
Packing multiway cuts in capacitated graphs∗

Siddharth Barman† Shuchi Chawla‡

October 3, 2008

Abstract

We consider the following “multiway cut packing” problem in undirected graphs: we are given a
graph G = (V,E) and k commodities, each corresponding to a set of terminals located at different
vertices in the graph; our goal is to produce a collection of cuts {E1, · · · , Ek} such that Ei is a multiway
cut for commodity i and the maximum load on any edge is minimized. The load on an edge is defined
to be the number of cuts in the solution crossing the edge. In the capacitated version of the problem
edges have capacities ce and the goal is to minimize the maximum relative load on any edge – the ratio
of the edge’s load to its capacity. We present the first constant factor approximations for this problem in
arbitrary undirected graphs. The multiway cut packing problem arises in the context of graph labeling
problems where we are given a partial labeling of a set of items and a neighborhood structure over them,
and, informally stated, the goal is to complete the labeling in the most consistent way. This problem
was introduced by Rabani, Schulman, and Swamy (SODA’08), who developed an O(log n/ log log n)
approximation for it in general graphs, as well as an improved O(log2 k) approximation in trees. Here n
is the number of nodes in the graph.

We present an LP-based algorithm for the multiway cut packing problem in general graphs that guar-
antees a maximum edge load of at most 8OPT + 4. Our rounding approach is based on the observation
that every instance of the problem admits a laminar solution (that is, no pair of cuts in the solution
crosses) that is near-optimal. For the special case where each commodity has only two terminals and
all commodities share a common sink (the “common sink s-t cut packing” problem) we guarantee a
maximum load of OPT + 2. Both of these variants are NP-hard; for the common-sink case our result is
nearly optimal.

∗The conference version of this paper is to appear at SODA 2009. This is the full version.
†Computer Sciences Dept., University of Wisconsin - Madison, sid@cs.wisc.edu. Supported in part by NSF award CCF-

0643763.
‡Computer Sciences Dept., University of Wisconsin - Madison, shuchi@cs.wisc.edu. Supported in part by NSF awards

CCF-0643763 and CCF-0830494.

1 Introduction

We study the multiway cut packing problem (MCP) introduced by Rabani, Schulman and Swamy [9]. In this
problem, we are given k instances of the multiway cut problem in a common graph, each instance being a set
of terminals at different locations in the graph. Informally, our goal is to compute nearly-disjoint multiway
cuts for each of the instances. More precisely, we aim to minimize the maximum number of cuts that any
single edge in the graph belongs to. In the weighted version of this problem, different edges have different
capacities; the goal is to minimize the maximum relative load of any edge, where the relative load of an edge
is the ratio of the number of cuts it belongs to and its capacity.

The multiway cut packing problem belongs to the following class of graph labeling problems. We
are given a partially labeled set of n items along with a weighted graph over them that encodes similarity
information among them. An item’s label is a string of length k where each coordinate of the string is
either drawn from an alphabet Σ, or is undetermined. Roughly speaking, the goal is to complete the partial
labeling in the most consistent possible way. Note that completing a single specific entry (coordinate) of
each item label is like finding what we call a “set multiway cut”—for σ ∈ Σ let Si

σ denote the set of nodes
for which the ith coordinate is labeled σ in the partial labeling, then a complete and consistent labeling for
this coordinate is a partition of the items into |Σ| parts such that the σth part contains the entire set Si

σ. The
cost of the labeling for a single pair of neighboring items in the graph is measured by the Hamming distance
between the labels assigned to them. The overall cost of the labeling can then be formalized as a certain
norm of the vector of (weighted) edge costs.

Different choices of norms for the overall cost give rise to different objectives. Minimizing the `1 norm,
for example, is the same as minimizing the sum of the edge costs. This problem decomposes into finding
k minimum set multiway cuts. Each set multiway cut instance can be reduced to a minimum multiway cut
instance by simply merging all the items in the same set Sσ into a single node in the graph, and can therefore
be approximated to within a factor of 1.5 [1]. On the other hand, minimizing the `∞ norm of edge costs
(equivalently, the maximum edge cost) becomes the set multiway cut packing problem. Formally, in this
problem, we are given k set multiway cut instances S1, · · · , Sk, where each Si = Si

1×Si
2×· · ·×Si

|Σ|. The
goal is to find k cuts, with the ith cut separating every pair of terminals that belong to sets Si

j1
and Si

j2
with

j1 6= j2, such that the maximum (weighted) cost of any edge is minimized. When |Si
j | = 1 for all i ∈ [k]

and j ∈ Σ, this is the multiway cut packing problem.
To our knowledge Rabani et al. [9] were the first to consider the multiway cut packing problem and

provide approximation algorithms for it. They used a linear programming relaxation of the problem along
with randomized rounding to obtain an O(log n

log log n) approximation, where n is the number of nodes in the
given graph1. This approximation ratio arises from an application of the Chernoff bounds to the randomized
rounding process, and improves to an O(1) factor when the optimal load is Ω(log n). When the underlying
graph is a tree, Rabani et al. use a more careful deterministic rounding technique to obtain an improved
O(log2 k) approximation. The latter approximation factor holds also for a more general multicut packing
problem (described in more detail below). One nice property of the latter approximation is that it is inde-
pendent of the size of the graph, and remains small as the graph grows but k remains fixed. Then, a natural
open problem related to their work is whether a similar approximation guarantee independent of n can be

1Rabani et al. claim in their paper that the same approximation ratio holds for the set multiway cut packing problem that arises
in the context of graph labelings. However their approach of merging nodes with the same attribute values (similar to what we
described above for minimizing the `1 norm of edge costs) does not work in this case. Roughly speaking, if nodes u and v have the
same ith attribute, and nodes v and w have the same jth attribute, then this approach merges all three nodes, although an optimal
solution may end up separating u from w in some of the cuts. We are not aware of any other approximation preserving reduction
between the two problems.

1

obtained even for general graphs.
Our results & techniques. We answer this question in the positive. We employ the same linear pro-

gramming relaxation for this problem as Rabani et al., but develop a very different rounding algorithm. In
order to produce a good integral solution our rounding algorithm requires a fractional collection of cuts
that is not only feasible for the linear program but also satisfies an additional good property—the cut col-
lection is laminar. In other words, when interpreted appropriately as subsets of nodes, no two cuts in the
collection “cross” each other. Given such an input the rounding process only incurs a small additive loss
in performance—the final (absolute) load on any edge is at most 3 more than the load on that edge of the
fractional solution that we started out with. Of course the laminarity condition comes at a cost – not ev-
ery fractional solution to the cut packing LP can be interpreted as a laminar collection of cuts (see, e.g.,
Figure 9). We show that for the multiway cut problem any fractional collection of cuts can be converted
into a laminar one while losing only a multiplicative factor of 8 and an additive o(1) amount in edge loads.
Therefore, for every edge e we obtain a final edge load of 8`OPT

e + 4, where `OPT
e is the optimal load on the

edge. We only load edges with ce ≥ 1 and since the optimal cost is at least 1 our algorithm also obtains a
purely multiplicative 12 approximation.

Our laminarity based approach proves even more powerful in the special case of common-sink s-t cut
packing problem or CSCP. In this special case every multiway cut instance has only two terminals and all
the instances share a common sink t. We use these properties to improve both the rounding and laminarity
transformation algorithms, and ensure a final load of at most `OPT

e +1 for every edge e. The CSCP is NP-hard
(see Section 5) and so our guarantee for this special case is the best possible.

In converting a fractional laminar solution to an integral one we use an iterative rounding approach,
assigning an integral cut at each iteration to an appropriate “innermost” terminal. Throughout the algorithm
we maintain a partial integral cut collection and a partial fractional one and ensure that these collections
together are feasible for the given multiway cut instances. As we round cuts, we “shift” or modify other
fractional cuts so as to maintain bounds on edge loads. Maintaining feasibility and edge loads simultane-
ously turns out to be relatively straightforward in the case of common-sink s-t cut packing – we only need to
ensure that none of the cuts in the fractional or the integral collection contain the common sink t. However
in the general case we must ensure that new fractional cuts assigned to any terminal must exclude all other
terminals of the same multiway cut instance. This requires a more careful reassignment of cuts.

Related work. Problems falling under the general framework of graph labeling as described above have
been studied in various guises. The most extensively studied special case, called label extension, involves
partial labelings in which every item is either completely labeled or not labeled at all. When the objective
is to minimize the `1 norm of edge costs, this becomes a special case of the metric labeling and 0-extension
problems [6, 2, 4, 5]. (The main difference between 0-extension and the label extension problem as described
above is that the cost of the labeling in the former arises from an arbitrary metric over the labels, while in
the latter it arises from the Hamming metric.)

When the underlying graph is a tree and edge costs are given by the edit distance between the corre-
sponding labels, this is known as the tree alignment problem. The tree alignment problem has been studied
widely in the computational biology literature and arises in the context of labeling phylogenies and evolu-
tionary trees. This version is also NP-hard, and there are several PTASes known [13, 12, 11]. Ravi and
Kececioglu [10] also introduced and studied the `∞ version of this problem, calling it the bottleneck tree
alignment problem. They presented an O(log n) approximation for this problem. A further special case of
the label extension problem under the `∞ objective, where the underlying tree is a star with labeled leaves,
is known as the closest string problem. This problem is also NP-hard but admits a PTAS [7].

As mentioned above, the multiway cut packing problem was introduced by Rabani, Schulman and

2

Swamy [9]. Rabani et al. also studied the more general multicut packing problem (where the goal is to
pack multicuts so as to minimize the maximum edge load) as well as the label extension problem with the
`∞ objective. Rabani et al. developed an O(log2 k) approximation for multicut packing in trees, and an
O(log M log n

log log n) in general graphs. Here M is the maximum number of terminals in any one multicut in-
stance. For the label extension problem they presented a constant factor approximation in trees, which holds
even when edge costs are given by a fairly general class of metrics over the label set (including Hamming
distance as well as edit distance).

Another line of research loosely related to the cut packing problems described here considers the prob-
lem of finding the largest collection of edge-disjoint cuts (not corresponding to any specific terminals) in
a given graph. While this problem can be solved exactly in polynomial time in directed graphs [8], it is
NP-hard in undirected graphs, and Caprara, Panconesi and Rizzi [3] presented a 2 approximation for it. In
terms of approximability, this problem is very different from the one we study—in the former, the goal is to
find as many cuts as possible, such that the load on any edge is at most 1, whereas in our setting, the goal is
to find cuts for all the commodities, so that the maximum edge load is minimized.

2 Definitions and results

Given a graph G = (V,E), a cut in G is a subset of edges E′, the removal of which disconnects the graph
into multiple connected components. A vertex partition of G is a pair (C, V \ C) with ∅ (C (V . For
a set C with ∅ (C (V , we use δ(C) to denote the cut defined by C, that is, δ(C) = {(u, v) ∈ E :
|C ∩ {u, v}| = 1}. We say that a cut E′ ⊆ E separates vertices u and v if u and v lie in different connected
components in (V,E \ E′). The vertex partition defined by set C separates u and v if the two vertices are
separated by the cut δ(C). Given a collection of cuts E = {E1, · · · , Ek} and capacities ce on edges, the load
`Ee on an edge e is defined as the number of cuts that contain e, that is, `Ee = |{Ei ∈ E|e ∈ Ei}|. Likewise,
given a collection of vertex partitions C = {C1, · · · , Ck}, the load `Ce on an edge e is defined to be the load
of the cut collection {δ(C1), · · · , δ(Ck)} on e.

The input to a multiway cut packing problem (MCP) is a graph G = (V,E) with non-zero integral
capacities ce on edges, and k sets S1, · · · , Sk of terminals (called “commodities”); each terminal i ∈ Sa

resides at a vertex ri in V . The goal is to produce a collection of cuts E = {E1, · · · , Ek}, such that (1) for
all a ∈ [k], and for all pairs of terminals i, j ∈ Sa, the cut Ea separates ri and rj , and (2) the maximum
“relative load” on any edge, maxe `Ee /ce, is minimized.

In a special case of this problem called the common-sink s-t cut packing problem (CSCP), the graph G
contains a special node t called the sink and each commodity set has exactly two terminals, one of which
resides at t. Again the goal is to produce a collection of cuts, one for each commodity such that the maximum
relative edge load is minimized.

Both of these problems are NP-hard to solve optimally (see Section 5), and we present LP-rounding
based approximation algorithms for them. We assume without loss of generality that the optimal solution
has a relative load of 1. The integer program MCP-IP below encodes the set of solutions to the MCP with
relative load 1.

Here Pa denotes the set of all paths between any two vertices ri, rj with i, j ∈ Sa, i 6= j. In order to be
able to solve this program efficiently, we relax the final constraint to xa,e ∈ [0, 1] for all a ∈ [k] and e ∈ E.
Although the resulting linear program has an exponential number of constraints, it can be solved efficiently;
in particular, the polynomial-size program MCP-LP below is equivalent to it. Given a feasible solution to
this linear program, our algorithms round it into a feasible integral solution with small load.

3

∑
e∈P

xa,e ≥ 1 ∀a ∈ [k], P ∈ Pa∑
a

xa,e ≤ ce ∀e ∈ E

xa,e ∈ {0, 1} ∀a ∈ [k], e ∈ E

(MCP-IP)

da(u, v) ≤ da(u, w) + da(w, v) ∀a ∈ [k], u, v, w ∈ V

da(ri, rj) ≥ 1 ∀a ∈ [k], i, j ∈ Sa∑
a

da(e) ≤ ce ∀e ∈ E

da(e) ∈ [0, 1] ∀a ∈ [k], e ∈ E
(MCP-LP)

In the remainder of this paper we focus exclusively on solutions to the MCP and CSCP that are collec-
tions of vertex partitions. This is without loss of generality (up to a factor of 2 in edge loads for the MCP)
and allows us to exploit structural properties of vertex sets such as laminarity that help in constructing a
good approximation. Accordingly, in the rest of the paper we use the term “cut” to denote a subset of the
vertices that defines a vertex partition.

A pair of cuts C1, C2 ⊂ V is said to “cross” if all of the sets C1∩C2, C1\C2, and C2\C1 are non-empty.
A collection C = {C1, · · · , Ck} of cuts is said to be laminar if no pair of cuts Ci, Cj ∈ C crosses. All of
our algorithms are based on the observation that both the MCP and the CSCP admit near-optimal solutions
that are laminar. Specifically, there is a polynomial-time algorithm that given a fractional feasible solution
to MCP or CSCP (i.e. a feasible solution to MCP-LP) produces a laminar family of fractional cuts that is
feasible for the respective problem and has small load. This is formalized in Lemmas 1 and 2 below. We
first introduce the notion of a fractional laminar family of cuts.

Definition 1 A fractional laminar cut family C for terminal set T with weight function w is a collection of
cuts with the following properties:

• The collection is laminar

• Each cut C in the family is associated with a unique terminal in T . We use Ci to denote the sub-
collection of sets associated with terminal i ∈ T . Every C ∈ Ci contains the node ri.

• For all i ∈ T , the total weight of cuts in Ci,
∑

C∈Ci
w(C), is 1.

Next we define what it means for a fractional laminar family to be feasible for the MCP or the CSCP.
Note that for a terminal pair i 6= j belonging to the same commodity, condition (2) below is weaker than
requiring cuts in both Ci and Cj to separate ri from rj .

Definition 2 A fractional laminar family of cuts C for terminal set T with weight function w is feasible for
the MCP on a graph G with edge capacities ce and commodities S1, · · · , Sk if (1) T = ∪a∈[k]Sa, (2) for all
a ∈ [k] and i, j ∈ Sa, i 6= j, either rj 6∈ ∪C∈CiC, or ri 6∈ ∪C∈CjC, and (3) for every edge e ∈ E, `Ce ≤ ce.

The family is feasible for the CSCP on a graph G with edge capacities ce and commodities S1, · · · , Sk

if (1) T = ∪a∈[k]Sa \ {t}, (2) t 6∈ ∪C∈CC, and (3) for every e ∈ E, `Ce ≤ ce.

Lemma 1 Consider an instance of the CSCP with graph G = (V,E), common sink t, edge capacities
ce, and commodities S1, · · · , Sk. Given a feasible solution d to MCP-LP, algorithm Lam-1 produces a
fractional laminar cut family C that is feasible for the CSCP on G with edge capacities ce + o(1).

4

Lemma 2 Consider an instance of the MCP with graph G = (V,E), edge capacities ce, and commodities
S1, · · · , Sk. Given a feasible solution d to MCP-LP, algorithm Lam-2 produces a fractional laminar cut
family C that is feasible for the MCP on G with edge capacities 8ce + o(1).

Lemmas 1 and 2 are proven in Section 4. In Section 3 we show how to deterministically round a
fractional laminar solution to the CSCP and MCP into an integral one while increasing the load on every
edge by no more than a small additive amount. These rounding algorithms are the main contributions of our
work, and crucially use the laminarity of the fractional solution.

Lemma 3 Given a fractional laminar cut family C feasible for the CSCP on a graph G with integral edge
capacities ce, the algorithm Round-1 produces an integral family of cuts A that is feasible for the CSCP on
G with edge capacities ce + 1.

For the MCP, the rounding algorithm loses an additive factor of 3 in edge load.

Lemma 4 Given a fractional laminar cut family C feasible for the MCP on a graph G with integral edge
capacities ce, the algorithm Round-2 produces an integral family of cuts A that is feasible for the MCP on
G with edge capacities ce + 3.

Combining these lemmas together we obtain the following theorem.

Theorem 5 There exists a polynomial-time algorithm that given an instance of the MCP with graph G =
(V,E), edge capacities ce, and commodities S1, · · · , Sk, produces a familyA of multiway cuts, one for each
commodity, such that for each e ∈ E, `Ae ≤ 8ce + 4.

There exists a polynomial-time algorithm that given an instance of the CSCP with graph G = (V,E),
edge capacities ce, and commodities S1, · · · , Sk, produces a family A of multiway cuts, one for each com-
modity, such that for each e ∈ E, `Ae ≤ ce + 2.

3 Rounding fractional laminar cut families

In this section we develop algorithms for rounding feasible fractional laminar solutions to the MCP and the
CSCP to integral ones while increasing edge loads by a small additive amount. We first demonstrate some
key ideas behind the algorithm and the analysis for the CSCP, and then extend them to the more general case
of multiway cuts. Throughout the section we assume that the edge capacities ce are integral.

3.1 The common sink case (proof of Lemma 3)

Our rounding algorithm for the CSCP rounds fractional cuts roughly in the order of innermost cuts first. The
notion of an innermost terminal is defined with respect to the fractional solution. After each iteration we
ensure that the remaining fractional solution continues to be feasible for the unassigned terminals and has
small edge loads. We use C to denote the fractional laminar cut family that we start out with andA to denote
the integral family that we construct. Recall that for an edge e ∈ E, `Ce denotes the load of the fractional cut
family C on e, and `Ae denotes the load of the integral cut family A on e. We call the former the fractional
load on the edge, and the latter its integral load.

We now formalize what we mean by an “innermost” terminal. For every vertex v ∈ V , let Kv denote
the set of cuts in C that contain v. The “depth” of a vertex v is the total weight of all cuts in Kv: dv =

5

Input: Graph G = (V,E) with capacities ce, terminals T with a fractional laminar cut family C, common sink t with
t 6∈ ∪C∈CC.
Output: A collection of cuts A, one for each terminal in T .

1. Initialize T ′ = T , A = ∅, and M(v) = {v} for all v ∈ V . Compute the depths of vertices and terminals.

2. While there are terminals in T ′ do:

(a) Let i be a terminal with the maximum depth in T ′. Let Ai = M(ri). Add Ai to A and remove i from T ′.

(b) Let K = K1
ri

. Remove cuts in K ∩ Ci from K, Ci and C. While there exists a terminal j ∈ T ′ with a cut
C ∈ K ∩ Cj , do the following: let w = w(C); remove C from K, Cj and C; remove cuts in Cw

i from Ci

and add them to Cj (that is, these cuts are reassigned from terminal i to terminal j).

(c) If there exists an edge e = (u, v) with `Ce = 0, merge the meta-nodes M(u) and M(v) (we say that the
edge e has been “contracted”).

(d) Recompute the depths of vertices and terminals.

Figure 1: Algorithm Round-1—Rounding algorithm for common-sink s-t cut packing

∑
C∈Kv

w(C). The depth of a terminal is defined as the depth of the vertex at which it resides. Terminals
are picked in order of decreasing depth.

Before we describe the algorithm we need some more notation. At any point during the algorithm we
use Se to denote the set of cuts crossing an edge e. As the algorithm proceeds, the integral loads on edges
increase while their fractional loads decrease. Whenever the fractional load of an edge becomes 0, we merge
its end-points to form “meta-nodes”. At any point of time, we use M(v) to denote the meta-node containing
a node v ∈ V .

Finally, for a set of fractional cuts L = {L1, · · · , Ll} with L1 ⊆ L2 ⊆ · · · ⊆ Ll and weight function w,
we use Lx to denote the subset of L containing the innermost cuts with weight exactly x. That is, let l′ be
such that

∑
a<l′ w(La) < x and

∑
a≤l′ w(La) ≥ x. Then Lx is the set {L1, · · · , Ll′} with weight function

w′ such that w′(La) = w(La) for a < l′ and w′(Ll′) = x−
∑

a<l′ w(La).
The algorithm Round-1 is given in Figure 1. At every step, the algorithm picks a terminal, say i, with the

maximum depth and assigns an integral cut to it. This potentially frees up capacity used up by the fractional
cuts of i, but may use up extra capacity on some edges that was previously occupied by fractional cuts
belonging to other terminals. In order to avoid increasing edge loads, we reassign to terminals in the latter
set, fractional cuts of i that have been freed up.

Our analysis has two parts. Lemma 6 shows that the family C continues to remain feasible, that is it
always satisfy the first two conditions in Definition 2 for the unassigned terminals. Lemma 7 analyzes the
total load of the fractional and integral families as the algorithm progresses.

Lemma 6 Throughout the algorithm, the cut family C is a fractional laminar family for terminals in T ′ with
t 6∈ ∪C∈CC.

Proof: We prove this by induction over the iterations of the algorithm. The claim obviously holds at the
beginning of the algorithm. Consider a step at which some terminal i is assigned an integral cut. The
algorithm removes all the cuts in K = K1

ri
from C. Some of these cuts belong to other terminals; those

terminals are reassigned new cuts. Specifically, we first remove cuts in K ∩Ci from the cut family. The total

6

weight of the remaining cuts in K as well as the total weight of those in Ci is equal at this time. Subsequently,
we successively consider terminals j with a cut C ∈ K ∩ Cj , and let w = w(C). Then we remove C from
the cut family, and reassign cuts of total weight w in Cw

i to j. Therefore, the total weight of cuts assigned to
j remains 1. Furthermore, the newly reassigned cuts contain the cut C, and therefore the vertex rj , but do
not contain the sink t. Therefore, C continues to be a fractional laminar family for terminals in T ′.

Lemma 7 At any point of time for every edge e ∈ E, `Ae ≤ ce − 1 implies `Ae + `Ce ≤ ce, `Ae = ce implies
`Ce ≤ 1, and `Ae = ce + 1 implies `Ce = 0. Furthermore, for e = (u, v), `Ae = ce implies that either Ku ∩ Se

or Kv ∩ Se is empty.

Proof: Let e = (u, v). We prove the lemma by induction over time. Note that in the beginning of the
algorithm, we have for all edges `Ce ≤ ce and `Ae = 0, so the inequality `Ae + `Ce ≤ ce holds.

Let us now consider a single iteration of the algorithm and suppose that the integral load of the edge
increases during this iteration. (If it doesn’t increase, since `Ce only decreases over time, the claim continues
to hold.) Let i be the commodity picked by the algorithm in this iteration, then M(ri) is the same as either
M(u) or M(v). Without loss of generality assume that ri ∈ M(u). Let α denote the total weight of cuts
in Ku ∩ Se and β denote the total weight of cuts in Kv ∩ Se prior to this iteration. Then, α + β = `Ce .
Moreover, all cuts in C \ Se either contain both or neither of u and v. So we can relate the depths of v and u
in the following way: dv = du − α + β. Since i is the terminal picked during this iteration, we must have
du ≥ dv, and therefore, α ≥ β.

We analyze the final edge load depending on the value of α. Two cases arise: suppose first that α ≥ 1.
Then K1

u ⊆ Ku ∩ Se, and the fractional weight of e reduces by exactly 1. On the other hand, the integral
load on the edge increases by 1, and so the total load continues to be the same as before. On the other hand,
if α ≤ 1, then Ku ∩ Se ⊆ K1

u, and all the cuts in Ku ∩ Se get removed from Se in this iteration. Therefore
the final fractional load is at most β ≤ α ≤ 1, and at the end of the iteration, Ku ∩ Se = ∅. If `Ae ≤ ce − 1,
we immediately get that the total load on the edge is at most ce.

If `Ae = ce, then prior to this iteration `Ae = ce − 1, and so `Ce ≤ 1 by the induction hypothesis. Then, as
we argued above, α ≤ `Ce ≤ 1 implies that the new fractional load on the edge is at most 1 and at the end of
the iteration, Ku ∩ Se = ∅.

Finally, if `Ae = ce + 1, then prior to this iteration, `Ae = ce and by the induction hypothesis, β is zero
(as α ≥ β and either Ku ∩ Se or Kv ∩ Se is empty). Along with the fact that α ≤ 1 (by the inductive
hypothesis), the final fractional load on the edge is β = 0.

The two lemmas together give us a proof of Lemma 3. We restate the lemma for completeness.

Lemma 3 Given a fractional laminar cut family C feasible for the CSCP on a graph G with integral edge
capacities ce, the algorithm Round-1 produces an integral family of cuts A that is feasible for the CSCP on
G with edge capacities ce + 1.

Proof: First note that for every i, Ai is set to be the meta-node of ri at some point during the algorithm,
which is a subset of every cut in Ci at that point of time. Then ri ∈ Ai, and by Lemma 6, t 6∈ Ai. Second,
for any edge e, its integral load `Ae starts out at being 0 and gradually increases by at most an additive 1 at
every step, while its fractional load decreases. Once the fractional load of an edge becomes zero, both its

7

end points belong to the same meta-node, and so the edge never gets loaded again. Therefore, by Lemma 7,
the maximum integral load on any edge e is at most ce + 1.

3.2 The general case (proof of Lemma 4)

As in the common-sink case, the rounding algorithm for the MCP proceeds by picking terminals according
to an order suggested by the fractional solution and assigning the smallest cuts possible to them subject to
the availability of capacity on the edges. In the algorithm Round-1, we reassign cuts among terminals at
every iteration so as to maintain the feasibility of the remaining fractional solution. In the case of MCP,
this is not sufficient—a simple reassignment of cuts as in the case of algorithm Round-1 may not ensure
separation among terminals belonging to the same commodity. We use two ideas to overcome this difficulty:
first, among terminals of equal depth, we use a different ordering to pick the next terminal to minimize the
need for reassigning cuts; second, instead of reassigning cuts, we modify the existing fractional cuts for
unassigned terminals so as to remain feasible while paying a small extra cost in edge load.

We now define the “cut-inclusion” ordering over terminals. For every terminal i ∈ T , let Oi denote the
largest (outermost) cut in Ci, that is, ∀C ∈ Ci, C ⊆ Oi. We say that terminal i dominates (or precedes)
terminal j in the cut-inclusion ordering, written i >CI j, if Oi ⊂ Oj (if Oi = Oj we break ties arbitrarily
but consistently). Cut-inclusion defines a partial order on terminals. Note that we can pre-process the cut
family C by reassigning cuts among terminals, such that for all pairs of terminals i, j ∈ T with i >CI j,
and for all cuts Ci ∈ Ci and Cj ∈ Cj with ri, rj ∈ Ci ∩ Cj , we have Ci ⊆ Cj . We call this property
the “inclusion invariant”. Ensuring this invariant requires a straightforward pairwise reassignment of cuts
among the terminals, and we omit the details. Note that following this reassignment, for every terminal i,
the new outermost cut of i, Oi, is the same as or a subset of its original outermost cut.

As the algorithm proceeds we modify the collection C as well as build up the collection A of integral
cuts Ai for i ∈ T . For example, we may split a cut C into two cuts containing the same nodes as C and with
weights summing to that of C. As cuts in C are modified, their ownership by terminals remains unchanged,
and we therefore continue using the same notation for them. Furthermore, if for two cuts C1 and C2, we have
(for example) C1 ⊆ C2 at the beginning of the algorithm, this relationship continues to hold throughout the
algorithm. This implies that the inclusion invariant continues to hold throughout the algorithm. We ensure
that throughout the execution of the algorithm the cut family C continues to be a fractional laminar family for
terminals T ′. At any point of time, the depth of a vertex or a terminal, as well as the cut-inclusion ordering
is defined with respect to the current fractional family C.

As before, let Se denote the set of cuts in C that cross e — Se = {C ∈ C|e ∈ δ(C)}. Recall that Kv

denotes the set of cuts in C containing the vertex v, and of these K1
v denotes the inner-most cuts with total

weight exactly 1.
The rounding algorithm is given in Figure 3. Roughly speaking, at every step, the algorithm picks a

maximum depth terminal i and assigns the cut M(ri) to it (recall that M(ri) is the meta-node of the vertex
ri where terminal i resides). It “pays” for this cut using fractional cuts in K1

ri
. Of course some of the cuts

in K1
ri

belong to other commodities, and need to be replaced with new fractional cuts. The cut-inclusion
invariant ensures that these other commodities reside at meta-nodes other than M(ri), so we modify each
cut in K1

ri
\ Ci by removing M(ri) from it (see Figure 2). This process potentially increases the total loads

on edges incident on M(ri) by small amounts, but on no other edges. Step 3c of the algorithm deals with
the case in which edges incident on M(ri) are already overloaded; In this case we avoid loading those edges
further by assigning to i some subset of the meta-node M(ri). Lemmas 12 and 13 show that this case does
not arise too often.

8

cuts in Kri
\ Ci

cuts in Kri
∩ Ci

Ai

M(ri)

Figure 2: An iteration of algorithm Round-2 (Steps 3b & 3d)

For a terminal i and edge e, if at the time that i is picked in Step 3a of the algorithm e is in δ(M(ri)),
we say that i accesses e. If e ∈ Ei, we say that i defaults on e, and if e is in δ(Ai) after this iteration, then
we say that i loads e.

During the course of the algorithm integral loads on edges increase, but fractional loads may increase or
decrease. To study how these edge loads change during the course of the algorithm, we divide edges into five
sets. Let X−1 denote the set of edges with `Ae ≤ ce − 1 and `Ce > 0. For a ∈ {0, 1}, let Xa denote the set of
edges with `Ae = ce +a and `Ce > 0. Y denotes the set of edges with `Ae ≥ ce +2 and `Ce > 0, and Z denotes
the set of edges with `Ce = 0. Every edge starts out with a zero integral load. As the algorithm proceeds, the
edge goes through one or more of the Xas, may enter the set Y , and eventually ends up in the set Z. As for
the CSCP, when an edge enters Z, we merge the end-points of the edge into a single meta-node. However,
unlike for the CSCP, edges may get loaded even after entering Z. When an edge enters Y , we avoid loading
it further (Step 3c), and instead load some edges in Z. Nevertheless, we ensure that edges in Z are loaded
no more than once.

As before our analysis has two components. First we show (Lemma 8) that the cuts produced by the al-
gorithm are feasible. The following lemmas give the desired guarantees on the edges’ final loads: Lemmas 9
and 10 analyze the loads of edges in Xa for a ∈ {−1, 0, 1}; Lemma 11 analyzes edges in Y and Lemmas 12
and 13 analyze edges in Z. We put everything together in the proof of Lemma 4 at the end of this section.

Lemma 8 For all i, ri ∈ Ai ⊆ Oi.

Proof: Each cut Ai is set equal to the meta-node of ri at some stage of the algorithm. Therefore, ri ∈ Ai for
all i. Furthermore, at the time that i is assigned an integral cut, Ai ⊆ M(ri) ⊆ Oi.

Next we prove some facts about the fractional and integral loads as an edge goes through the sets Xa.
The proofs of the following two lemmas are similar to that of Lemma 7.

Lemma 9 At any point of time, for every edge e ∈ X−1, `Ae + `Ce ≤ ce.

Proof: We prove the claim by induction over time. Note that in the beginning of the algorithm, we have for
all edges `Ce ≤ ce and `Ae = 0, so the inequality `Ae + `Ce ≤ ce holds.

Let us now consider a single iteration of the algorithm and suppose that the edge e remains in the set
X−1 after this step. There are three events that influence the load of the edge e = (u, v): (1) a terminal

9

Input: Graph G = (V,E) with capacities ce on edges, a set of terminals T with a fractional laminar cut family C.
Output: A collection of cuts A, one for each terminal in T .

1. Preprocess the family C so that it satisfies the inclusion invariant.

2. Initialize T ′ = T , A = ∅, Y, Z = ∅, and M(v) = {v} for all v ∈ V .

3. While there are terminals in T ′ do:

(a) Consider the set of unassigned terminals with the maximum depth, and of these let i ∈ T ′ be a terminal
that is undominated in the cut inclusion ordering. Let Ei = Y ∩ δ(M(ri)).

(b) If Ei = ∅, let Ai = M(ri).

(c) If Ei 6= ∅ (we say that the terminal has “defaulted” on edges in Ei), let Ui denote the set of end-points of
edges in Ei that lie in M(ri). If ri ∈ Ui, abort and return error. Otherwise, consider the vertex in Ui that
entered M(ri) first during the algorithm’s execution, call this vertex ui. Set Ai to be the meta-node of ri

just prior to the iteration where M(ui) becomes equal to M(ri).

(d) Add Ai toA. Remove Ci from C and i from T ′. For every j ∈ T ′ and C ∈ K1
ri
∩Cj , let C = C\{M(ri)}.

(e) If for some edge e, `Ae = ce + 2 and `Ce > 0, add e to Y . If there exists an edge e = (u, v) with `Ce = 0,
merge the meta-nodes M(u) and M(v) (we say that the edge e has been “contracted”.) Add all edges e
with `Ce = 0 to Z and remove them from Y .

(f) Recompute the depths of vertices and terminals.

Figure 3: Algorithm Round-2—Rounding algorithm for multiway cut packing

at some vertex in M(u) accesses e; (2) a terminal at M(v) accesses e; and, (3) a terminal at some other
meta-node M 6= M(u),M(v) is assigned an integral cut. Let us consider the third case first, and suppose
that a terminal i is assigned. Since Ai ⊆ M and therefore e /∈ δ(Ai) its integral load does not increase.
However, in the event that Se ∩ Ci is non-empty, the fractional load on e may decrease (because cuts in Ci

are removed from C). Therefore, the inequality continues to hold.
Next we consider the case where a terminal, say i, with ri ∈ M(u) accesses e (the second case is

similar). Note that M(ri) = M(u). In this case the integral load of the edge e potentially increases by 1 (if
the terminal loads the edge). By the definition of X−1, the new integral load on this edge is no more than
ce − 1. The fractional load on e changes in three ways:

• Cuts in Ci ∩ Se are removed from C, decreasing `Ce .

• Some of the cuts in (K1
ri
\ Ci) \ Se get “shifted” on to e increasing `Ce (we remove the meta-node

M(ri) from these cuts, and they may continue to contain M(v)).

• Cuts in (K1
ri
\ Ci)∩Se get shifted off from e decreasing `Ce (these cuts initially contain M(ri) but not

M(v), and during this step we remove M(ri) from these cuts).

So the decrease in `Ce is at least the total weight of K1
ri
∩ Se = K1

u ∩ Se, whereas the increase is at most the
total weight of K1

ri
\ Se = K1

u \ Se.
In order to account for the two terms, let α denote the total weight of cuts in Ku ∩ Se, and β denote the

total weight of cuts in Kv ∩ Se. Then, α + β = `Ce . As in the proof of Lemma 7, we have dv = du −α + β,
and therefore du ≥ dv implies α ≥ β. Now, suppose that α ≥ 1. Then K1

u ⊆ Se. Therefore, the decrease

10

in `Ce due to the sets K1
u ∩ Se = K1

u is at least 1, and there is no corresponding increase, so the sum `Ae + `Ce
remains at most ce.

Finally, suppose that α < 1. Then K1
u contains all the cuts in Ku ∩ Se, the weight of K1

u ∩ Se is exactly
α, and so the decrease in `Ce is at least α. Moreover, the total weight of K1

u \ Se is 1 − α, therefore, the
increase in `Ce due to the sets in K1

u \ Se is at most 1 − α. Since `Ce starts out as being equal to α + β, its
final value after this step is 1− α + β ≤ 1 as β ≤ α. Noting that `Ae is at most ce − 1 after the step, we get
the desired inequality.

Lemma 10 For any edge e = (u, v), from the time that e enters X0 to the time that it exits X1, `Ce ≤ 1.
Furthermore suppose (without loss of generality) that during this time in some iteration e is accessed by
a terminal i with ri ∈ M(u), then following this iteration until the next time that e is accessed, we have
Se ∩Ku = ∅, and the next access to e (if any) is from a terminal in M(v).

Proof: First we note that if the lemma holds the first time an edge e = (u, v) enters a set Xa, a ∈ {0, 1}, then
it continues to hold while the edge remains in Xa. This is because during this time the integral load on the
edge does not increase, and therefore throughout this time we assign integral cuts to terminals at meta-nodes
different from M(u) and M(v) — this only reduces the fractional load on the edge e and shrinks the set Se.

Consider the first time that an edge e = (u, v) moves from the set X−1 to X0. Suppose that at this step
we assign an integral cut to a terminal i residing at node ri ∈ M(u). Prior to this step, `Ae = ce − 1, and so
by Lemma 9, `Ce ≤ 1. As before define α to be the total weight of cuts Ku ∩Se, and β to be the total weight
of cuts Kv ∩ Se. Then following the same argument as in the proof of Lemma 9, we conclude that the final
fractional weight on e is at most β + 1 − α ≤ 1. Furthermore, since Ku ∩ Se ⊆ K1

u, we either remove all
these cuts from C or shift them off of edge e. Moreover, any new cuts that we shift on to e do not contain
the meta-node M(ri) = M(u), and in particular do not contain the vertex u. Therefore at the end of this
step, Se ∩Ku = ∅. This also implies that following this iteration terminals in M(v) have depth larger than
terminals in M(u), and so the next access to e must be from a terminal in M(v).

The same argument works when an edge moves from X0 to X1. We again make use of the fact that prior
to the step the fractional load on the edge is at most 1.

Lemma 11 During any iteration of the algorithm, for any edge e ∈ Y , the following are satisfied:

• `Ce ≤ 1

• If the edge e = (u, v) is accessed by a terminal i with ri ∈ M(u), then following this iteration until
the next time that e is accessed, we have Se ∩ Ku = ∅, and the next access to e (if any) is from a
terminal in M(v).

• If a terminal i with ri ∈ M(u) accesses e = (u, v), then ri 6= u, Ai ∩ {u, v} = ∅, and so i does
not load e. Also, consider any previous access to the edge by a terminal in M(u); then prior to this
access, ri 6∈ M(u).

Proof: The first two parts of this lemma extend Lemma 10 to the case of e ∈ Y , and are otherwise identical
to that lemma. The proof for these claims is analogous to the proof of Lemma 10. The only difference is
that terminals accessing an edge e ∈ Y default on this edge. However, this does not affect the argument:
when a terminal defaults on the edge, the edge’s fractional load changes in the same way as if the terminal

11

did not default; the only change is in the way an integral cut is assigned to the terminal. Since these claims
depend only on how the fractional load on the edge changes, they continue to hold while the edge is in Y .

For the third part of the lemma, since Ai ⊆ M(ri) = M(u) and v 6∈ M(u), v 6∈ Ai. Next we show
that u 6∈ Ai. Consider the iterations of the algorithm during which `Ce ≤ 1. During this time the edge was
accessed at least twice prior to being accessed by i (once when e moved from X0 to X1, once when e moved
from X1 to Y , and possibly multiple times while e ∈ Y). Let the last two accesses be by the terminals j1

and j2, at iterations t1 and t2, t1 ≤ t2. For a ∈ {0, 1}, let Ma(u) and Ma(v) denote the meta-nodes of u
and v respectively just prior to iteration ta, and M(u) and M(v) denote the respective meta-nodes just prior
to the current iteration. Then by Lemma 10 and the second part of this lemma, we have rj1 ∈ M1(u) and
rj2 ∈ M2(v). We claim that i >CI j2 >CI j1. Given this claim, if ri ∈ M1(u) = M1(rj1), then since
i and j1 have the same depth at iteration t1, we get a contradiction to the fact that the algorithm picks j1

before i in Step 3a. Therefore, ri 6∈ M(u) at any iteration prior to t1, and in particular, ri 6= u. Finally,
since u ∈ Ui and Ui ∩Ai = ∅, this also implies that u 6∈ Ai.

It remains to prove the claim. We will prove that j2 >CI j1. The proof for i >CI j2 is analogous. In
fact we will prove a stronger statement: between iterations t1 and t2, all terminals with cuts in Se dominate
j1 in the cut-inclusion ordering. We prove this by induction. By Lemma 10, prior to iteration t1, Se does
not contain any cuts belonging to terminals at M(v). Following the iteration, Se only contains fractional
cuts in K1

u that got shifted on to the edge e. Prior to shifting, these cuts contain M1(u), and therefore rj1 ,
but do not belong to j1. Then, these cuts are subsets of Oj1 , and so by the inclusion invariant, they belong
to terminals dominating j1 in the cut-inclusion ordering. Therefore, the claim holds right after the iteration
t1. Finally, following the iteration until the next time that e is accessed (by j2), the set Se only shrinks, and
so the claim continues to hold.

In order to analyze the loading of edges in Z, we need some more notation. Let M denote the collection
of sets of vertices that were meta-nodes at some point during the algorithm. For any edge e ∈ Z, let Me

denote the meta-node formed when e enters Z; then Me is the smallest set in M containing both the end
points of e. Note that the collection A ∪M is laminar.

Lemma 12 An edge e ∈ Z is loaded only if after the formation of Me a terminal residing at a vertex
in Me defaults on an edge in δ(Me). (Note that this may happen after Me has merged with some other
meta-nodes.)

Proof: Let i be a defaulting terminal that loads the edge e ∈ Z. Then e ∈ δ(Ai), and therefore, Ai (Me

and ri ∈ Me. Furthermore, since Ai is a strict subset of Me, Ui ∩Me 6= ∅, and therefore, i defaults on an
edge e′ ∈ Y with at least one end-point in Me. But if both the end-points of e′ are in Me, then we must have
`Ce′ = 0 contradicting the fact that e′ is in Y . Therefore, e′ ∈ δ(Me).

Lemma 13 For any meta-node M ∈M, after its formation, at most one terminal residing at a vertex in M
can default on edges in δ(M) (even after M has merged with other meta-nodes).

Proof: For the sake of contradiction, suppose that two terminals i and j, both residing at vertices in M default
on edges in δ(M) after the formation of M , with i defaulting before j. Let M1 (M2) denote the meta-node
containing M just before i (j) defaulted. Note that M ⊆ M1 ⊆ M2. Consider an edge e ∈ Ej ∩ δ(M)
(recall that Ej is the set of edges that j defaults on, so this set is non-empty by our assumption). Then
e ∈ δ(M) ∩ δ(M2) ⊆ δ(M1). Therefore, at the time that i defaulted, e was accessed by i, and by the third
claim in Lemma 11, rj 6∈ M1. This contradicts the fact that rj ∈ M .

12

Input: Graph G = (V,E) with edge capacities ce, commodities S1, · · · , Sk, common sink t, a feasible solution d to
the program MCP-LP.
Output: A fractional laminar family of cuts C that is feasible for G with edge capacities ce + o(1).

1. For every a ∈ [k] and terminal i ∈ Sa do the following: Order the vertices in G in increasing order of
their distance under da from ri. Let this ordering be v0 = ri, v1, · · · , vn. Let Ci be the collection of cuts
{v0, v1, · · · , vb}, one for each b ∈ [n], da(ri, vb) < 1, with weights w({v0, · · · , vb}) = da(ri, vb+1) −
da(ri, vb). Let C denote the collection {Ci}i∈∪aSa

.

2. Let N = nk. Round up the weights of all the cuts in C to multiples of 1/N2, and truncate the collection so that
the total weight of every sub-collection Ci is exactly 1. Also split every cut with weight more than 1/N2 into
multiple cuts of weight exactly 1/N2 each, assigned to the same commodity.

3. While there are pairs of cuts in C that cross, consider any pair of cuts Ci, Cj ∈ C belonging to terminals i 6= j
that cross each other. Transform these cuts into new cuts for i and j according to Figure 5.

Figure 4: Algorithm Lam-1—Algorithm to convert an LP solution for the CSCP into a feasible fractional
laminar family

Finally we can put all these lemmas together to prove our main result on algorithm Round-2.

Lemma 4 Given a fractional laminar cut family C feasible for the MCP on a graph G with integral edge
capacities ce, the algorithm Round-2 produces an integral family of cuts A that is feasible for the MCP on
G with edge capacities ce + 3.

Proof: We first note that the third part of Lemma 11 implies that for all i, ri 6∈ Ui, and therefore the algorithm
never aborts. Then Lemma 8 implies that we get a feasible cut packing. Finally, note that every edge starts
out in the set X−1, goes through one or more of the Xa’s, a ∈ {0, 1}, potentially goes through Y , and ends
up in Z. An edge e enters Y when its integral load becomes ce + 2. Lemma 11 implies that edges in Y
never get loaded, and so at the time that an edge e enters Z, `Ae ≤ ce + 2. After this point the edge stays in
Z, and Lemmas 12 and 13 imply that it gets loaded at most once. Therefore, the final load on the edge is at
most ce + 3.

4 Constructing fractional laminar cut packings

We now show that fractional solutions to the program MCP-LP can be converted in polynomial time into
fractional laminar cut families while losing only a small factor in edge load. We begin with the common
sink case.

13

(c)

i

i

j

j

(a)

i j

i j

(b)

i

i j

j

Figure 5: Rules for transforming an arbitrary cut family into a laminar one for the CSCP. The dark cuts in
this figure correspond to the terminal i, and the light cuts to terminal j; t lies outside all the cuts.

4.1 Obtaining laminarity in the common sink case

We prove Lemma 1 in this section. Our algorithm involves starting with a solution to MCP-LP, converting
it into a feasible fractional non-laminar family of cuts, and then resolving pairs of crossing cuts one at a
time by applying the rules in Figure 5. The algorithm is given in Figure 4.

Lemma 1 Consider an instance of the CSCP with graph G = (V,E), common sink t, edge capacities
ce, and commodities S1, · · · , Sk. Given a feasible solution d to MCP-LP, algorithm Lam-1 produces in
polynomial time a fractional laminar cut family C that is feasible for the CSCP on G with edge capacities
ce + o(1).

Proof: We first note that the family C is feasible for the given instance of CSCP at the end of Step 2, but is
not necessarily laminar. Since the number of distinct cuts in C after Step 1 is at most nk = N , at the end of
Step 2, edge loads are at most ce + 1/N . As we tranform the cuts in Step 3, we maintain the property that
no cut C ∈ C contains the sink t, but every cut C ∈ Ci contains the node ri for terminal i. It is also easy
to see from Figure 5 that the load on every edge stays the same. Finally, in every iteration of this step, the
number of pairs of crossing cuts strictly decreases. Therefore, the algorithm ends after a polynomial number
of iterations.

4.2 Obtaining laminarity in the general case

Obtaining laminarity in the general case involves a more careful selection and ordering of rules of the form
given in Figure 5. The key complication in this case is that we must maintain separation of every terminal
from every other terminal in its commodity set. We first show how to convert an integral collection of cuts
feasible for the MCP into a feasible integral laminar collection of cuts. We lose a factor of 2 in edge loads
in this process (see Lemma 14 below). Obtaining laminarity for an arbitrary fractional solution requires
converting it first into an integral solution for a related cut-packing problem and then applying Lemma 14
(see algorithm Lam-2 in Figure 8 and the proof of Lemma 2 following it).

14

Lemma 14 Consider an instance of the MCP with graph G = (V,E)and commodities S1, · · · , Sk, and let
C1 = {C1

i }i∈Sa,a∈[k] be a family of cuts such that for each a ∈ [k] and i ∈ Sa, C1
i contains i but no other

j ∈ Sa. Then algorithm Integer-Lam-2 produces a laminar cut collection C2 = {C2
i }i∈Sa,a∈[k] such that for

each a ∈ [k] and i 6= j ∈ Sa, either C2
i or C2

j separates i from j, and `C
1

e ≤ 2`C
2

e for every edge e ∈ E.

In the remainder of this section we interpret cuts as sets of vertices as well as sets of terminals residing
at those vertices. The algorithm for laminarity in the integral case is given in Figure 6.

As in the common sink case, the algorithm starts by applying a series of simple rules to pairs of crossing
cuts while maintaining the invariant that pairs of terminals belonging to the same commodity are always
separated by at least one of the two cuts assigned to them. Certain kinds of crossings of cuts are easy to
resolve while maintaining this invariant (Step 1 of the algorithm resolves these crossings; see also Figure 7).
In Steps 2 and 3, we ignore the commodities that each terminal belongs to, and assign new laminar cuts
to terminals while ensuring that the new cut of each terminal lies within its previous cut (and therefore,
separation continues to be maintained). These steps incur a penalty of 2 in edge loads.

The rough idea behind Steps 2 and 3 is to consider the set of all “conflicting” terminals, call it F .
Then we can assign to each terminal i ∈ F the cut ∩j∈F Ĉj where Ĉj is either the cut of terminal j or its
complement depending on which of the two contains ri. These intersections are clearly laminar, and are
subsets of the original cuts assigned to terminals. Furthermore, if each terminal gets a unique intersection,
then edge loads increase by a factor of at most 2. Unfortunately, some groups of terminals may share the
same intersections. In order to get around this, we assign cuts to terminals in a particular order suggested by
the structure of the conflict graph on terminals (graph G in the algorithm) and assign appropriate intersections
to them while explicitly ensuring that edge loads increase by a factor of no more than 2.

Throughout the algorithm, every terminal in ∪aSa has an integral cut assigned to it. The proof of
Lemma 14 is established in three parts: Lemma 15 establishes the laminarity of the output cut family,
Lemma 17 argues separation, and Lemma 18 analyzes edge loads.

Lemma 15 Algorithm Integer-Lam-2 runs in polynomial time and produces a laminar cut collection.

Proof: As in the previous section define the crossing number of a family of cuts to be the number of pairs
of cuts that cross each other. We first note that in every iteration of Steps 1 and 2 of the algorithm, the
crossing number of the cut family C strictly decreases: no new crossings are created in these steps, while the
crossings of the two or more cuts involved in each transformation are resolved (see Figure 7). Therefore,
after a polynomial number of steps, we exit Steps 1 and 2 and go to Step 3.

Next, we claim that during Step 3 of the algorithm the graph G is acyclic. This implies that while G is
non-empty, we can always find a leaf terminal in Step 3; therefore every terminal in G gets assigned a new
cut. It is immediate that the graph does not contain any directed blue cycles or any directed red cycles (the
latter follows because red edges define a partial order over terminals). Suppose the graph contains three
terminals i1, i2 and i3 with a red edge from i1 to i2, and a red or blue edge from i2 to i3, then it is easy to see
that there must be a red or blue edge from i1 to i3. Therefore, any multi-colored directed cycle must reduce
to either a smaller blue cycle or a cycle of length 2. Neither of these cases is possible (the latter is ruled out
by definition), and therefore the graph cannot contain any multi-colored cycles.

Now consider cuts assigned during Step 3. Let T be the set of terminals corresponding to some compo-
nent in G and j 6∈ T . Then before T is processed, j’s cut is laminar with respect to all the cuts in AT , and is
therefore a subset of some meta-node in GpT . So the new cuts assigned to terminals in T are also laminar
with respect to j’s cut.

Finally, consider any two cuts assigned during Step 3 of the algorithm and belonging to two terminals
in the same component of G. Consider the set of all meta-nodes created during this iteration of Step 3. This

15

Input: Graph G = (V,E) with edge capacities ce, commodities S1, · · · , Sk, a family of cuts C with one cut for every
terminal in ∪aSa, such that the cut for terminal i ∈ Sa does not contain any terminal j 6= i in Sa.
Output: A laminar collection of cuts, one for each terminal in ∪aSa, such that for all a and for all i, j ∈ Sa, i 6= j,
either the cut for i or the cut for j separates i from j.

1. While there are pairs of cuts in C that cross, do (see Figure 7):

(a) Consider any pair of cuts Ci, Cj ∈ C belonging to terminals i 6= j that cross each other, such that
ri ∈ Ci \ Cj and rj ∈ Cj \ Ci. Reassign Ci = Ci \ Cj and Cj = Cj \ Ci. Return to Step 1.

(b) Consider any three terminals i1, i2, i3 with cuts C1, C2 and C3 such that ri1 ∈ C1 ∩ C2 \ C3, ri2 ∈
C2∩C3 \C1, and ri3 ∈ C3∩C1 \C2. Then, reassign these respective intersections to the three terminals.
Return to Step 1.

(c) Consider any pair of cuts Ci, Cj ∈ C belonging to terminals i, j ∈ Sa for some a that cross each other,
such that ri ∈ Ci ∩ Cj and rj ∈ Cj \ Ci. Reassign Ci = Ci ∩ Cj and Cj = Ci ∪ Cj . Return to Step 1.

(d) Consider any pair of cuts Ci, Cj ∈ C belonging to terminals i 6= j that cross each other, such that
ri, rj ∈ Ci ∩ Cj , i ∈ Sa and j ∈ Sb with a 6= b.

• Suppose that there is no i′ ∈ Sa∩Cj with Ci ⊂ Ci′ . Then, reassign Ci = Ci∪Cj and Cj = Ci∩Cj ;
return to Step 1. Conversely, if there is no j′ ∈ Sb∩Ci with Cj ⊂ Cj′ . Then, reassign Cj = Ci∪Cj

and Ci = Ci ∩ Cj ; return to Step 1. (This transformation is similar to Step 1c.)
• If neither of those cases hold, let i0 = i, and let i1, · · · , ix denote the terminals in Sa ∩ Cj with

Ci ⊂ Ci1 ⊂ Ci2 ⊂ · · · ⊂ Cix
. For x′ ≤ x − 2, reassign Cix′ = (Cix′+1

\ Cj) ∪ Cix′ , Cix−1 =
Cix

∪Cj , and Cix
= Cix

∩Cj \Cix−1 . Reassign cuts to j and terminals in Sb ∩Ci likewise. Return
to Step 1.

(e) If none of the above rules match, then go to Step 2.

2. Let G be a directed graph on the vertex set ∪aSa, with edges colored red or blue, defined as follows: for
terminals i 6= j, G contains a red edge from i to j if and only if Cj ⊂ Ci, and contains a blue edge from i to j
if and only if rj ∈ Ci, ri 6∈ Cj , and Cj \ Ci 6= ∅. We note that since no pair of terminals i and j matches the
rules in Step 1, whenever Ci and Cj intersect G contains an edge between i and j.
While there is a directed blue cycle in G, consider the shortest such cycle i1 → i2 → · · · → ix → i1. For
x′ ≤ x, x′ 6= 1, assign to ix′ the cut Cix′ ∩ Cix′−1

, and assign to i1 the cut Ci1 ∩ Cix
.

3. We show in Lemma 15 that at this step G is acyclic. For every connected component in G do:

(a) Let T be the set of terminals in the component and A be the set of corresponding cuts. Assign capacities
pe = 2`A

e to edges in G. Let Gp be the graph obtained by merging all pairs of vertices that have an edge
e with pe = 0 between them. We call the vertices of Gp “meta-nodes” (note that these are sets of vertices
in the original graph). At any point of time, let Ri denote the meta-node at which a terminal i resides.

(b) While there are terminals in T , pick any “leaf” terminal i (that is, a terminal with no outgoing red or blue
edges in G). Reassign to i the cut Ri. Reduce the capacity of every edge e ∈ δ(Ri) by 1. Remove i from
T ; remove i and all edges incident on it from G. Recompute the graph Gp based on the new capacities.

Figure 6: Algorithm Integer-Lam-2—Algorithm to convert an integral family of multiway cuts into a laminar
one

16

1a

i j

i j

1b
i1

i2

i3 i2

i1

i3

1d(ii)

i, j i1 i2j1j2 j2 j1 i, j i1 i2

1c

i

i j

j

cuts for commodity i

cuts for commodity j
2

i1

i2
i3

i4

i5

i1

i2
i3

i4

i5

Figure 7: Some simple rules for resolving crossing cuts. See algorithm Integer-Lam-2 in Figure 6 for formal
descriptions.

set is laminar, and the cuts assigned during this iteration are a subset of this laminar family. Therefore, they
are laminar.

Lemma 16 For a commodity i assigned a cut in Step 3 of algorithm Integer-Lam-2, let C1
i be its cut before

this step, and C2
i be the new cut assigned to it. Then C2

i ⊆ C1
i .

Proof: We assume without loss of generality that prior to Step 3 each edge load is at most one; this can be
achieved by splitting a multiply-loaded edge into many edges. We focus on the behavior of the algorithm
for a single component T of G and prove the lemma by induction over time.

Consider an iteration of Step 3b during which some terminal i ∈ T is assigned and let Ci be its original
cut. Consider any vertex v 6∈ Ci and let P be a shortest simple path from ri to v in GpT (where the length
of an edge e is given by pT

e just prior to when i is assigned a new cut). It is easy to see that there is one such
shortest path that crosses each new cut assigned prior to this iteration in Step 3b at most twice – suppose
there are multiple entries and exits for some cut, we can “short-cut” the path by connecting the first point on
the path inside the cut to the last point on the path inside the cut via a simple path of length 0 lying entirely
inside the cut. We pick P to be such a path. We will prove that P ’s length is at least 2. So the meta-node
containing i must lie inside the cut Ci, and the lemma holds.

Let T1 (resp. T2) be the set of terminals in T \ Ci (resp. T ∩ Ci) that are assigned new cuts before i in
this iteration. We first note that for any j in T1, prior to this step, there is no edge from j to i (as j is assigned
before i), so ri 6∈ Cj , and this along with rj 6∈ Ci implies that Ci and Cj are disjoint. This implies that the
new cut of j (which is a subset of Cj by induction) is also disjoint from Ci, and therefore cannot load any
edge with an end-point in Ci. So the only new cuts assigned this far in Step 3b that load edges in P belong
to terminals in T2.

Now we will analyze P ’s length by accounting for all the newly assigned cuts that load its edges. Let
SP be the set of terminals in T2 that load an edge in P , and j ∈ SP . Since the new cut of j intersects P , by
the induction hypothesis, Cj should either intersect P or contain the entire path inside it. If Cj contains P
entirely, then Cj \ Ci 6= ∅, and furthermore ri, rj ∈ Ci ∩ Cj . This implies that either Ci ⊂ Cj and there is
a directed red edge from j to i, or Ci \Cj 6= ∅, that is, Ci and Cj cross and should have matched the rule in
Step 1d of the algorithm. Both possibilities lead to a contradiction. Therefore, Cj must intersect P .

Finally, the original total length of the path is at least 2|SP |+2, because each terminal in SP contributes
two units towards its length, and another two units is contributed by Ci. Out of these up to 2|SP | units of
length is consumed by terminals in SP . Therefore, at the time that i is assigned a cut, at least 2 units remain.

17

Lemma 17 When algorithm Integer-Lam-2 terminates, for every a ∈ [k] and i 6= j ∈ Sa, either Ci or Cj

separates i from j.

Proof: We claim that for every a ∈ [k] and i 6= j ∈ Sa, at every time step during the execution of the
algorithm, |Ci ∩ Cj ∩ {ri, rj}| ≤ 1. Then since by Lemma 15 the final solution is laminar, the lemma
follows. We prove this claim by induction over time. First, if during any iteration of the algorithm, we
“shrink” the cut of any terminal (that is, reassign to the terminal a cut that is a strict subset of its original
cut), then the claim continues to hold for that terminal, because intersections of the terminal’s cut only shrink
in that step. Note that cuts of terminals expand only in Steps 1c and 1d of the algorithm (by construction
and by Lemma 16).

Suppose that during some iteration we apply the transformation in Step 1c to terminals i and j, reassign-
ing Cj = Ci ∪ Cj , and the claim fails to hold for terminal j. Specifically, suppose that for some j′ ∈ Sa,
after the iteration we have rj , rj′ ∈ Cj ∩ Cj′ . Then, rj ∈ Cj′ , and therefore Cj′ intersected Cj prior to
the iteration, and by the induction hypothesis rj′ ∈ Ci \ Cj prior to the iteration. If ri ∈ Cj′ , then prior
to the iteration, i and j′ contradicted the induction hypothesis. Otherwise, i, j and j′ satisfy the conditions
in Step 1b of the algorithm, and this contradicts the fact that we apply the transformation in Step 1c at this
iteration.

Next suppose that during some iteration we apply the transformation in the first part of Step 1d to
terminals i and j, reassigning Cj = Ci ∪ Cj , and the claim fails to hold for terminal j; in particular, for
some j′ ∈ Sa, after the iteration we have rj , rj′ ∈ Cj ∩ Cj′ . Then, since rj ∈ Cj′ and the pair of terminals
did not match the criteria in Step 1c, it must be the case that Cj ⊂ Cj′ prior to the iteration. Furthermore,
rj′ ∈ Ci prior to the iteration and this contradicts the fact that we applied the transformation in the first part
of Step 1d.

Finally, suppose that during some iteration we apply the transformation in the second part of Step 1d.
Then the cut assigned to every ix′ for x′ ≤ x−2 is a subset of the previous cut of ix′+1, but does not contain
the latter terminal, and so by the arguments presented for the previous cases, once again the induction
hypothesis continues to hold for those terminals. Furthermore, the cut assigned to ix is a subset of its
original cut and ix−1 does not belong to any of the new cuts except its own. The same argument holds for
the jy′ terminals.

Lemma 18 For the cut collection produced by algorithm Integer-Lam-2 the load on every edge is no more
than twice the load of the integral family of cuts input to the algorithm.

Proof: We first claim that edge loads are preserved throughout Steps 1 and 2 of the algorithm. This can
be established via a case-by-case analysis by noting that in every transformation of these steps, the number
of new cuts that an edge crosses is no more than the number of old cuts that the edge crosses prior to the
transformation. It remains to analyze Step 3 of the algorithm. We claim that we only lose a factor of 2 in
edge loads during this step of the algorithm. This is easy to see. Note that for every edge e,

∑
T pT

e ≤ 2`C∪T
e ,

where C∪T is the family of cuts belonging to terminals in any non-singleton component of G prior to Step 3.
Moreover, in each iteration of the step, we only load an edge e to the extent of pT

e . Therefore the lemma
follows.

Proof of Lemma 14: The proof follows immediately from Lemmas 15, 17 and 18.

Given this lemma, algorithm Lam-2 in Figure 8 converts an arbitrary feasible solution for MCP-LP into
a feasible fractional laminar family.

18

Input: Graph G = (V,E) with edge capacities ce, commodities S1, · · · , Sk, a feasible solution d to the pro-
gram MCP-LP.
Output: A fractional laminar family of cuts C that is feasible for G with edge capacities 8ce + o(1).

1. For every a ∈ [k] and every terminal i ∈ Sa do the following: Order the vertices in G in increasing or-
der of their distance under da from ri. Let this ordering be v0 = ri, v1, · · · , vn. Let C1

i be the collection
of cuts {v0, v1, · · · , vb}, one for each b ∈ [n] with da(ri, vb) < 0.5, with weights w1({v0, · · · , vb}) =
2(min{da(ri, vb+1), 0.5} − da(ri, vb)). Let C1 denote the collection {C1

i }i∈∪aSa
.

2. Let N = n
∑

a |Sa|. Round up the weights of all the cuts in C1 to multiples of 1/N2, and truncate the collection
so that the total weight of every sub-collection C1

i is exactly 1. Furthermore, split every cut with weight more
than 1/N2 into multiple cuts of weight exactly 1/N2 each, assigned to the same commodity. Call this new
collection C2 with weight function w2. Note that every cut in this collection has weight exactly 1/N2.

3. Construct a new instance of MCP in the same graph G as follows. For each a ∈ [k], construct N2 new
commodities with terminal sets identical to that of Sa (that is the terminals reside at the same nodes). For every
new terminal corresponding to an older terminal i, assign to the new terminal a unique cut from C2

i with weight
1. Call this new collection C3, and the new instance I .

4. Apply algorithm Integer-Lam-2 from Figure 6 to the family C3 to obtain family C4.

5. For every a ∈ [k] and every i ∈ Sa, let C5
i be the set of N2/2 innermost cuts in C4 assigned to terminals in the

new instance I that correspond to terminal i. (Note that these cuts are concentric as they belong to a laminar
family and all contain ri. Therefore “innermost” cuts are well defined.) Assign a weight of 2/N2 to every cut
in this set. Output the collection C5.

Figure 8: Algorithm Lam-2—Algorithm to convert an LP solution into a feasible fractional laminar family

Lemma 2 Consider an instance of the MCP with graph G = (V,E), edge capacities ce, and commodities
S1, · · · , Sk. Given a feasible solution d to MCP-LP, algorithm Lam-2 produces a fractional laminar cut
family C that is feasible for the MCP on G with edge capacities 8ce + o(1).

Proof: Note first that the cut collection C1 satisfies the following properties: (1) For every a ∈ [k] and i ∈ Sa,
every cut in C1

i contains ri, but not rj for j ∈ Sa, j 6= i; (2) The total weight of cuts in C1
i is 1; (3) For every

edge e, `C
1

e ≤ 2
∑

a da(e) ≤ 2ce. The family C2 also satisfies the first two properties, however loads the
edges slightly more than C1. Any edge belongs to at most N cuts, and therefore the load on the edge goes up
by an additive amount of at most 1/N . Therefore, for every e, `C

2

e ≤ 2ce + 1/N . Next, the collection C3 is
a feasible integral family of cuts for the new instance I with `C

3

e = N2`C
2

e . Therefore, applying Lemma 14,
we get that C4 is a feasible laminar integral family of cuts for I with `C

4

e ≤ 2N2(2ce + 1/N). Finally, in
family C5, every terminal i ∈ Sa gets assigned N2/2 fractional cuts, each with weight 2/N2. Therefore,
the total weight of cuts in C5

i is 1. Now consider any two terminals i, j ∈ Sa with i 6= j. Then, in all the N2

commodities corresponding to Sa in instance I , either the cut assigned to i’s counterpart, or that assigned to
j’s counterpart separates i from j. Say that among at least N2/2 of the commodities in I ′, the cut assigned
to i’s counterpart separates i from j. Then, the innermost N2/2 cuts assigned to i in C5 separate i from j.
Therefore, the family C5 satisfies the first two conditions of feasibility as given in Definition 2. Finally, it is

19

easy to see that on every edge e, `C
5

e ≤ 2/N2`C
4

e ≤ 4(2ce + 1/N).

5 NP-Hardness

We will now prove that CSCP and MCP are NP-hard. Since edge loads for any feasible solution to these
problems are integral, the result of Theorem 5 is optimal for the CSCP assuming P 6=NP. The reduction in
this theorem also gives us an integrality gap instance for the CSCP.

Theorem 19 CSCP and MCP are NP-hard. Furthermore the integrality gap of MCP-LP is at least 2 for
both the problems.

Proof: We reduce independent set to CSCP. In particular, given a graph G and a target k, we produce an
instance of CSCP such that the load on every edge is at most 1 if and only if G contains an independent set
of size at least k. Let n be the number of vertices in G. We construct G′ by adding a chain of n− k + 1 new
vertices to G. Let the first vertex in this chain be t (the common sink) and the last be v. We connect every
vertex of G to the new vertex v, and place a terminal i at every vertex ri in G (therefore, there are a total of
n sources). We claim that there is a collection of n edge-disjoint ri − t cuts in this new graph G′ if and only
if G contains an independent set of size k.

One direction of the proof is straightforward: if G contains an independent set of size k, say S, then
for each vertex ri ∈ S, consider the cut {ri}, and for each of the n − k source not in S, consider the cuts
obtained by removing one of the n− k chain edges in G′. Then all of these n cuts are edge-disjoint.

Next suppose that G′ contains a collection of edge-disjoint cuts Ci, with ri ∈ Ci and t 6∈ Ci for all i.
Note that the number of cuts Ci containing any chain vertex is at most n − k because each of them cuts at
least one chain edge. Next consider the cuts that do not contain any chain vertex, specifically v, and let T ′

be the collection of terminals for such cuts. These are at least k in number. Note that any cut Ci, i ∈ T ′,
cuts the edges (u, v) for u ∈ Ci. Therefore, in order for these cuts to be edge-disjoint, it must be the case
that Ci ∩ Cj = ∅ for i, j ∈ T ′, i 6= j. Finally, for two such cuts Ci and Cj , edge-disjointness again implies
that ri and rj are not connected. Therefore the vertices ri for i ∈ T ′ form an independent set in G of size at
least k.

For the integrality gap, let G be the complete graph and k be n/2. Then, there is no integral solution
with load 1 in G′. However, the following fractional solution is feasible and has a load of 1: let the chain
of vertices added to G be v = v1, v2, · · · , vn/2+1 = t; assign to every terminal i, i ∈ [n], the cut {ri} with
weight 1/2, and the cut V ∪ {v0, · · · , vbi/2c} with weight 1/2.

6 Concluding Remarks

Given that our algorithms rely heavily on the existence of good laminar solutions, a natural question is
whether every feasible solution to the MCP can be converted into a laminar one with the same load. Figure 9
shows that this is not true. The figure displays one integral solution to the MCP where the solid edges
represent the cut for commodity a, and the dotted edges represent the cut for commodity b. It is easy to see
that this instance admits no fractional laminar solution with load 1 on every edge.

Is the “laminarity gap” small for the more general set multiway cut packing and multicut packing prob-
lems as well? We believe that this is not the case and there exist instances for both of those problems with a
non-constant laminarity gap.

20

a0, b0

a1

b1a2

b2

Figure 9: Each edge has capacity 1. There are two commodities with terminal sets {a0, a1, a2} and
{b0, b1, b2}.

References
[1] G. Calinescu, H. Karloff, and Y. Rabani. An improved approximation algorithm for multiway cut. Journal of

Computer and System Sciences, 60(3):564–574, 2000.

[2] G. Calinescu, H. Karloff, and Y. Rabani. Approximation algorithms for the 0-extension problem. SIAM Journal
on Computing, 34(2):358–372, 2004.

[3] A. Caprara, A. Panconesi, and R. Rizzi. Packing cuts in undirected graphs. Networks, 44(1):1–11, 2004.

[4] C. Chekuri, S. Khanna, J. Naor, and L. Zosin. A linear programming formulation and approximation algorithms
for the metric labeling problem. SIAM J. on Discrete Mathematics, 18(3):608–625, 2004.

[5] A. Karzanov. Minimum 0-extensions of graph metrics. European J. of Combinatorics, 19(1):71–101, 1998.

[6] J. Kleinberg and E. Tardos. Approximation algorithms for classification problems with pairwise relationships:
metric labeling and Markov random fields. Journal of the ACM, 49(5):616–639, 2002.

[7] M. Li, B. Ma, and L. Wang. On the closest string and substring problems. Journal of the ACM, 49(2):157–171,
2002.

[8] C. L. Lucchesi and D. H. Younger. A minimax theorem for directed graphs. J. London Math. Soc., 17:369–374,
1978.

[9] Y. Rabani, L. Schulman, and C. Swamy. Approximation algorithms for labeling hierarchical taxonomies. In
ACM Symp. on Discrete Algorithms, pages 671–680, 2008.

[10] R. Ravi and J.Kececioglu. Approximation algorithms for multiple sequence alignment under a fixed evolutionary
tree. Discrete Applied Mathematics, 88:355–366, 1998.

[11] L. Wang and D. Gusfield. Improved approximation algorithms for tree alignment. Journal of Algorithms,
25(2):255–273, 1997.

[12] L. Wang, T. Jiang, and D. Gusfield. A more efficient approximation scheme for tree alignment. SIAM Journal
on Computing, 30(1):283–299, 2000.

[13] L. Wang, T. Jiang, and E. Lawler. Approximation algorithms for tree alignment with a given phylogeny. Algo-
rithmica, 16(3):302–315, 1996.

21

