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Abstract Our methods also yield similar bounds fBPARSEST
CuT andMIN-2CNF= DELETION. The SPARSESTCUT
We show that theMuLTIcUT, SPARSESTCUT, and problem has the same input 8uLTICUT, but the goal
MIN-2CNF= DELETION problems are NP-hard to approx- is to find a subset of the edgéd C E that minimizes
imate within every constant factor, assuming the Unique the ratio of| /| (in the weighted version, the total cost of
Games Conjecture of Khot [STOC, 2002]. A quantitatively M) to the number of demand pairs that are disconnected
stronger version of the conjecture implies inapproximability in (V, E \ M).*Since SPARSESTCUT is not known to be
factor ofQ2(loglogn). APX-hard, our result gives the first indication that this prob-
lem might be hard to approximate. In tivIN-2CNF=
DELETION problem the input is a weighted set of clauses
on n variables, each clause of the form = y), wherex
andy are literals, and the goal is to find a Boolean assign-
ment to the variables minimizing the total weight of unsatis-
In the MULTICUT problem the input is an undirected fied clause30ur results also extend to tH@ORRELATION
graphG = (V,E) onn = |V]| vertices andk pairs of CLUSTERING problem [7, 110, 113, [14] of minimizing dis-
vertices{s;, t;}*_,, calleddemand pairsand the goal is agreements in a weighted graph, because the approxima-
to find a minimum-size subset of the edgdsC E whose bility of this problem is known to be equivalent to that of
removal disconnects all the demand pairs, i.e., in the sub-MULTICUT in weighted graphsli0, [14].
graph(V, E'\ M) everys; is disconnected from its corre-
sponding vertex;. In the weighted version of this problem, 1 1. Known results on MuLTICUT, SPARSESFCUT,
the input also specifies a positive cegt) for each edge and MIN-2CNF= DELETION
e € F and the goal is to find a multicdt/ whose total cost
c(M) =3 cp cle) is minimal. This problem is known to
be APX-hard/L2].
We prove that if a strong version of the Unique Games
Conjecture of Khot19] is true, therMuLTICUT is NP-hard
to approximate to within a factor d®(loglogn). Under
the original version of this conjecture, our reduction shows
that for every constant > 0, it is NP-hard to approximate
MULTICUT to within factor L.

1. Introduction

MULTICUT and SPARSESTCUT are fundamental com-
binatorial problems, with connections to multicommodity
flow, edge expansion, and metric embeddings. Both prob-
lems can be approximated to within @(log k) factor
through linear programming relaxation5[ 16, 16, 26].
These bounds match the lower bounds on the integrality
gaps up to constant factoi25,/16]. MIN-2CNF= DELE-
TION can also be approximated to within é{log n) fac-
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been developed for th8PARSESTCUT problem using a  1.2. The Unique Games Conjecture
semidefinite programming relaxatiod, [11, 2]. The best
approximation factor currently known for general demands  Unique2-prover gamas the following problem. The in-
is O(vIogkloglogk) [2]. The obvious modification of  put is a bipartite graplt’, = (Q, Eg), where each side
the semidefinite program used fBPARSESTCUT to solve p = 1,2 containsn = |Q|/2 vertices denoted?, - - -, ¢,
MuLTICUT was recently shown to have an integrality ra- and represents possible questions to prover In addi-
tio of Q(log k) [1], which matches, up to constant factors, tion, the input contains for each edgg, ¢;) € Eq a non-
the approximation factor and integrality gap of previously negative weighto(q}, qJZ)_ These edges will be calleplies-
analyzed linear programming relaxations for this problem. tion edgesto distinguish them from edges in théuLT! -

CuT instance. Each question to a prover is associated with

On the hardness side, it is known thdtuLTICUT is a set ofd distinct answers, denoted by = {1,...,d}.
APX-hard [12], i.e., there exists a constant> 1, suchthat e input also contains, for every edgg, ¢2) € Eq, a
it is NP-hard to approximat® uLTICUT to within a factor bijectionb;; : [d] — [d], which maps every ar%swer of ques-
smaller thare. It should be noted that this hardness of ap- tjon 4! to a distinct answer foy?
z 7"

proximation holds even fdr = 3, and that the value ofis A solution A to the2-prover game consists of an answer
not specified therein, but it is certainly much smallerthan ~ 4r [d] for each question? (i.e., a sequencéA”} over
TheMIN-2CNF= DELETION problem is also knowntobe g, ¢ [2] andi € [n]). The solution is said to satisfy an

APX-hard, as follows, e.g., from linear equations modilo edge(q},q?) € Eq if the answersA} and A2 agree, i.e.,

[17. A% = bi;(A}). We assume that the total weight of all the
edges inEg is 1 (by normalization). Thealue of a solution

is the total weight of all the edges satisfied by the solution.
Thevalue of the gam& the maximum value achievable by
any solution to the game.

Assuming the Unique Games Conjecture, K@, [The-
orem 3] essentially obtained an arbitrarily large constant-
factor hardness foMIN-2CNF= DELETION, and this im-
plies, using the aforementioned reduction Bg][ a simi-
lar hardness factor foMULTICUT. These results are not Conjecture 1.1 (Uniqgue Games/19]). For every fixed
noted in [19], and are weaker than our results in several re- 5, § > 0 there existsi = d(n,d) such that it is NP-hard
spects. First, our quantitative bounds are better; thus if ato determine whether a unigi@eprover game with answer
stronger, yet almost as plausible, version of this conjectureset sizel has value at leastl — ») or at mosts.
is true, then our lower bound on the approximation factor . ) _ _
improves toL = Q(loglog n), compared with the roughly We will a!so con§|der .stronger versions of. the Unique
Q((log log n)'/4) hardness that can be inferred froif] Gam(_a_s Conjectur(_e in whpln 6, andd are _functlons ofn.
this can be viewed as progress towards proving tight in- Spemflcaslzlyl, we will consider versions withax{, 5} <
approximability results foMuLTIcUT. Second, by qual-  1/(log7) ( ) andd = d(n, ) < O(logn). We dego(t_)e the
itatively strengthening ouMULTICUT result to a bicriteria  Si2€ Of aninputinstance hy. Notice thatV = (n2) (1)_'
version of the problem, we extend our hardness results to2nd iS thus polynomial in as long as/ < O(logn), and in
the SPARSESTCUT problem. It is unclear whether Khot's ~ Particular for fixedd.
reduction similarly leads to a hardness resultS3eARSEST
CuT. Finally, our proof is simpler (both the reduction and Plausibility of the conjecture and its stronger version.
its analysis), and makes direct connections to cuts (in a hy-The Unique Games Conjecture has been used to show opti-
percube), and thus may prove useful in further investigation mal inapproximability results fov ERTEx CoVvER [21] and
of such questions. Max-CuT [20, 27]. Proving the conjecture using current

techniques appears quite hard. In particular, the asserted

For SPARSESTCUT, no hardness of approximation re- NP-hardness is much stronger than what we can obtain via
sult was previously known. Independent of our work, Khot standard constructions using the PCP theo/®8][and the
and Vishnoi P2] have recently used a different construc- parallel repetition theoren®8], two deep results in compu-
tion to show an arbitrarily large constant factor hardness tational complexity.
for SPARSESTCUT assuming the Unique Games Conjec-  Although the conjecture seems difficult to prove in gen-
ture; their hardness factor could, in principle, be pushed toeral, some special cases are well-understood. In particu-
(loglogn)¢, for some constant > 0, assuming a stronger lar, if at all the Unique Games Conjecture is true, then
quantitative version of the conjecture. Additionally, they necessarilyl > max{1/7'/1°,1/§}. This follows from
prove an integrality ratio lower bound 6I((loglogn)®), a semidefinite programming algorithm presented1f].[
for some fixede > 0, for the semidefinite program re- Our Q(loglogn) hardness result (see Corollaiy4 be-
laxations used in the recent approximation algorithms for low) requires the existence of a constant- 0, such that
SPARSESTFCUT. max{n,d} < 1/(logn)® andd < O(logn), which is not



excluded by the above. Feige and ReichniH] fecently
showed that for every constait > 0 there exists a con-
stanté > 0, such that it is NP-hard to distinguish whether a
unique 2-prover game (witth = d(L, §)) has value at least
L¢é or at most; this result falls short of the Unique Games
Conjecture in thal.d is bounded away fron.

1.3. Our results

We prove the following hardness of approximation for
MULTICUT, SPARSESTCUT, and MIN-2CNF= DELE-
TION based on the Unique Games Conjecture.

Theorem 1.2. Suppose that fon = n(n), § = d(n), and
d =d(n,d) < O(logn), itis NP-hard to determine whether
a unique2-prover game withQ| = 2n vertices and answer
set sizel has value at least — 7n(n) or at mosté(n). Then

there existd.(n) = Q (log m) such that itis

NP-hard to approximaté uLTICUT, SPARSESTCUT, and
MIN-2CNF= DELETION to within factorL(n).

This theorem immediately implies the following two
specific hardness results.

Corollary 1.3. The Unique Games Conjecture implies that,
for every constant. > 0, it is NP-hard to approximate
MULTICUT, SPARSESTCUT, and MIN-2CNF= DELE-
TION to within factor L.

Corollary 1.4. The stronger version of the Unique Games
Conjecture in whichmax{n, 6} < 1/(logn)?™), andd =
d(n,d) < O(logn), implies that for some fixed > 0, it is
NP-hard to approximat® uLTICUT, SPARSESTCUT, and
MIN-2CNF= DELETION to within factorclog log n.

For SPARSESTCUT our hardness results hold only for

The proof is given in Appendid, and is based on an
argument of Khot and Regef1, Lemma 3.3]. The depen-
dence ofi onyn ands is important for our purposes. We thus
point out that this argument does not charge: d(7, ¢),
and increases the size of the instance by at most a polyno-
mial factor inn. This is acceptable in the setting of The-
orem[1.2, since the requirement = d(n, ) < O(logn)
is maintained and only the unspecified constants therein are
affected.

Bicriteria MuLTICUT. Our proof for the hardness of ap-
proximating SPARSESTCUT relies on a generalization of
MuLTIcuT, where the solutionV/ is required to cut only
a certain fraction of the demand pairs. For a given graph
G = (V, E), a subset of the edgéd C E will be called a
cutsetof the graph. A cutset whose removal disconnects all
the demand pairs ismulticut

An algorithm is called af«, 3)-bicriteria approximation
for MuLTIcuT if, for every input instance, the algorithm
outputs a cutset/ that disconnects at leastfraction of the
demands and has cost at mgdiimes that of the optimum
multicut. In other words, ifM/* is the least cost cutset that
disconnects all thé demand pairs, thei/ disconnects at
leastak demand pairs and( M) < 3 - ¢(M*).

Hypercubes, dimension cuts, and antipodal vertices.
As usual, thel-dimensional hypercubgn short ad-cubg is
the graphC' = (Vio, E¢) with the vertex seVc = {0, 1},
and an edgdu,v) € E¢ for every two verticess,v €
{0,1}¢ that differ in exactly one dimension (coordinate).
An edge(u, v) is called adimensiona edge for a € [d], if

u andv differ in dimensiomg, i.e.,u v = 1, wherel, isa
unit vector along dimensioi The set of all the dimension-

the search version (in which the algorithm needs to produceq edges in the hypercube is called timensiona cutin the
a cutset and not only its value), since our proof employs ahypercube; alimension cuts a dimension: cut for some

Cook reduction.
1.4. Preliminaries
Regular Unique Games. A unique 2-prover game is

calledregular if the total weight of question edges incident
at any single vertex is the same, iB/n, for every vertex in

@. We now show that we can assume without loss of gen-

dimensioru. Theantipodeof a vertexu is the (unique) ver-
texw all of whose coordinates are different from those:of
i.e.,u = u ® 1 wherel is the vector withl in every coor-
dinate. Notice that is the antipode of; if and only if u is
the antipode ob; thus, (v, @) form anantipodal pair The
following simple fact will be key in our proof.

Fact 1.6. In any hypercube, a single dimension cut discon-

erality that the graph in the Unique Games Conjecture is nects every antipodal pair.

regular. For simplicity, we state this only for fixedando.
A similar result holds when they depend anbecause we

increase the input size by no more than a polynomial factor,

and increase andd by no more than a constant factor.

Lemma 1.5. The Uniqgue Games Conjecture implies that
for every fixed), 6 > 0, there existsl = d(n, §) such that it

is NP-hard to decide if a regular uniqueprover game has
value at leasfi — n or at most).

Organization. In Sectiori2 we prove the part of Theorem
1.2 regarding theM uLTICUT problem; our proof will actu-
ally hold for bicriteria approximation foMuLTICUT. We
will then show in Sectiol8 that this stronger result yields
a similar hardness of approximation f&PARSESFCUT.
Finally, in Sectiori4, we modify the reduction to obtain a
hardness of approximation féfliN-2CNF= DELETION.



2. Hardness of bicriteria approximation for
MULTICUT

In this section we prove the part of Theoréh® re-
garding theMuLTICUT problem, namely, that the Unique
Games Conjecture implies that it is NP-hard to approxi-
mateMULTICUT within a certain factot.. Our proof will
actually show a stronger result—for evesy > 7/8 it is
NP-hard to distinguish between whether there is a multi-
cut of cost less than2¢+! (the YES instance) or whether
every cutset that disconnects at leastdemand pairs has
cost at least29+! L (the NO instance). This implies that it
is NP-hard to obtain afw, L)-bicriteria approximation for
MuLTICUT.

We start by describing a reduction from unicqis@rover
game toMULTICUT (Section2.1), and then proceed to an-
alyze the YES instance (Secti@®) and the NO instance
(Sections2.3 and2.4). Finally, we discuss the gap that is
created for a bicriteria approximation dfuLTICUT (Sec-
tion2.5).

2.1. The reduction

Given a unique-prover game instanad@g = (Q, Eg)
with n = |Q|/2 and the corresponding edge weighté&e)
and bijections;; : [d] — [d], we construct MULTICUT in-
stancez = (V, F) with demand pairs, as follows. For every
vertex (i.e., question)? € @, construct ai-dimensional
hypercubeCf; the dimensions in this cube correspond to
answers for the questioqf.3 For each of then hyper-
cubes, we let the edges inside the hypercube havelgost
and call themhypercube edges

For each question edde;,q;) € Eq, we extendb;;

(in the obvious way) to a bijection from the vertices@f

to the vertices of:‘j?, and denote the resulting bijection by
bj; : {0,1}% — {0,1}%. Formally, for everyu € {0,1}¢
(vertex inC}) and everya € [d], the a-th coordinate of
bi;(u) is given by (b;;(u))a = Uyt (a) Then, we connect
every vertexu € C} to the corresponding verte; (u) €
072 using an edge of cost;; A, whereA = n/nis a scaling
factor. These edges are calless edges

Denote the resulting graph lay = (V, E'). Notice thafl”
is simply the union of the vertex sets of the hypercubgs
for all p € [2] andi € [n], and that the edge sé&t contains
two types of edges, hypercube edges and cross edges.

To complete the reduction, it remains to define the de-
mand pairs. For a vertex € V, theantipodeof v in G, de-
notedu, is defined to be the antipodal vertexwin the hy-
percubeC? that contains:. The setD of demand pairs then

3This is a standard technique in PCP constructions for graph optimiza-
tion problems. A hypercube can be interpreted as a “long cd]eapd a
dimension cut is the encoding of an answer in the 2-prover game.

contains every pair of antipodal vertices @ and hence
k = |D| = n2¢-1. Note that every vertex off belong to
exactly one demand pair.

2.2. The YES instance

Lemma 2.1. If there is a solutior for the unique2-prover
gameG, such that the total weight of the satisfied questions
is at leastl — 7, then there exists a multicdf C E for the
MULTICUT instanceG such thate(M) < 2¢+1p,

Proof. Let A be such a solution fof7g. ConstructM by
taking the following edges. For every questigh € Q
and the corresponding answaf (of proverp), take the
dimensionA?” cut in cubeC?. In addition, for every edge
(¢i,47) € Eq that the solutiond does not satisfy, take all
the cross edges between the corresponding cGdeand
C2.

]We first claim that removind/ from G disconnects all
the demand pairs. To see this, we define a Boolean function
f V. — {0,1} on the graph vertices. For every cube
C?, consider the dimensioA? cut; it disconnects the cube
into two connected components, one containing the all zeros
vector0 and one containing the all ones veclor-or every
v € CF, let f(v) = 0if vis in the same side &, and
f(v) = 1 otherwise. This is exactly thd?-th bitin v, i.e.,
f(w) = vyur. Now consider any demand pdis, v), and
note thatf(v) = 1 — f(). We will show below that every
edge(u,v) ¢ M satisfies the property(u) = f(v). This
clearly proves the claim.

Consider first a hypercube edge v) in C? that is not a
dimensionA? edge. Theryf(u) = uyr = vyr = f(v), by
the definition off. Next consider a cross edge, v) ¢ M.
Then this edge lies between cub@ and C?, such that
the question edggy; , ¢;) satisfied by the unique-prover
game solutiond. Thereforep;;(A;) = A3. Then,f(u) =
UAL = Up;(AL) = Va2 = f(v).

Finally, we bound the cost of the solution. L&the the
set of question edges not satisfied by the solutionThe
total cost of the multicut solution is thugM) = 2n 291 4
QdA Z(Qb@i)es Wi S an + Qd%n = Qd“n. O

2.3. Hypercube cuts and influences

We will analyze the NO instance shortly, but first we
set up some notation and present a few technical lemmas
regarding cuts in hypercubes. In particular, we present
Lemma2.3, which will have a crucial role in that analysis.

Recall that the dimensions of the hypercubes in the mul-
ticut instance correspond to answers to the 2-prover game.
Therefore, we define the extent to which a dimension par-
ticipates in a cut on the cube as follows. I(ét= (Vi, E¢)
be ad-dimensional hypercube. For a functign Vo — R,



the influence of dimensian € [d] (a.k.a. the influence of
thea-th variable) on the functiordenoted’/, is defined to
be the fraction of dimension-edgegu, v) € E¢ for which
flu) # f(v). Foracutsetl C E¢, the influence of di-
mensior: € [d] on the cutsetdenotedM, is defined as the
fraction of dimension: edges that belong tdé/. Observe
that| M| = 277137 g 12"

Proposition 2.2. Let M C E¢ be a cutset in a hypercube
C = (Ve,E¢). Defineg : Vo — Z by labeling the con-
nected components 6f\ M by distinct integers, and letting

balancep < 1/2 satisfyingp > min{3/2,1/3} > /3 and
IMa = 1/, Using Lemmé2.4with o = 2%, we have

Bx

oz T DI > 2020
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a€ld]
We thus obtain

Mz s BT
Z(Ia ) = 3 22z

a

g(v) for v € V- be the label of the connected component Now sety = max,¢ (g IM' Then we get

containingv. Then/™ > 19,

Proof. Observe that the cuts@t’ must contain every edge
(u,v) € E¢ for which g(u) # g(v). O

The lemma below shows that if a cutddthas few edges

(i.e., small cost) but its removal disconnects a large fraction

of the antipodal pairs in the hyperculbg then there must
be a dimensiom € [d] with large influence.

Lemma 2.3. Let M be a cutset in al-dimensional hyper-
cubeC, and suppose that removirdg disconnects at least
G fraction of the antipodal pairs ii'. Then for allz > 0,

I <pr = maxIM >27%/27.
acld] a€ld]

To prove this, we will make use of the following lemma,
due to Kahn, Kalai, and Linia/llg] (see alsol29, Section
1.5]).

Lemma 2.4 (Kahn, Kalai, and Linial [18]). Let f be a

Boolean function defined on a hypercube, and suppose th

fraction of inputsz for which f(z) = 1isp < 1/2. Then
forall a > 0,

1 log a
— I’ N3 > 9p=2=
a% Hr%(z) > 2p—

We note that the proof of Lemnfa4is based on Fourier

> <

a

y 3N I < Byt
a

Therefore, we havg!/? > 272 ory >275%/27. O

The next lemma shows that if two functioffisg : Vo —
R agree on most of the inputse V¢, then their influences
are quite similar.

Lemma 2.5. LetC = (V, E¢) be a hypercube. If for two
functionsf, g : Vo — R we havef(v) = g(v) for all but a
~ fraction of inputsv € V¢, then for every dimensionwe
have|l] — 19| < 2.

Proof. Suppose tha€’ is a d-dimensional hypercube, and
consider a dimension-edge(u,v) € Ec. By our as-
sumption, for all but at most2¢ such edges, we must
have f(u) = g(u) and f(v) = g(v), and in particular
f(u) = f(v) = g(u) — g(v). Recalling that there are exactly
24-1 dimensione edges, and tha/ is the fraction of those
eedges for whichyf (u) — f(v) # 0 (and similarly forg), we
conclude thaf (u)— f (v) = g(u)—g(v) for at most2y frac-
tion of the dimension: edges, and thug/ — 19| < 2y. O

2.4. The NO instance

Lemma 2.6. There existd = Q(log1/(n + §)) such that
if the MULTICUT instanceG has a cutset of cost at most

analysis of Boolean functions, and that its statement above2?n I, whose removal disconneats> 7/8 fraction of the

follows from the proofs therein.

Proof of Lemm&.3. We first convert the cutse¥/ into a

demand pairs, then there is a solutighfor the unique2-
prover game’ g whose value is larger thas

two-sided (binary) cut. Observe that each connected com-Proof. Let L = clog1/(n + §) wherec > 0 is a con-

ponent ofC' \ M must have size at mogt! — 324! =

stant to be determined later, and gt C E be a cutset of

(1 — B8/2)|Vc|. If there is a component of size larger than costc(M) < 29nL whose removal disconnects > 7/8
|Ve|/2, we combine the rest of the components into a single fraction of the demand pairs. Using, we will construct
component. Otherwise, we split the set of components intofor the unique2-prover game= a randomized solutior
two parts such that the total size of the components in eachwhose expected value is larger thgrthereby proving the

partis at mosé |V |. Call the resulting cutset/’. Note that
M’ C M and thus, for every < [d], the influence of every
dimension in)M’ is no larger than its counterpartid, i.e.,
IM < M HenceY, IM < S IM < Bz. This two-
sided cut defines a Boolean functign Vo — {0, 1} with

existence of a solution of value larger théanWithout loss
of generality, we may assume thaf is minimal with re-
spect to containment, namely, for every subg&tC M, if
M’ # M then removingV/’ from G disconnects fewer de-
mand pairs than removint/ would. Given such a minimal



cutsetM, for each cub&? in G, consider the cutset/ in- influence,lj;j(a*). For the cube”}, if the eventt, does not
duces in this cube, and |€}* be the influence of dimension  gccyr, therd ", 1M < 8L. If neither&; nor & occurs,
a € [d] on this cutset. The randomized solutidn(i.e., @  then we can use Lemmnia32 (with 3 = 1/2, = = 16L) and
strategy for the two provers) is defined as follows. For each .ynclude that there exists a dimensione [d] such that
vertex (question)? € @, we choosed? to be the answer ‘
(dimension:’ € [d] with probability 17" /", ¢ 2. I > 279L o7,

We proceed to analyze the expected va[lue of this ran-
domized solutionA. Recall that the value of a solution
corresponds to the probability that, for a question edg
(q}, q]) chosen at random with probability proportional to
its weight, we have; = b;;(a;). Notice that althougly;
andq are correlated each one is uniformly distributed be-
causeQ is regular. Without loss of generality, we assume
removing M disconnects at least as many demand pairs
inside the cube§C/ },c[, as inside the cubefC?} ¢y
Now we claim that with a high probability over the choice
of a question edge, the cutf has a low cost over edges ij’
incident on the corresponding hypercubes, and disconnectsI/ —I;° ”| < 2796L=6 for all dimensions: € [d]. Finally,
many demand pairs in the hypercubes. In other words, thesinceb;; is just a permutation of the coordinates, for all we
quality of the cut locally is nearly as good as the quality of | ,.a, € [d], ['Job _ Ig

For the sake of analysis, label the connected components

e Of G\ M with distinct integer values. Defing: Ct—17

by letting f(v) for u € C} be the label of the connected
component ofu, and defmeg CJ2 — Z similarly. For
everyu € Cf, if f(u) # g(bj;(u)) then the cross edge
(u, b};(u)) must be contained in the cutskt, and because

we assumed the evefif happens, this occurs for at most
24 /296L+7 verticesu € C}. Furthermore, by the definition

of f andg, we havel!" = If and 27 = I9. Applying
Lemma2.5to the functlonsf andg o bl;, we conclude that

) Altogether, we obtain

the cut globally. In particular, we upper bound the proba- i(a
bility of the following four “bad” events (for a choice of a 29> 1-1 i _ 9=96L—6 -, 9=96L /54
question edgéq}, ¢7)): bij(a®) = = ’
& = fewer than half the demand pairs @ are discon- and thus
nected inG \ M. Pr[A? =b;;(A})] > Pr[Al = a*, A? = b;;(a")]
& = M contains more tha2’*2 [ hypercube edges ifi}. 1 Ih 120
i . > . a . a _
= +2 2 = 1,1 2,
£ = M contains more tha2?*2 L hypercube edges o 8 Zae[d] I} Zae[d] Ibij(a)
&4, = M contains more thar?/2%L+7 cross edges be- > QL 22791

tweenC} andC?.
We conclude that the expected value of the randomized

First, by our assumption above, removihgdisconnects at  ¢|ution A is

leasta > 7/8 fraction of the demand pairs inside the cubes
{C}'}iepny» and thus by Markov's inequalit@r(€,] < 1/4. > w(g),q)) PriA? = by (A])] = UL™2277F) > 6,
Next, the cutsed/ contains at most?nL hypercube edges, (i.j)eEq

thus the expected number of edge€thu C? that are con-
tained inM is at mos?L, andPr[€, U &s] < 1/2. Finally,

if ¢ > 0is sufficiently smallPr[&,] < nL2%6E+7 < pl/2 <

1/8, as otherwise the total cost along the corresponding
question-edgeéy; 7q]) (i.e., those for which the cutsét/

contains more thagr!/2°"+7 cross edges betweeif and The above reduction from uniqug-prover game to
C7) is more than(yL2%05+7) - (24/2%547) - (n/n) = MuLTicuT produces a gap of(n) = Q(logl/(n(n) +
n2dL > c(_M). Taking a union bound, we upper bound 5(n))). We assumed(n,5) < O(logn), and thus the re-
the probability that any of the bad events occurs by sulting MULTICUT instanceG has sizeV = (n24)0() =

7 n®M)_ It follows that in terms of the instance si2¢, the

Pri&U&UE UE < 3 gapisL(N) = Q(log 1/(n(N®M) + §(N®M)Y)),
This completes the proof of the part of Theoréré re-
In order to lower bound the expected value of the ran- garding theMuLTICUT problem, namely, that the Unique

domized solutiond, we would like to show that if none of ~ Games Conjecture implies that it is NP-hard to approximate
the above bad events happens, then there exists a dimensiod uLTicuT within the above factok. (V). In fact, the above
a* € [d], such that in cub€’} this dimensiorm:* has large  proof shows that it is even NP-hard to obtaifvs, L(N))-
influence Il" and in cubeO]2 dimensionp;;(a*) has large  bicriteria approximation.

where the last inequality holdsdf> 0 is sufficiently small,
and this completes the proof of Lemi&. O

2.5. Putting it all together



Note that the number of demand pairscis= n2¢-1 = most—f Indeed, suppose the procedure perfotiasg-
n®M and thus the hardness of approximation factor is mentat|on iterations. Denote ky; the connected compo-
similar when expressed in terms bfas well. Note also  nentS thatis cut at iteration € [t], by Es, the correspond-
that all edge weights in th ULTICUT instance constructed ing cutset output by4, and byDg, the corresponding set
above are bounded by a polynomial in the size of the graph.of demand pairs that get disconnected. CleaVly; is the
Therefore, via a standard reduction, a similar hardness re-disjoint unionFE; U - - - U E;, and it is easy to verify that the

sult holds for the unweightell uLTICUT problem as well. collection D of demand pairs cut by the cutsef- is the
disjoint unionDg, U ---U Dg,. Thus,
3. Hardness of approximatingSPARSESTCUT ¢ p O
e(Mc) _;C = 1—a'E;|DSi‘

In this section we prove the part of Theordn2 regard- = c =
ing the Sparsest-Cut problem. The proof follows immedi- = L —|D¢l,
ately from the next lemma in conjunction with the hardness l-a k
of bicriteria approximation oMuULTICUT (from the previ-  Which proves the claim.
ous section). For the sake of analysis, fix an optimal multicut* C

E, i.e., a cutset off whose removal disconnects all the de-
Lemma 3.1. Let0 < a < 1 be a constant. If there ex- mand pairs and has the least cost. The sparsest-cut value
ists a polynomial-time algorithm foBPARSESFTCUT that of M* is b* = c¢(M™*)/k. We will show that if C €
produces a cut whose value is within facior> 1 of the [e(M™), 2¢(M™)], then the above procedure produces a cut-
minimum, then there is a polynomial time algorithm that set M- whose removal disconnects a collectibi: con-
. a) -bicriteria approximation forM uL- taining |D¢| > ok demand pairs; this will complete the
TICUT. proof of the lemma, because it immediately follows that

Proof. Fix 0 < o < 1, and supposgl is a polynomial-time e(Mc) < L Q\Dc| <P . 2c(M*),
algorithm for SPARSESFCUT that produces a cut whose l—a k l-a

value is within factorp > 1 of the minimum. Now sup-  and clearlyc(M*) € [cmin, (g) - Cmax]. SO SUppose now
pose we are given an input graph= (V, E) andk demand ¢ e [¢(M*),2¢(M*)] and assume for contradiction that
pairs{s;, t;}}_,. We may assume without loss of generality |D.| < ak. Denote byVi,...,V, C V the connected
that everys; is connected (irf7) to its corresponding;. Let components of7 \ M¢, and letD; contain the demand
Cmin @Ndcnax be the smallest and largest edge cost&/in  pairs that lie inside/;. It is easy to see that?_, |D;| =

and letn = |V]. k —|Dc| > (1 — a)k. Similarly, let M be the collec-
We now describe the bicriteria approximation algorithm tion of edges inM* that lie insideV,. Thenc¢(M*) >
for MULTICUT. For every valuel' € [cmin, n2cmax] that 1 c(M7). Notice that, in every induced gragh[V;],

is a power of2, execute a procedure that we will describe the edges of/; form a cutset (oiG[V}]) that cuts all the
momentarily to compute a cutséfc C E, and report,  demand pairs |rD Using the stopping condition of the
from all these cutsetd/- whose removal disconnects at procedure, and sinqg provides an approximation within
leastak demand pairs, the one of least cost. For a given factor p, we havec(M;) > =<|D;| (the inequality is
valueC > 0, the procedure starts with/c = (), and then  not strict becaus®; mlght be empty). We thus derive the
iteratively “augments”M . as follows: Take a connected contradiction

componentS of G \ M¢, apply algorithmA to G[S] (the » »
subgraph induced ofi and all the demand pairs that lie in- c(M*) Z o(M;) ¢ Z |D;| > e(M™).
side S), and if the resulting cutsdfs has value (inG[S]) = 1 —a k =

at most 2 - £, then add the edgeBs to Mc. Here,
the value (ratio of cost to demands cut)6§ is defined as
bs = ¢(Fs)/|Ds|, whereDg is the collection of demand
pairs that lie inG[S] and get disconnected (i6[S]) when

This shows that whe@' € [¢(M*), 2¢(M™*)], the procedure
stops with a cutset/- whose removal disconnedt®¢| >
ak demand pairs, and concludes the proof of the lemma.

Es is removed. Proceed with the iterations until for every O
connected componesstin G\ M¢ we havebs > £— f ) .
at which point the procedure returns the cutgs. 4. Hardness of approximating MIN-2CNF=

This algorithm clearly runs in polynomial time. To ana- DELETION
lyze its performance, we first claim that for every vatule
the cutsefV/ returned by the above procedure has sparsest- In this section, we modify the reduction in Sectiarl
cut value (ratio of cost to demand disconnected(z)nat to obtain a hardness of approximation fehN-2CNF=



DELETION. In particular, we reduce thMULTICUT in- Lemmas4.1 and 4.2 along with Lemme2.€ imply the
stance obtained in Secti@lto MIN-2CNF= DELETION, part of Theoreni.2regardingMIN-2CNF= DELETION.
such that a solution to the latter givesvuLTICUT of the
same cost in the former. )

The MIN-2CNF= DELETION instance containg?~1n - Concluding remarks
variables, one for each demand pgir@). In particular,
for every demand paifu,u) € D, we associate the literal Several important questions are left open. First, one
a,, with v and the literak;; = —z, with w. For every edge  \yqyid like to eliminate the dependence on the Unique
¢ = (u,v) inthe graplt: there is a clausgr, = x,) Whose  Games Conjecture, and obtain a “standard” hardness of ap-
weight is equal to the edge-weight . proximation result. Yet another challenge is to improve the
~ The following lemma is immediate from the construc- pardness factor. FavluLTicuT, the Q(logn) integrality
tion and implies an analog of Lemri2zt for MIN-2CNF= ratio lower bound of1] suggests that the inapproximability
DELETION. bound may be improved. In particuldiipgn)® hardness

Lemma 4.1. Given an assignmeist of costi’ to the above ~ fOr & constant > 1/2 will separate the approximability
instance ofMlIN-2CNF= DELETION. we can construct a  °f MULTICUT from that of SPARSESFCUT (in light of the

solution of cost¥ to theMULTICUT instanceG. recent approximation due t@j).
' The main bottleneck to improving the hardness factor
Proof. Let M be the set of edges., v) for which S(z,,) # lies in Lemmal2.3 which in turn crucially depends on

S(z,). ThenM corresponds to the clauses that are not sat-| emmal2.4, due to [L§. These bounds are tight in gen-
isfied by S and has weightV. The lemma follows from  eral, as shown by the tribes functic®].[ However, in our
observing that\/ is indeed a multicut-$ is constant over  context, in the reduction to the (non-bicriterfuLTiCUT
connected components i\ M/, and for any demand pair  problem, one may additionally assume tifais odd, that

(v, @), S(zu) # S(=). O is, f(u) # f(w) for all inputsu (because a multicut should
separate all the antipodal demand pairs). Even with this

We now give an analog of Lemnzal additional assumption, our(loglogn) bound cannot be

Lemma 4.2. If there is a solution4 for the unique2-prover improved substantially, as demonstrated by the following
gameG, such that the total weight of the satisfied questions variant of the tribes functiori2d]: Partition the variables
is at leastl — 7, then there exists an assignmehfor the uy, . . ., uq into subsets of sizkvg d — 2loglog d each; the
aboveMIN-2CNF= DELETION instance such that(S) < output is the value of the first unanimous subset (under
2041y, an arbitrary ordering), ot if no unanimous tribe exists.

This function is clearly odd, yet all variables have influ-

ence at mosO(12%°4) and the total influence i®(log d).

For Lemma2.3, this function leads to a cutsé/ with

B = 1, such that forz = > IM = O(logd) we have
max, Ifl” < 2—%(=),

A third challenge is to obtain hardness of approximation

results for the uniform-demand case of 8®ARSESTCUT
eoroblem or for theBALANCED-CUT problem. Our results
do not apply to this special but important case; in particular,
if a 2-prover system has a low-cost balanced cut, then the
%orresponding graph on hypercubes would have a low-cost

alanced cut regardless of the value of #hprover game.
Alternatively, of course, one might improve the approxima-
tion algorithms for any of these problems.

Proof. Given the solutionA for G¢, we construct an as-
signmentS as follows. For every questiaff and for every
vertexu in the corresponding hyperculé’, defineS(x,,)
to be theA?-th bit of u, i.e., S(x,) = u,». Note that this is
a valid assignment, i.e§(z,) = 1 — S(z7) for all vertices
u, aSUA{’ =1 —EAI_’.

We bound the cost of the solution by first analyz-
ing the clauses corresponding to hypercube edges in th
correspondingMULTICUT instance. Consider unsatisfied
clauses containing both variables in the same hyper€libe
and note that the hypercube edges corresponding to thes
clauses form a dimensioA? cutin the cube&’?. Therefore,
the total weight of these clauses is at mxst—1)(2n) =

20p,.
Finally, consider an unsatisfied clauge, = x,) cor-
responding to vertices in different hyperculigs and C?. References

ThenS(zy) # S(z.) implies thatuar = vy, a1y # Va2,
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verticesq? (1), - - -, ¢” (W (p,4)/t), whereW (p, 1) is the to-
tal weight of all the edges incident @fi. For every pair of
vertices(q;, ¢3), connected by an edgein , we form an
edge between; (z) andqu( ), for all possible values aof
andy, with weightw, —+— W(l B W(2

Note that the total weight of aII the edges remains the
same as before. Each new verigXx) has total weight
Y- We Wi Wi W1 — ¢, where the sum is over all
edges incident ong;. Therefore, the graph is regular. Fur-
thermore, the number of vertices increases by a factor of at
mostn?®.

It only remains to show that the soundness and complete-
ness parameters are preserved. To see this, note that any
solution on the original graptp can be transformed to a
solution of the same value a¥’, by picking the same an-
swer for every vertex! (z) in Q' as the answer picked for
¢’ in Q. Likewise, consider a solution ip’. Note that the
answers for the questiong (z) with different values ofx
must all be the same, because all these questions are con-
nected to identical sets of vertices, with the same weights.
Therefore, the solution iy that picks the same answer for
¢? as the answer faf! (z) in Q" has the same weight as the
given solution inQ’.

Thus for every solution i), there is a solution of the
same weight iQ’ and vice versa. This proves that the two
games have exactly the same soundness and completeness
parameters. O




