1. [40%] In this problem you will write a MATLAB function that computes the coefficients of a cubic Lagrange polynomial. You will also be introduced to the MATLAB functions poly, polyval and error.

Consider $N+1$ values along the x-axis, denoted by $x_0, x_1, x_2, \ldots, x_N$. Each of the Lagrange polynomials $l_0(x), l_1(x), \ldots, l_N(x)$ is a polynomial of degree N, defined in such a way that it satisfies the following property:

$$l_i(x_j) = \begin{cases} 1, & j = i \\ 0, & j \neq i \end{cases}$$

In class, we derived a formula for each $l_i(x)$, as follows:

$$l_i(x) = \frac{(x-x_0)\cdots(x-x_{i-1})(x-x_{i+1})\cdots(x-x_N)}{(x_i-x_0)\cdots(x_i-x_{i-1})(x_i-x_{i+1})\cdots(x_i-x_N)} = \prod_{j \neq i} (x - x_j)$$

For this problem, you must generate each l_i in the more standard form:

$$l_i(x) = a_3 x^3 + a_2 x^2 + a_1 x + a_0$$

Write a MATLAB function `lagrange_cubic(x0,x1,x2,x3,k)` which returns a row vector $p=[a_3, a_2, a_1, a_0]$ with the coefficients of the cubic Lagrange polynomial $l_k(x)$ defined over the points x_0, x_1, x_2, x_3. If the parameter k is not an integer between 0 and 3, the function should abort with the error message ’Index out of bounds’, using the MATLAB command `error`.

Turn in your code, and also test your implementation by using $x_0=1, x_1=2, x_2=3, x_3=5$, and report the coefficients you generated for $k=0,1,2,3$.

Hint: Each l_i can be expressed compactly as $l_i(x) = q_i(x)/q_i(x_i)$, where $q_i(x) = \prod_{j \neq i} (x - x_j)$. The MATLAB function `poly(u)` takes as argument a vector $u=[u_1, u_2, \ldots, u_m]$ and returns another vector $c=[c_m, \ldots, c_1, c_0]$ with the coefficients of the polynomial:

$$c_m x^m + \cdots + c_1 x + c_0 = (x - u_1)(x - u_2)\cdots(x - u_m)$$

You can use function `poly` to generate the coefficients of $q_i(x)$ defined above. Once these coefficients have been computed (and stored in a vector, say c) the function `polyval(c,w)` can be used to evaluate this polynomial at an arbitrary point w. Thus, by calling `polyval(c,x_i)` you can also compute the quantity $q_i(x_i)$.
2. [40%] Using the function `lagrange_cubic` from Problem 1, write a function `lagrange_interpolation(x,y)` which takes the following arguments:

- `x` is a row vector containing the 4 values `x=[x_0, x_1, x_2, x_3]`.
- `y` is a row vector containing the 4 values `y=[y_0, y_1, y_2, y_3]`.

This function should implement the Lagrange interpolation method to construct a cubic polynomial \(P(x) = a_3 x^3 + a_2 x^2 + a_1 x + a_0 \) which interpolates the four data points \((x_0,y_0),(x_1,y_1),(x_2,y_2)\) and \((x_3,y_3)\). Function `lagrange_interpolation` should return a row vector `p=[a_3,a_2,a_1,a_0]` containing the coefficients of the interpolant \(P(x) \).

Turn in your code and test your implementation by computing the coefficients of the cubic polynomial that interpolates the four data points:

\[
(-1, -10) \quad (0, -4) \quad (2, 2) \quad (3, 14)
\]

Additionally, the result of your function `lagrange_interpolation(x,y)` should be identical to the MATLAB built-in function `polyfit(x,y,3)` which performs the same task, but using the Vandermonde matrix approach. Check that the two methods produce the same result for the points given.

3. [40%] In this last problem, you will construct a piecewise cubic polynomial function that interpolates the \(N \) data points \((x_1,y_1),(x_2,y_2),\ldots,(x_N,y_N)\). In each subinterval \(I_k = [x_k, x_{k+1}] \) we define our interpolant as a cubic polynomial \(s_k(x) = a_3^{(k)} x^3 + a_2^{(k)} x^2 + a_1^{(k)} x + a_0^{(k)} \). The cubic polynomials \(s_k \) are constructed such that:

- For \(k = 2, 3, \ldots, n-2 \), \(s_k(x) \) should interpolate points \((x_{k-1},y_{k-1}),(x_k,y_k),(x_{k+1},y_{k+1})\) and \((x_{k+2},y_{k+2})\).
- \(s_1(x) \) should interpolate \((x_1,y_1),(x_2,y_2),(x_3,y_3)\) and \((x_4,y_4)\).
- \(s_{N-1}(x) \) should interpolate \((x_{N-3},y_{N-3}),(x_{N-2},y_{N-2}),(x_{N-1},y_{N-1})\) and \((x_N,y_N)\).

Implement a function `piecewise_cubic(x,y)` with arguments:

- `x` is a row vector containing the \(N \) values `x=[x_1,x_2,\ldots,x_N]`.
- `y` is a row vector containing the \(N \) values `y=[y_1,y_2,\ldots,y_N]`.

The function should return a \((N-1) \times 4\) matrix \(M \) with the coefficient of each \(s_k \) on the respective row:

\[
M = \begin{bmatrix}
 a_3^{(1)} & a_2^{(1)} & a_1^{(1)} & a_0^{(1)} \\
 a_3^{(2)} & a_2^{(2)} & a_1^{(2)} & a_0^{(2)} \\
 \vdots & \vdots & \vdots & \vdots \\
 a_3^{(N-1)} & a_2^{(N-1)} & a_1^{(N-1)} & a_0^{(N-1)}
\end{bmatrix}
\]
Turn in your code, and also test your implementation by running the commands on the MATLAB script file provided to you in

$$\text{http://pages.cs.wisc.edu/~cs412-1/hw/hw3.m}$$

Note: You are free to use either function `lagrange_interpolation(x,y)` from Problem 2, or the built-in function `polyfit(x,y,3)` in your implementation.