. Our algorithm will be such that T
cannot detect the non-monotonicity (or even that one ex-
ists) with non-negligible probability. Thus, to guarantee in-
centive compatibility, T will be forced to modify the algo-
rithm’s output aggressively in order to address any possible
non-monotonicity that could be present. However, our algo-
rithm will be constructed so that such a modification must
degrade its approximation factor significantly.

Various technical hurdles must be overcome to implement
this plan. First, we must restrict the set of allocations that
can be found by T (with non-negligible probability) when
adaptively querying the algorithm, so that T cannot find
a way to correct non-monotonicities without harming the
algorithm’s approximation factor. At the same time, we re-
quire that our algorithm obtain a constant approximation,
which limits our ability to hide allocations from T via sub-
optimality. The details of the construction involve carefully
balancing the tension between these requirements.

3.1 Construction
In the instances we consider, each private value vi is cho-

sen from {v, 1}, where v ∈ (0, 1) is a parameter of our con-
struction. We interpret an input vector as a subset y ⊆ [n],
corresponding to those agents with the “high” value 1. For
a ≥ 0 and S ⊆ [n], we will write xa

S for the allocation in
which each agent i ∈ S is allocated a, and each agent i �∈ S
is allocated 0.

Feasible Allocations. We consider a family of feasibility
constraints, which will be specified by parameters α, γ with
0 < γ < α < 1 and sets S, T ⊆ [n] of agents. We think of S
and T as being polynomially large sets, with a polynomially
large intersection; see Figure 1(a). The feasible allocations
will be xγ

[n], x
1
S, and xα

T . That is, we can allocate γ to every

agent, 1 to all agents in S, or α to all agents in T . We write
FS,T,α,γ for this feasibility constraint.

The Algorithm. Fix feasibility constraint FS,T,α,γ . Let
U = S ∩ T and choose a set V ⊂ U . We will define an ap-
proximation algorithm A = AV,S,T,α,γ for problem FS,T,α,γ .
This will be our candidate for the algorithm in the statement
of Theorem 3.1.

438

| | = 13/20

| = 13/20

| = 7/20

(a)

() = 1 () = α

(b) (c)

Figure 1: (a) Visualization of typical admissible sets of

bidders V , S, and T , and the corresponding allocations

of algorithm A on (b) input V and (c) input U = S ∩ T .

We begin with an informal description of Algorithm A
(formally listed as Algorithm 1 below). Recall that A ac-
cepts as input a vector v ∈ {v, 1}n. A will return xα

T if
sufficiently many of the high-valued agents lie in set T , and
will return x1

S if sufficiently many of the high-valued agents
lie in set S. When most high-valued agents lie in S ∩ T ,
set V is used to determine the outcome: if sufficiently many
high-valued agents lie in V then we return x1

S, otherwise we
return xα

T . If there are not enough high-valued agents, or if
too many lie outside S ∪ T , then we return xγ

[n]. See Figure
1.

Algorithm A has the following properties that will be im-
portant to our analysis. First, all outcomes of A are constant
on U . Also, A(V) = x1

S and A(U) = xα
T , so if α < 1 then A

contains a high-dimensional non-monotonicity as described
at the beginning of this section. Moreover, A will return
x1
S for any input y that is sufficiently close to V (i.e. small

symmetric difference), and for a randomly chosen subset of
S (with high probability). On the other hand, any input
sufficiently close to U or chosen randomly as a subset of T
will generate outcome xα

T . These last properties will be im-
portant in arguing that a TIE transformation is unlikely to
detect the non-monotonicity between inputs V and U . Fi-
nally, as we demonstrate in the next section, A obtains a
constant approximation when parameters are chosen appro-
priately.

Before presenting the formal description of Algorithm A
we require some definitions. Given y ⊂ [n], we define

nT (y) = |y ∩ T |+ |y ∩ U |
and

nS(y) = |y ∩ S|+ 2|y ∩ V |.
That is, nT (y) is the number of elements of y that lie in T ,
with elements of U counted twice. Likewise, nS(y) is the

number of elements of y that lie in S, with elements of V
counted thrice.

The algorithm AV,S,T,α is then described as Algorithm 1.

Algorithm 1: Allocation Algorithm AV,S,T,α

Input: Subset y ∈ [n] of agents with value 1
Output: An allocation x ∈ FV,S,T,α

1 if nS(y) ≥ t, nS(y) ≥ γ|y|, and nS(y) ≥ nT (y) then
2 return x1

S

3 else if nT (y) ≥ t, nT (y) ≥ γ|y|, and nT (y) ≥ nS(y)
then

4 return xα
T

5 else
6 return xγ

[n]

7 end

3.2 Analysis
We now derive the key lemmas for the proof of Theo-

rem 3.1.
Parameter Conditions. All of the results in this section

will require that we impose certain technical constraints on
the parameters α and γ and the sets V , S, and T . Roughly,
parameter 1/γ and sets V , S ∩ T , S, and T should be suffi-
ciently large, and α should be sufficiently small (as functions
of n and v).

Formally, we will choose parameters t ≥ r ≥ 1 (polynomi-
ally large in n) which will dictate the required sizes of sets
V , S, and T . We will choose these parameters so that

t� r � 1

γ
� 1

α
, r5t ≤ n, and

t

γn
� 1.

Given this choice of r and t, we say that sets V , S, and T
are admissible if the following conditions hold:

1. |S| = |T | = r3t,

2. |S ∩ T | = r2t,

3. V ⊂ S ∩ T , and

4. |V | = rt.

See Figure 1(a) for an illustration of the relationship between
the sets in an admissible triple. For the remainder of this
section we will assume that V , S, and T are feasible. We
will set the values of parameters r, t, α, γ, and v in Section
3.3.

Algorithm Analysis. For our first lemma, we bound the
approximation factor of AV,S,T,α,γ for problem FV,S,T,α,γ .
In particular, we note that if α = 1 then AV,S,T,α,γ is a
constant approximation.

Lemma 3.2. approxFS,T,α,γ (AV,S,T,α,γ) ≥ α/6.

Proof. Choose y ⊆ [n] and consider the three cases for
the output of AV,S,T,α.

Case 1: nS(y) ≥ t, nS(y) ≥ γ|y|, and nS(y) ≥ nT (y).
Our algorithm returns allocation x1

S and obtains welfare at
least |y ∩ S|. Note that

|y ∩ S| ≥ 1

3
nS(y) ≥

1

3
t

439

and

|y ∩ S| ≥ 1

3
nS(y) ≥

1

3
nT (y) ≥

1

3
|y ∩ T |.

The allocation xα
T obtains welfare at most α(|y ∩ T | +

|T\y|v) ≤ α(|y ∩ T | + nvγ) ≤ |y ∩ T | + t ≤ 6|y ∩ S|. Note
that here we used |T | ≤ nγ, which follows since r > γ−1.

The allocation xγ
[n] obtains welfare at most γ|y| + t ≤

2nS(y) ≤ 6|y∩S|. So we obtain at least a 1/6-approximation
in this case.

Case 2: nT (y) ≥ t, nT (y) ≥ γ|y|, and nT (y) ≥ nS(y).
Our algorithm returns allocation xα

T and obtains welfare at
least α|y ∩T |. The same argument as case 1 shows that our
approximation factor is at least α/6 in this case.

Case 3: nS(y) ≤ t and nT (y) ≤ t. Our algorithm returns
allocation xγ

[n]
for a welfare of at least γ(|y|+v(n−|y|)) ≥ t.

The allocation x1
S obtains welfare at most |y ∩ S| + t ≤

nS(y) + t ≤ 2t, and allocation xα
T obtains welfare at most

2αt ≤ 2t. So our approximation factor is at least 1/2 in this
case.

Case 4: nS(y) ≤ γ|y| and nT (y) ≤ γ|y|. Our algorithm
returns allocation xγ

[n] for a welfare of at least γ(|y|+ v(n−
|y|)) ≥ γ|y|. The allocation x1

S obtains welfare at most |y ∩
S| + t ≤ 2nS(y) ≤ 2γ|y|, and allocation xα

T obtains welfare
at most |y ∩ T |+ t ≤ 2αγ|y| ≤ 2γ|y|. So our approximation
factor is at least 1/2 in this case.

Our next claim restricts the behaviour of TIE algorithms
for problem FS,T,α,γ . The result uses the fact that all allo-
cations in FS,T,α,γ are constant on U .

Claim 3.3. Suppose A′ is a truthful-in-expectation algo-
rithm for problem FS,T,α,γ . Then the expected allocation to
each agent in U must be at least as large in A′(U) as in
A′(V).

Proof. Take any set W with V ⊆W ⊆ U , |W | = |V |+1.
Then, on input W , the expected allocation to the agent in
W \ V must not decrease relative to its allocation on input
V . Since all allocations are constant on U , this means that
the expected allocation to each agent in U on input W must
not decrease relative to allocation on input V . By the same
argument, A′ returns an allocation to each agent in U at
least this large for all W such that V ⊆ W ⊆ U , and in
particular for W = U .

Transformation Analysis. In light of Claim 3.3, our
strategy for proving Theorem 3.1 will be to show that a
polytime transformation T is unlikely to encounter the al-
location xα

T during its sampling when the input is V , given
that the sets V , S, and T are chosen uniformly at random
over all admissible tuples. This means the transformation
will be unable to learn the value of α. This is key since it
prevents the transformation from satisfying the conditions
of Claim 3.3 by giving an expected allocation of α to the
agents in U on input V . Similarly, a transformation is un-
likely to encounter the allocation x1

S during its sampling on
input U , and therefore cannot satisfy Claim 3.3 by allocating
1 to agents in U on input U .

Our next two lemmas demonstrate that if the sets V , S,
and T were chosen at random, then it is exponentially un-
likely that a transformation would observe allocation xα

T

during its sampling when given input V (Lemma 3.4), or
observe allocation x1

S given input U (Lemma 3.5).

Lemma 3.4. Fix V and S satsifying the requirements of
admissibility. Then for any y ⊆ [n], PrT [AV,S,T,α(y) =

xα
T] ≤ e−O(t

r+1
), with probability taken over all choices of

T that are admissible given V and S.

Proof. Fix any y. Write nV = |y∩V |, nS = |y∩(S−V)|,
and n∗ = |y∩([n]−S)|. Note that |y| = nV +nS+n∗. Define
the random variables mU and mT by mU = |y ∩ (U − V)|
and mT = |y ∩ (T\S)|.

The event [AV,S,T,α(y) = xα
T] occurs precisely if the fol-

lowing are true:

mT + 2nV + 2mU ≥ t, (3)

mT + 2nV + 2mU ≥ γ(nV + nS + n∗), (4)

mT + 2nV + 2mU ≥ nS + 3nV . (5)

We will show that the probability of these three inequali-
ties being true is exponentially small. To see this, note that
(5) implies that mT + 2mU ≥ nV . Thus, (3) implies that
mT + 2mU ≥ t/3, and hence mT + mU ≥ t/6. Now each
element of y counted in nS will count toward mU with prob-
ability 1

r+1
, and each element of y counted in n∗ will count

toward mT with probability 1
r+1

. Since t � r, Chernoff

bounds imply that with probability at least 1− e−O(t/r), we
will have n∗ + nS ≥ r

2
(mT +mU). Then

mT + 2nV + 2mU

nV + nS + n∗
<

3(mT + 2mU)

nS + n∗
<

12

r
� γ

contradicting (4).

Lemma 3.5. Fix U and T satsifying the requirements of
admissibility. Then for any y ⊆ [n], PrS[AV,S,T,α(y) =

x1
S] ≤ e−O(t

r+1
), with probability taken over all choices of

V and S that are admissible given U and T .

Proof. Fix any y. Write nU = |y∩U |, nT = |y∩(T−U)|,
and n∗ = |y ∩ ([n] − T)|. Note that |y| = nU + nT + n∗.
Define the random variables mV and mS by mV = |y ∩ V |
and mS = |y ∩ (S\T)|.

The event [AV,S,T,α(y) = x1
S] occurs precisely if the fol-

lowing are true:

mS + nU + 2mV ≥ t, (6)

mS + nU + 2mV ≥ γ(nU + nT + n∗), (7)

mS + nU + 2mV ≥ nT + 2nU . (8)

We will show that the probability of these three inequali-
ties being true is exponentially small. To see this, first note
that we can assume nT = 0, as this only loosens the require-
ments of the inequalities. We then have that (8) implies
mS + 2mV ≥ nU . Thus, (6) implies that mS + 2mV ≥ t/2,
and hence mS +mV ≥ t/4. Now each element of y counted
in nU will count toward mV with probability 1

r
, and each

element of y counted in n∗ will count toward mS with prob-
ability 1

r+1
. Since t � r, Chernoff bounds imply that with

probability at least 1 − eO(t/r), we will have n∗ + nT ≥
r
2
(mS +mV). Then

mS + nU + 2mV

nU + n∗
<

4(mS +mV)

nU + n∗
<

8

r
� γ

contradicting (7).

440

We emphasize that the results of Lemma 3.4 and 3.5 hold
for every possible input vector y. This is crucial, since we
wish for these lemmas to apply even when inputs are chosen
adaptively by transformation T to gain information about
the given algorithm and feasibility constraint.

3.3 Proof of Main Theorem
We can now set our parameters t, r, α, and γ. We will

choose t = n1/5, r = n3/20, and γ = n−2/20. The values
of α we will be considering are 1 and n−1/20. Note that
t � r � γ−1 � α−1 for each choice of α. Note also that
v = tγ−1/n = n−14/20 � 1.

Our idea now for proving Theorem 3.1 is that since the
transformation cannot determine the value of α on input V
(by Lemma 3.4), and since it cannot find the “good” allo-
cation of x1

S on input U (by Lemma 3.5), it must be pes-
simistic and allocate the minimum possible value of α to
agents in V on input V in order to guarantee that the re-
sulting allocation rule is TIE (by Claim 3.3). This implies a
bad approximation on input V and hence a bad worst-case
approximation.

Proof of Theorem 3.1 : For each admissible V, S, T
and α ∈ {1, n−1/20}, write A′

V,S,T,α for T (AV,S,T,α). Con-
sider choosing V , S, and T uniformly at random over all
admissible choices of these sets. Lemma 3.5 implies that,
with all but exponentially small probability, A′

V,S,T,α will

not encounter allocation x1
S on input U (where the proba-

bility is taken over the choice of sets and any randomness in
the transformation). Furthermore, Lemma 3.4 implies that,
with all but exponentially small probability, A′

V,S,T,α will
not encounter allocation xα

T on input V . We conclude that
there exists an admissible choice of sets V , S, and T such
that, with all but exponentially small probability, A′

V,S,T,α

will not encounter allocation x1
S on input U nor allocation

xα
T on input V .
Fix this choice of V , S, and T . In the exponentially un-

likely event that A′
V,S,T,α(U) encounters x1

S or A′
V,S,T,α(V)

encounters xα
T , algorithm A′

V,S,T,α can obtain a welfare of

at most |V | = n7/20 on input V .
Suppose now that this exponentially unlikely event does

not occur. We then have that, on input U , A′
V,S,T,α can

allocate at most α to each agent in U in expectation (using
the fact that α > γ). Then, since A′

V,S,T,α is incentive
compatible, Claim 3.3 implies that A′

V,S,T,α must allocate
at most α to each agent in U on input V .

On input V , A′
V,S,T,α will not encounter allocation xα

T and
thus is unaware of the value of α. Thus, to ensure incentive
compatibility, A′

V,S,T,1(V) must allocate at most n−1/20 to
each agent in U . It therefore obtains a welfare of at most
|V |n−1/20 + t ≤ n1/5 + n3/10.

We conclude that the expected welfare of A′
V,S,T,1 on in-

put V (over all events) is at most n6/20, whereas a total of

|V | = n7/20 is possible with allocation x1
S. Thus A′

V,S,T,1

has a worst-case approximation of n−1/20, whereas AV,S,T,1

has an approximation factor of 1/6.

4. A LOWER BOUND FOR MAKESPAN
We now consider the makespan objective, which differs

from the welfare objective in that it is not linear in agent
values or allocations, and in that it is a minimization prob-
lem rather than a maximization. We will show that black-
box reductions for approximation algorithms for makespan

are not possible even if we relax the notion of truthfulness to
Bayesian incentive compatibility and relax the performance
measure to expected makespan with respect to the known
prior distribution.

In a Bayesian setting, the makespan problem can be de-
fined as follows. There are n selfish machines (i.e. agents)
which must be allocated a set of m jobs. Each agent has a
private parameter or value vi representing its speed. If ma-
chine i is allocated jobs with a total length xi, the finishing
time of machine i is xi/vi. The selfish objective of a ma-
chine is to maximize its payment minus its finishing time.
The makespan of allocation x given speeds v is the maxi-
mum finishing time of any machine: φ(x,v) = maxi

xi
vi
. The

social objective is to output an allocation thatminimizes the
makespan. An instance of the (Bayesian) makespan prob-
lem is given by a feasibility constraint F specifying the set
of permissable allocations and a value distribution F of ma-
chine speeds. Given an algorithm A, we use φ(A) to denote
its expected makespan with respect to F. Our main result is
that any BIC transformation T must degrade the expected
makespan of some algorithms by a polynomially large fac-
tor7.

Theorem 4.1. There are constants c1, c2 such that, for
any polytime black-box BIC transformation T , there is an
instance (F ,F) of the makespan problem and an algorithm

A with φ(A) ≤ c1 and φ(T (A)) ≥ c2n
1/4 for n large enough.

Our proof of this theorem is based on an instance in which
machines have just two potential speeds, fast or slow, drawn
uniformly at random, and jobs are of just two types, long
or short. There are a small number of long jobs and a large
number of short jobs. One of the many good algorithms for
this instance simply assigns one job per machine, trying to
give long jobs to fast machines and short jobs to slow ones.
So long as the distributions of speeds is typical (i.e., con-
centrated around the expectation of half fast and half slow
machines), there are enough machines of each type and so
this algorithm has low expected makespan. On the other
hand, the algorithm is highly non-monotone: since there are
only a small number of long jobs, the expected allocation of
the fast machines is very small, whereas the large number of
short jobs means the expected makespan of slow machines
is larger (for an appropriate setting of parameters). Any
transformation that fixes this non-monotonicity must either
increase the allocation to fast machines or decrease the allo-
cation to slow machines. The crux of our argument is that
any such fix necessarily increases expected makespan by a
polynomially large factor. Intuitively, on a typical input
vector of machine speeds, the transformation may either: 1)
query the algorithm on a vector in which the speeds of some
fast machines are swapped with the speeds of some slow ma-
chines, or 2) query the algorithm on a vector that is atyp-
ically unbalanced. In case 1), the transformation’s hope is
that the returned allocation will give short jobs to machines
that appear slow but are truly fast while simultaneously not
allocating long jobs to machines that appear fast but are
truly slow. We show that in order to sufficiently increase
the expected allocation of fast machines, the transformation
would have to swap a very large number of machine speeds

7For simplicity of exposition, we prove a gap of Ω(n1/4),
however, our construction can be tweaked to obtain a gap
of Ω(n1/2−δ) for any δ > 0.

441

and so exposes itself to a high risk of giving a long job to
a slow machine. Hence the expected makespan of each re-
turned allocation is high. In case 2), our algorithm returns
a uniformly random allocation which does significantly in-
crease the allocation to fast machines. However, as before,
there is a significant chance that some truly slow machines
receive long jobs and drastically increase the makespan of
the transformation.

We now provide the details of the proof suggested by this
intuition.

Problem Instance: We will consider the following in-
stance (F ,F) of a makespan minimization problem. Let

α < n1/2 be a parameter to be determined later. The
value distribution F will be the uniform distribution over
{1, α}n. That is, every value (i.e. speed) vi is 1 or α with

equal probability. There will be n1/2 jobs of length α and
n/2 + n3/4 of length 1. Our feasibility constraint F will be
that each machine can be assigned at most one job. That is,
F ⊆ {0, 1, α}n, and a vector in {0, 1, α}n is feasible if and

only if it contains n1/2 entries with value α and n/2 + n3/4

entries with value 1.
The Algorithm: Our algorithm A is described as Al-

gorithm 2 below; we think of A as an approximation al-
gorithm for problem instance described above. Roughly
speaking, A behaves as follows. Recall that A takes as in-
put a vector of speeds v ∈ {1, α}n. Given input v, write
H(v) = {i : vi = α} for the set of machines that declare
the high speed α. The behaviour of A will depend on the
size of set H(v). If ||H(v)| − 1

2
n| ≤ n3/4 (i.e. if |H(v)| is

close to its expectation), then A will allocate a short job
to each machine in [n]\H(v), and will allocate the

√
n long

jobs as well as any remaining short jobs (of which there are

t = 1
2
n + n3/4 − |H(v)| ≤ 2n3/4) to the machines in H(v),

uniformly at random. Otherwise, if |H(v)| is not close to its
expectation, A will ignore the reported speeds and return an
allocation chosen uniformly at random from all allocations
that assign at most one job to each machine. Although we
describeA as a randomized algorithm, we remark that Theo-
rem 4.1 holds even when A is restricted to be a deterministic
algorithm8.

For any v, let H(v) = {i : vi = α} be the set of high speed

agents. Let C denote the event that 1
2
n− n3/4 ≤ |H(v)| ≤

1
2
n + n3/4, over randomness in v. We think of C as the

event that the number of high-speed agents is concentrated
around its expectation. We note the following immediate
consequence of Chernoff bounds.

Observation 4.2. Prv[C] ≥ 1− 2e−n1/4/4.

This allows us to bound the expected makespan of A.

Lemma 4.3. φ(A) ≤ 1 + 2αe−n1/4/4.

Proof. If event C occurs, then A returns an allocation in
which each agent i with vi = 1 receives allocation at most 1.
Since each agent with vi = α also receives allocation at most
α, we conclude that if event C occurs then the makespan of

8In particular, if we consider the ensemble of determinis-
tic algorithms defined by taking all possible settings of the
random variables in Algorithm 2, then a straightforward ex-
tension of our results shows that, for every transformation,
Theorem 4.1 holds for at least one algorithm in the ensem-
ble.

Algorithm 2: Allocation Algorithm A
Input: Vector v ∈ {1, α}n
Output: An allocation x ∈ F

1 H ← {i : vi = α};
2 if 1

2
n− n3/4 ≤ |H | ≤ 1

2
n+ n3/4 then

3 t← 1
2
n+ n3/4 − |H | ;

4 Choose set S ⊂ H with |S| = n−1/2 uniformly at
random;

5 Choose set T ⊂ H \ S with |T | = t uniformly at
random;

6 for i �∈ H do xi ← 1;
7 for i ∈ S do xi ← α;
8 for i ∈ T do xi ← 1;
9 for i ∈ H \ (S ∪ T) do xi ← 0;

10 else

11 Choose set S ⊂ [n] with |S| = n1/2 uniformly at
random;

12 Choose set T ⊂ [n] \ S with |T | = n/2 + n3/4

uniformly at random;
13 for i ∈ S do xi ← α;
14 for i ∈ T do xi ← 1;
15 for i �∈ S, i �∈ T do xi ← 0;

16 end
17 return x

A(v) is at most 1. Otherwise, the makespan of A(v) is
trivially bounded by α. Since Observation 4.2 implies that

this latter case occurs with probability at most 2e−n1/4/4,
the result follows.

Transformation: Let T denote a BIC transformation
that can make at most en

1/4/2 black-box queries to an algo-
rithm for makespan. Write T (A) for the mechanism induced
when T is given black-box access to an algorithm A. Recall
that we can assume T (A) can only return an allocation that
it observed during black-box queries to algorithm A.

Let pbad denote the probability, over v, T , and A, that
T (A) returns an allocation with makespan α. We will show
that if T (A) is BIC, then pbad must be large; this will imply
that the expected makespan of T (A) will be large as well.

Intuitively, the reason that A is not BIC is that low-speed
agents are often allocated 1 while high-speed agents are often
allocated 0. In order to fix such non-monotonicities, T must
either increase the probability with which 1 is allocated to
the high-speed agents, or increase the probability with which
0 is allocated to the low-speed agents. We will prove that a
sufficiently large increase to these probabilities must imply
that pbad is large as well.

We first show that, if approximately half of the machines
are fast, then T (A) is unlikely to find an allocation that
allocates 0 to many slow machines but allocates long jobs
only to fast machines.

Lemma 4.4. Suppose v satisfies ||H(v)| − 1
2
n| ≤ n3/4,

and let random variable x denote the allocation returned
by T (A,v). Then the probability that φ(x,v) < α and at

least n3/4 agents satisfy vi = 1 and xi = 0 is at most

(ln 4)e−n1/4/2.

Proof. Let B denote the (bad) event, over randomness
in v, T , andA, that T (A) returns an allocation with makespan

442

α. Let U(v) be the event that, on input v, T (A) returns an
allocation x in which at least n3/4 agents satisfy vi = 1 and
xi = 0. Recall that C denotes the event that 1

2
n − n3/4 ≤

|H(v)| ≤ 1
2
n+ n3/4, over randomness in v.

Fix input v and suppose that event C∧U(v)∧¬B occurs.
Then v satisfies the event C, and moreover event U(v)∧¬B
occurs. Recall that T only returns an allocation that A
outputs on a query v′. We will refer to a query of A on
input v′ as a successful query if it returns an x that satisfies
U(v) ∧ ¬B. Let us bound the probability of a single query
being successful. Let t1 denote the number of agents with
vi = 1. Then C implies t1 ≥ n/2− n3/4.

First suppose that v′ does not satisfy the event C. That
is, the number of high speed agents in v′ is far from its mean
n/2. Then each of the t1 agents has an n−1/2 probability of
being allocated α (from the definition of A). The probability
that none of the t1 agents is allocated a load of α is at most

(1− n−1/2)t1 < e−n1/4

.
On the other hand, suppose that v′ satisfies the event C.

Then U(v) implies that at least t2 ≥ n3/4 agents satisfy
vi = 1 and vi

′ = α, since only agents for which vi
′ = α

can be allocated 0. In this case, each of these t2 agents
has probability at least n−1/2 of being allocated α. The
probability that none of them is allocated a load of α is at

most (1− n−1/2)t2 < e−n1/4

.
In either case, the probability that a single query is suc-

cessful is at most e−n1/4

. Transformation T can make at
most en

1/4

/2 queries on input v. We will now bound the
probability that any one of them is successful. Since the
allocations returned by A on any two queries are indepen-

dent, we can think of the en
1/4

/2 queries as independent

trials that are successful with probability at most e−n1/4

.
Thus, the probability that at least one of these queries is
successful is at most

1− (1− e−n1/4

)e
n1/4/2

= 1− (1− e−n1/4

)e
n1/4

e−n1/4/2

< 1− (1/4)e
−n1/4/2

= 1− (1/e)(ln 4)e−n1/4/2

< (ln 4)e−n1/4/2

as required.

Now consider the probability with which T allocates a
given job to an agent. For agent i, value v, and allocation
x, write pxi (v) = Prv−i,A,T [xi(v,v−i) = x]. That is, pxi (v)
is the probability that, conditioned on agent i’s value being
v, T (A) allocates x to agent i.

We can express the fact that T satisfies BIC in terms of
conditions on these probabilities (Lemma 4.5 below): either
p0i (1) should be large or one of p1i (α) and pαi (α) should be
large.

Lemma 4.5. Let x be the allocation rule of T (A). Then if
xi(1) ≤ xi(α), p

0
i (1) < 1/3, and p1i (α) < 1/3, then pαi (α) >

3/α.

Proof. Since p0i (1) < 1
3
, we have xi(1) > 2

3
. Since

p1i (α) < 1
3
, we have xi(α) < 1

3
+ pαi (α)α. We conclude

that 2
3
< 1

3
+ pαi (α)α which implies the desired result.

On the other hand, in Lemmas 4.6, 4.7, and 4.8, we will
show that on average over all agents, each of these probabil-

ities (p0i (1), p
1
i (α), and pαi (α)) is small if pbad is small. The

proofs of these lemmas are deferred to the end of this sec-
tion. In Lemma 4.9 we put these results together to argue
that pbad must be large.

Lemma 4.6. 1
2n

∑
i p

α
i (α) ≤ n− 1

2 .

Lemma 4.7. 1
2n

∑
i p

0
i (1) ≤ n−1/4+pbad+(ln 4)e−n1/4/2.

Lemma 4.8. 1
2n

∑
i p

1
i (α) ≤ 3n−1/4+pbad+(ln 4)e−n1/4/2+

2e−n1/4/4.

We can now derive a lower bound on pbad: since one of
p0i (1), p

1
i (α), or pαi (α) must be large, the bad event of allo-

cating a long job to a slow machine must occur with non-
negligible probability.

Lemma 4.9. If T is a BIC transformation, then pbad ≥
n−1/4(1− o(1)).

Proof. We know that, for each i, either p0i (1) ≥ 1/3,
p1i (α) ≥ 1/3, or pαi (α) > 3/α. So one of these inequalities
must be true for at least one third of the agents, and hence
one of the following must be true:

1

2n

∑
i

p0i (1) ≥ 1/18

1

2n

∑
i

p1i (α) ≥ 1/18

1

2n

∑
i

pαi (α) ≥ 1/2α.

Suppose first that the third inequality is true. Lemma 4.6
implies

n− 1
2 ≥ 1/2α

which is a contradiction, since α = 1
4
n1/2.

Suppose the first inequality is true. Then by Lemma 4.7 we
know

pbad ≥ 1/18 − n−1/4 − (ln 4)e−n1/4/2

which implies the desired result for sufficiently large n (as
the right hand side is at least a constant for large n, whereas

n−1/4−2e−n1/4/4−(ln 4)e−n1/4/2, from the statement of the
lemma, vanishes as n grows).
Finally, suppose the second inequality is true. Then we know
from Lemma 4.8

pbad ≥ 1/18− 5n−1/4 − 2(ln 4)e−n1/4/2 − 2e−n1/4/4

which again implies the desired result.

To complete the proof of Theorem 4.1, note Lemma 4.9
implies φ(T (A)) = 1 + αpbad = Ω(n1/4). Since φ(A) = θ(1)
(Lemma 4.3), T degrades the expected makespan of A by a

factor of Ω(n1/4).

Proofs of bounds on the allocation probabilities.
To conclude the analysis, we now present proofs of Lem-

mas 4.6, 4.7, and 4.8.

443

Proof of Lemma 4.6 : Note that, for any v, exactly n1/2

agents are allocated α by A. Thus, keeping v fixed, we have

1

n

∑
i

Pr[(vi = α) ∧ (xi(α,v−i) = α)] ≤ 1

n
(n1/2) = n−1/2.

We conclude, taking probabilities over all v, that

1

2n

∑
i

pαi (α) ≤ n−1/2.

Proof of Lemma 4.7 : For each input vector v, either
event ¬U(v) occurs, event B occurs, event ¬C occurs, or
event C ∧ U(v) ∧ ¬B occurs. Event ¬U(v) by definition
gives us a bound on the number of agents with value 1 that
receive an allocation of 0. So conditioning on this event (and
keeping v fixed) we have

1

n

∑
i

Pr[(vi = 1) ∧ (xi(1,v−i) = 0)] ≤ 1

n
n3/4 = n−1/4.

Thus, taking probabilities over all v and using Lemma 4.4,
we have

1

2n

∑
i

p0i (1) ≤ n−1/4 + Pr[B] + Pr[¬C]

+ Pr[C ∧ U(v) ∧ ¬B|v]

≤ n−1/4 + Pr[B] + 2e−n1/4/4 + (ln 4)e−n1/4/2

as required.

Proof of Lemma 4.8 : Let us first fix v and condition
on the event ¬B ∧ ¬U(v) ∧ C. Suppose that T (A) returns
an allocation x that is returned by A on input v′. Let
us consider whether v′ satisfies event C. Note that, as in
the proof of Lemma 4.4, the probability that T is able to
find an allocation v′ that does not satisfy event C and for

which event B does not occur is at most e−n1/4/2. Thus
the probability that ¬B ∧ ¬U(v) ∧ C occurs and moreover

v′ does not satisfy event C is at most (ln 4)e−n1/4/2. Given
that this (unlikely) event does occur, the number of agents

satisfying vi = α and xi = 1 is at most n/2 + n3/4 < n.
Next suppose that v′ does satisfy event C. Recall that we

wish to bound the number of agents for which vi = α and
xi = 1. Note, from the definition of A, that at most 2n3/4

agents can have vi
′ �= 1 and xi = 1. So what remains is to

bound the number of agents for which vi = α and vi
′ = 1.

Since v also satisfies event C, we have

−2n3/4 ≤ |H(v)| − |H(v′)| ≤ 2n3/4.

Furthermore, ¬U(v)∧¬B implies that |H(v′)\H(v)| ≤ n3/4.
Combining with the inequalities above, we conclude that
|H(v)\H(v′)| ≤ 2n3/4 + n3/4 = 3n3/4. Note that this is a
bound on the number of agents such that vi = α and vi

′ = 1.
We conclude that the number of agents such that vi = α and
xi = 1 is at most 3n3/4 + 2n3/4 = 5n3/4.

We conclude that, conditioning on event ¬B ∧¬U(v)∧C
and keeping v fixed, we have

1

n

∑
i

Pr[(vi = α) ∧ (xi(α,v−i) = 1)]

≤ 1

n
(5n3/4 + n(ln 4)e−n1/4/2).

Thus, taking probabilities over all v and all events and using
Lemma 4.4, we have

1

2n

∑
i

p0i (1) ≤ 5n−1/4 + (ln 4)e−n1/4/2 + Pr[B]

+ Pr[C ∧ U(v) ∧ ¬B|v] + Pr[¬C]

≤ 5n−1/4 +Pr[B] + 2(ln 4)e−n1/4/2 + 2e−n1/4/4

as required.

4.1 Symmetric Feasibility Constraints
Throughout this section, we have assumed that a transfor-

mation can only return allocations that it observes by query-
ing the given algorithm on some input. While this captures
the notion of a black box transformation, in some settings it
may be reasonable to assume that the feasibility constraints
exhibit some basic structure that could be exploited by a
transformation. One such natural assumption is symmetry:
if an allocation (xi) is feasible, then for any permutation π of
the agents, (xπ(i)) is also feasible. Symmetry occurs in any
environment in which agents are treated anonymously, for
example. In this section, we question whether one can cir-
cumvent the previous negative result in certain environments
by allowing the transformation to leverage knowledge of the
structure of the feasibility constraints. We will see that a
negative result similar to Theorem 4.1 holds even when the
transformation can exploit symmetry, if we consider envi-
ronments in which agent values are not drawn from identi-
cal distributions. In other words, symmetry and identically-
distributed priors are in some sense complementary. We
leave as an open question whether there exist transforma-
tions with small loss in makespan for environments with
identically distributed agent types and symmetric feasibility
constraints.

We first note that if we allow our transformation to as-
sume symmetry, then there is a trivial transformation for
Algorithm 2 presented in the previous setting: given an in-
put, the transformation queries the algorithm on that input,
sorts the machines in the input by speed (breaking ties lex-
icographically), sorts the allocations returned by the algo-
rithm by size, and then assigns each machine an allocation
in this order (i.e. so that the fastest machines are assigned
the greatest loads). This transformation is clearly monotone
and preserves the makespan.

Our negative result for symmetric feasibility constraints
is based on a construction very similar to the one in the
previous section. Each machine will have a slow speed and
a fast speed, as well as a small job and a large job. We use an
environment with non-identically distributed values to vary
the notions of slow and fast and small and large in order
to create instances where allocations can not be permuted
without significantly increasing the makespan.

Problem Instance.
There are 2n machines m1, . . . , mn and m′

1, . . . ,m
′
n. Ma-

chine mi has speed vi chosen uniformly from {α3i, α3i+1},
where we will choose α = 1

4
n1/2. Machine m′

i has speed

α3i+2. We refer to the machines mi as the “type-1” ma-
chines and the machines m′

i as the “type-2” machines.
There are 3n jobs: one each of size α3i, α3i+1, and α3i+2

for 1 ≤ i ≤ n. Our feasibility constraint allows each machine
to be assigned at most three jobs. We will refer to the jobs

444

of sizes α3i and α3i+1 as “type-1” jobs, and the jobs of sizes
α3i+2 as “type-2” jobs.

The Algorithm.
Our algorithm will be a slight modification of Algorithm 2

from the previous setting; we will only briefly describe the
differences. The type-1 jobs and machines correspond to
the jobs and machines used in the setting of Algorithm 2.
We define the high speed machines to be the set H = {i :
vi = α3i+1}; note that H consists only of type-1 machines.
Whenever Algorithm 2 assigns machine i a job of length α,
our modified algorithm will instead assign machine mi a job
of length α3i+1. Similarly, whenever Algorithm 2 assigns
machine i a job of length 1, our modified algorithm will
instead assign machine mi a job of length α3i. For each i,
we will assign machine m′

i the unallocated jobs among those
of size α3i, α3i+1, and α3i+2.

The extra power granted to a transformation in the sym-
metric setting is that it can modify allocations returned by
the original algorithm: given an observed allocation (xi)
and permutation π, the transformation can return alloca-
tion (xπ(i)). However, note that our algorithm is designed
so that, for every input vector (vi) and associated allocation
(xi), and every i′ > i, it is the case that xi′/vi ≥ α. This
implies that, for every observed allocation (xi) and permu-
tation π that is not the identity, the makespan of allocation
(xπ(i)) is always at least α. (This uses the fact that, for
every non-identity permutation π, there exists some i such
that π(i) > i). We conclude that a transformation cannot
make use of the symmetry assumption to reduce the proba-
bility with which it returns allocations with makespan α.

As in the analysis of Algorithm 2, the makespan of this
algorithm is dominated by that of the“typical”case in which
the number of high speed and low speed machines is approx-
imately balanced. In this typical case, the makespan is con-
stant. The atypical case, which occurs with exponentially
small probability by the Chernoff bound, has makespan at
most α = θ(n1/2), and hence the expected makespan due to
this atypical case is constant. On the other hand, any BIC
black-box transformation that performs a sub-exponential
number of queries has approximation factor at least α. This
is because, as discussed above, the transformation cannot
make use of the symmetry assumption without generating
allocations with makespan α. Since the transformation can-
not make use of symmetry, our previous analysis for the
proof of Theorem 4.1 applies and we obtain the following
similar impossibility result.

Theorem 4.10. There are constants c1, c2 such that, for
any polytime black-box BIC transformation T for symmetric
problem instances, there is a symmetric instance (F ,F) of
the makespan problem and an algorithm A with φ(A) ≤ c1
and φ(T (A)) ≥ c2n

1/4 for n large enough.

We note that our construction involves agent values that
lie in the range [1, nθ(n)], and that our approximability gap
is polynomial in n. The multiplicative loss in expected
makespan is therefore logarithmic in the range of values that
can be assumed by the agents. We leave open the question of
whether our construction can be modified so that the loss in
approximation factor can be made independent of the input
value space for symmetric settings.

5. THE LIMITATIONS OF IRONING
As mentioned earlier, BIC transformations can preserve

social welfare in expectation through a technique known as
ironing. One of the properties of the social welfare objec-
tive that allows such a transformation where one cannot
exist for makespan is that the objective function is additive
across agents. This allows a transformation to focus on each
agent individually while taking an aggregate view over other
agents and preserving the performance with respect to the
respective component of the objective function alone. Can
such a per-agent ironing approach be applied to other objec-
tives, for example those that are additive across agents (but
otherwise non-linear)? In this section we answer this ques-
tion in the negative: informally, any kind of non-linearity in
the objective leads to a loss in approximation that is related
to the degree of non-linearity and can be made arbitrarily
large.

The ironing approach of [12] and [11] can be described
as follows: for each agent i they construct a mapping σi

from the value space of i to itself, and on input v return
the output of the algorithm on σ(v) = (σ1(v1), σ2(v2), · · ·).
The mappings σi ensure the following three properties:

(P.1) the mapping preserves the distribution over values of
i,

(P.2) the expected allocation of agent i upon applying the
mapping, i.e. xi(σi(vi)), is monotone non-decreasing
in vi, and,

(P.3) the contribution of agent i to the overall social welfare
is no worse than in the original algorithm.

(P.1) coupled with (P.2) implies that the transformation is
BIC. (P.3) implies that the social welfare is preserved in
expectation. Furthermore, the benefit of this approach is
that if each agent’s value space is single-dimensional or well
structured in some other way, the computational problem of
finding the mappings σi becomes easy. We call any mapping
g that satisfies the properties (P.1) and (P.2) a per-agent
ironing.

Our claim is that for any objective function that is non-
linear in the agents’ allocations, there exists an instance such
that for any per-agent ironing suffers a loss in performance
that depends on the degree of non-linearity in the function.
Our argument make use of randomness in the original (non-
truthful) algorithm. This is essentially without loss of gen-
erality: from a single agent’s point of view, the algorithm’s
outcome, dependent on others’ a priori random values, ap-
pears random. Through most of this section we focus on a
single agent setting.

We first deal with maximization problems, maxEv[h(x, v)],
where the function h is an increasing function of the allo-
cations and values. (Note that maximizing a function that
is either decreasing in allocations or in values leads to a
non-monotone objective.) Our gap construction depends on
whether the function displays convexity or concavity. We
argue the convex case; The concave case, which is quite sim-
ilar, is left as an exercise to the reader.

We begin by defining two definitions that the function h
must satisfy in order for ironing to fail:

Definition 5.1. A function h is said to be α-convex
with respect to a random variable X at v if E[h(X, v)] ≥
αh(E[X], v).

445

Definition 5.2. A function h is said to be α-responsive
with respect to v at x if there exists a value v′ such that
h(x, v) ≥ αh(x, v′).

The first definition is a quantitative version of Jensen’s in-
equality and essentially quantifies the function’s departure
from convexity. The second asserts that the function is “re-
sponsive” to the agent’s value. For example, consider the
function h(x, v) = vx2 defined over x, v ∈ [0, 1] and con-
sider the random variable X that takes on values 0 and
1 with equal probability. Then, E[h(X, v)] = 0.5v and
h(E[x], v) = 0.25v. Therefore, the function is 2-convex with
respect to X at any v. Moreover, it is α-responsive with
respect for any α > 0 to any v at any x. On the other hand,
the function h(x, v) = v(x+ 10)2 defined over x, v ∈ [0, 1] is
not very convex with respect to the random variable X de-
fined above: E[h(X, v)] = 110.5v and h(E[X], v) = 110.25v.
In fact this function admits a good linear approximation
given by v(21x + 100); the ratio between the two functions
is at most 1.002 within the range x, v ∈ [0, 1].

It should be immediately evident that both properties are
necessary to show that ironing degrades the performance
of an approximation algorithm. Indeed, an objective func-
tion that is not sensitive to the agents’ values can be ironed
because no permutation of allocations across values can af-
fect the objective by too much. Likewise, a function that
is nearly linear everywhere can be ironed because ironing
maximizes a linear approximation to the function. We re-
mark that for our argument it is sufficient for the function
to satisfy the two properties over some appropriate interval
rather than everywhere.

We are now ready to prove our claim.

Theorem 5.3. Let h be a continuous increasing function
of x and an increasing function in v. Suppose that there ex-
ists a value v and a random variable X in the support of the
function such that h is α-convex with respect to X at all val-
ues and α2-responsive with respect to v at any allocation in
the support of X. Then there exists a distribution over agent
values and an algorithm A such that any transformation that
performs a per-agent ironing of the allocation function of A
obtains objective function value a factor of Ω(α) worse than
that of A.

Proof. Let ε = 1/α. Let x̄ = E[X] and h̄(v) = E[h(X, v)].
Let v′ < v be a value such that h(x, v) ≥ 1/ε2h(x, v′)
for all x in the support of X. Let x′ > x̄ be such that
h(x′, v′) ≤ (1 + ε)h(x̄, v′) and h(x′, v) ≤ (1 + ε)h(x̄, v). The
continuity of h implies that x′ exists. The main idea behind
the proof is the following. In terms of the objective function
h, an allocation of x′ is much worse than a randomized allo-
cation of X. However, the expected allocation in the latter
case is x̄ which is smaller than x′. We will now define an
instance where the ironing is forced to replace a randomized
allocation of X by an allocation of x′, thereby hurting the
objective function value.

Consider an instance in which the agent’s value is v′ with
probability 1 − ε and v otherwise. A is defined as follows.
When the agent reports a value of v′, the algorithm allo-
cates x′ to the agent. When the agent reports a value of v,
the algorithm allocates according to X. Now the expected
allocation at v is x̄ < x′, and therefore ironing is necessary.
Suppose that the tranformation maps the value v′ to v with
probability z/(1− ε) for some z. Then, to preserve the dis-

tribution over values, we must have z ≤ ε and v must get
mapped to v′ with probability z/ε.

How large does z have to be to fix the non-monotonicity?
The new expected allocation at v′ is z/(1− ε)x̄+(1−z/(1−
ε))x′, while the new expected allocation at v is (1− z/ε)x̄+
x′z/ε. Setting the former to be no larger than the latter,
and rearranging terms, we get

z/(1− ε) + z/ε ≥ 1

implying z ≥ ε(1− ε).
Let us now compute the objective function value. The

original objective function value is (1− ε)h(x′, v′)+ εh̄(v) >
εh̄(v). The new objective function value is given by

(1− ε)

(
z

1− ε
h̄(v′) +

(
1− z

1− ε

)
h(x′, v′)

)

+ ε
z

ε
h(x′, v) + ε

(
1− z

ε

)
h̄(v)

≤ (1− ε2)h̄(v′) + z(1 + ε)h(x̄, v) + ε
(
1− z

ε

)
h̄(v)

≤ ε2(1− ε2)h̄(v) + ε2(1 + ε)h̄(v) + ε2h̄(v)

< 4ε2h̄(v)

Here the first inequality follows from the fact that h(x′, v′) ≤
(1+ε)h(x̄, v′) ≤ (1+ε)h̄(v′) and h(x′, v) ≤ (1+ε)h(x̄, v); The
second follows from h̄(v′) ≤ ε2h̄(v), h(x̄, v) ≤ εh̄(v), z ≤ ε,
and z ≥ ε(1 − ε). This implies that any mapping σ that
preserves the value distribution and achieves monotonicity
must achieve an approximation fator of Ω(1/ε).

We next consider algorithms for minimization problems
of the form minEv[h(x, v)], where the function h is non-
decreasing in x and non-increasing in v. Once again we
focus on the case where h is convex in x; the concave case
is similar and we skip it.

Theorem 5.4. Let h be a continuous increasing function
of x and a decreasing function in v. Suppose that there exists
a value v and a random variable X such that h is α-convex
with respect to X at v and α-responsive with respect to v
at any allocation in the support of X. Then there exists a
distribution over agent values and an algorithm A such that
any transformation that performs a per-agent ironing of the
allocation function of A obtains objective function value a
factor of Ω(α) worse than that of A.

Proof. Let ε = 1/α. Let v′ > v be a value such that
h(x, v) ≥ 1/εh(x, v′) for all x in the support of X. Consider
an instance where the agent’s distribution is uniform over
{v, v′}. Let x̄ = E[X]. Let x′ > x̄ be such that h(x′, v) ≤
(1 + ε)h(x̄, v). Let h̄(v) = E[h(X, v)].

The algorithm A is defined as follows. At v, the algorithm
returns x′. At v′, the algorithm returns X. The expected
allocation at v2 is x̄, and therefore the allocation is non-
monotone. Suppose that the tranformation maps v to v′

with probability z and vice versa. Then it is easy to see
that z ≥ 1/2.

Now let us compute the objective function value. The ob-
jective function value of the original algorithm is 1/2h(x′, v)+
1/2h̄(v′) ≤ 1/2(1 + ε)εh̄(v) + 1/2εh̄(v) = (1 + ε/2)εh̄(v).

On the other hand, we can bound from below the objective
function value of the transformed mechanism by considering
the term corresponding to value v when the allocation is
randomized according to X (an event that happens with

446

probability at least 1/4). The new objective function value
is therefore at least 1/4h̄(v). This proves the theorem.

Finally, we remark that while our arguments above fo-
cused on settings consisting of a single agent, it is straight-
forward to extend the argument to settings that involve mul-
tiple agents—essentially, we can construct instances where
a single agent makes a large contribution to the algorithm’s
(and transformation’s) performance, and the allocations and
therefore contributions of other agents to the objective func-
tion are fixed. We leave the details to the reader.

6. REFERENCES
[1] A. Archer and E. Tardos. Truthful mechanisms for

one-parameter agents. In Proc. 42nd IEEE Symp. on
Foundations of Computer Science, 2001.

[2] Itai Ashlagi, Shahar Dobzinski, and Ron Lavi. An
optimal lower bound for anonymous scheduling
mechanisms. In Proceedings of the 10th ACM
conference on Electronic commerce, pages 169–176,
2009.

[3] M. Babaioff, R. Lavi, and E. Pavlov. Single-value
combinatorial auctions and algorithmic
implementation in undominated strategies. Journal of
the ACM, 2009.

[4] X. Bei and Z. Huang. Bayesian incentive compatibility
via fractional assignments. In Proc. 22nd ACM Symp.
on Discrete Algorithms, 2011.

[5] George Christodoulou and Annamária Kovács. A
deterministic truthful ptas for scheduling related
machines. In Proceedings of the Twenty-First Annual
ACM-SIAM Symposium on Discrete Algorithms,
SODA ’10, pages 1005–1016, Philadelphia, PA, USA,
2010. Society for Industrial and Applied Mathematics.

[6] P. Dhangwatnotai, S. Dobzinski, S. Dughmi, and
T. Roughgarden. Truthful approximation schemes for
single-parameter agents. In Proc. 49th IEEE Symp. on
Foundations of Computer Science, 2008.

[7] S. Dobzinski. An impossibility result for truthful
combinatorial auctions with submodular valuations. In
Proc. 42nd ACM Symp. on Theory of Computing,
2011.

[8] S. Dughmi and T. Roughgarden. Black-box
randomized reductions in algorithmic mechanism
design. In Proc. 51st IEEE Symp. on Foundations of
Computer Science, 2010.

[9] S. Dughmi, T. Roughgarden, and Q. Yan. From
convex optimization to randomized mechanisms:
Toward optimal combinatorial auctions. In Proc. 42nd
ACM Symp. on Theory of Computing, 2011.

[10] G. Goel, C. Karande, and L. Wang. Single parameter
combinatorial auctions with partially public
valuations. In Proc. 3rd Intl. Conf. on Algorithmic
Game Theory, 2010.

[11] J. Hartline, R. Kleinberg, and A. Malekian. Bayesian
incentive compatibility via matchings. In Proc. 22nd
ACM Symp. on Discrete Algorithms, 2011.

[12] J. Hartline and B. Lucier. Bayesian algorithmic
mechanism design. In Proc. 41st ACM Symp. on
Theory of Computing, 2010.

[13] Dorit s. Hochbaum and David B. Shmoys. A
polynomial approximation scheme for scheduling on
uniform processors: Using the dual approximation
approach. SIAM J. Comput., 17:539–551, June 1988.

[14] Z. Huang, L. Wang, and Y. Zhou. Black-box
reductions in mechanism design. In Proc. 14th Intl.
Workshop on Approximation Algorithms for
Combinatorial Optimization Problems, 2011.

[15] R. Lavi and C. Swamy. Truthful and near-optimal
mechanism design via linear programming. In Proc.
46th IEEE Symp. on Foundations of Computer
Science, 2005.

[16] C. Papadimitriou, M. Schapira, and Y. Singer. On the
hardness of being truthful. In Proc. 49th IEEE Symp.
on Foundations of Computer Science, 2008.

447

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

