We have previously considered the methodology of Cubic Hermite Spline Interpolation:

\[S_K(x_K) = y_K \]
\[S_K'(x_{K+1}) = y'_{K+1} \]
\[S_K'(x_K) = y'_K \]
\[S_K'(x_{K+1}) = y'_{K+1} \]

One of the methods for computing the cubic \(s_k(x) \) was to fit a cubic polynomial to the 2 "real" \(x \)-values \(x_K \) & \(x_{K+1} \) and the 2 additional "fictitious" \(x \)-values \(x_K^* \), \(x_{K+1}^* \):

![Diagram](image)

We used Newton interpolation & divided differences, and ultimately obtained the Hermite spline by taking the limit behavior:

\[x_K^* \rightarrow x_K \]
\[x_{K+1}^* \rightarrow x_{K+1} \]
Interestingly, by introducing these 2 fictitious x-values we can also get an estimate for the error.

Remember, for a 4th order interpolant with points \(x_k^*, x_k, x_{k+1}, x_{k+1}^* \):

\[
f(x) - S_k(x) = f^{(4)}(\theta_k) \frac{(x-x_k^*)(x-x_k)(x-x_{k+1})(x-x_{k+1}^*)}{4!} \quad (x \in [x_k, x_{k+1}])
\]

In the limit \(x_k^* \to x_k \) \(x_{k+1}^* \to x_{k+1} \):

\[
f(x) - S_k(x) = f^{(4)}(\theta_k) \frac{(x-x_k)^2(x-x_{k+1})^2}{24}
\]

\[
= \frac{1}{24} \| f^{(4)} \|_\infty \max \left| \frac{(x-x_k)(x-x_{k+1})}{24} \right|^2 = \frac{h_k^2}{4} \text{, from previous lecture}
\]

\[
= \frac{1}{24} \| f^{(4)} \|_\infty \frac{h_k^4}{16} = \frac{1}{384} \| f^{(4)} \|_\infty h_k^4
\]

(compare with \(|f(x) - S_k(x)| \leq \frac{5}{384} \| f^{(4)} \|_\infty h_k^4 \), for cubic spline method).
Let us summarize some differences of these 2 methods

<table>
<thead>
<tr>
<th>Cubic Hermite Spline</th>
<th>Cubic Spline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requires the derivatives ({y'_k})</td>
<td>Requires only function values ({y_k})</td>
</tr>
<tr>
<td>Error (\leq \frac{1}{384} | f^{(3)} |_{\infty}</td>
<td>h \mid)</td>
</tr>
<tr>
<td>Continuous 1st derivatives ((C_1))</td>
<td>Continuous 2nd derivatives ((C_2))</td>
</tr>
<tr>
<td>Each (s_k) can be computed independently, and in parallel</td>
<td>The coefficients of the (s_k)'s must be computed jointly for all (k).</td>
</tr>
</tbody>
</table>

Matlab:

\[
\begin{align*}
 s &= \text{pchip} \left(x, y \right) \\
 z &= \text{ppval} \left(s, w \right)
\end{align*}
\]

Matlab:

\[
\begin{align*}
 s &= \text{spline} \left(x, y \right) \\
 z &= \text{ppval} \left(s, w \right)
\end{align*}
\]

Note: Many times, we don't have derivative values \(\{y'_k\} \) at our disposal, but we would still like to use a Cubic Hermite Spline. In this case, we can try to synthesize approximate values of \(y'_k \)'s from the \(\{y_k\} \)
Possible approaches:

• \[y_n' \approx \frac{1}{2} \left[\frac{y_{n+1} - y_n}{x_{n+1} - x_n} + \frac{y_n - y_{n-1}}{x_n - x_{n-1}} \right] \]

• Catmull-Rom: \[y_n' \approx \frac{y_{n+1} - y_{n-1}}{x_{n+1} - x_{n-1}} \]

Interpolation error is now bounded by \(K \cdot h^2 \), due to error in derivative approximation.

• More accurate formula for \(y_n' \), using more points (e.g. \(x_{n-2} \) through \(x_{n+2} \))

Adjusted derivatives to force monotonous interpolation \(\Rightarrow \)

\(\Rightarrow \) if \(y_i \)'s are in increasing/decreasing magnitude, \(s(x) \) has same monotonicity

This is what \(\text{MATLAB's pchip}\) does.
We shall turn our attention to solving linear systems of equations \(A x = b \).

\[
A \in \mathbb{R}^{m \times n} \\
x \in \mathbb{R}^n \\
b \in \mathbb{R}^m.
\]

We already saw examples of methods that required the solution of a linear system as part of the overall algorithm, e.g. the Vandermonde system for interpolation, which was a square system \((m=n)\).

Another category of methods that leads to rectangular systems with \(m > n\) is \textbf{least square methods}. They answer questions of the form:

\text{→} What is the best \(n\)-order polynomial we can use to approximate \((\text{not interpolate})\) \((m+1)\) data points \((\text{where } m > n)\).

\text{→} More generally, find the solution that most closely satisfies \(n\) equations, in the presence of \(n\) \((n \neq m)\) unknowns.
All these algorithms need to be conscious about error, and there are at least 3 sources for it.

→ Some algorithms are "imperfect" in the sense that they require several iterations to generate a good quality approximation. Thus, intermediate results are subject to error.

→ Sometimes, it is not possible to find an "ideal" solution, e.g., because we have more equations than unknowns. In this case, not all equations will be satisfied exactly, and we need a notion of the "error" incurred in not satisfying certain equations fully.

→ Inputs to an algorithm are often corrupted by noise, roundoff error, etc. For example, instead of solving an "intended" system $A \times = b$, we may be solving $A^* \times = b^*$ where the entries in $A^* \times b^*$ have been subject to noise and inaccuracy. It is important to know how these translate to errors in determining \times.
(Vector and Matrix) Norms.

Norms are valuable tools in arguing about the extent and magnitude of error. We will introduce some concepts that we will use broadly later on.

Definition A vector norm is a function from \(\mathbb{R}^n \) to \(\mathbb{R} \), with a certain number of properties. If \(x \in \mathbb{R}^n \), we symbolize its norm by \(\| x \| \). The defining properties of a norm are:

1. \(\| x \| \geq 0 \) for all \(x \in \mathbb{R}^n \)
 also \(\| x \| = 0 \) iff \(x = 0 \)
2. \(\| ax \| = |a| \cdot \| x \| \) for all \(a \in \mathbb{R} \)
3. \(\| x + y \| \leq \| x \| + \| y \| \) for all \(x, y \in \mathbb{R}^n \)

Note that the properties above do not determine a unique for of a "norm" function, in fact many different valid norms exist. Typically, we will use subscripts \((\| \cdot \|_a, \| \cdot \|_b) \) to denote different types of norms.