Solving nonlinear equations \((82.4, 2.1)\)

In the previous lecture, we showed an **iterative method** for computing the square root \(V a\), which only required elementary operations (e.g. addition, multiplication & division).

In summary, we had:

* Start by setting \(x_0 < \text{some initial guess for } V a\) >
* Generate the sequence \(x_0, x_1, \ldots, x_n, \ldots\) by:

\[
x_{n+1} = \frac{x_n^2 + a}{2x_n}
\]

We also showed the following 2 facts:

* If the sequence \(\{x_n\}\) converges, it will converge to a solution of \(x^2 - a = 0\) (i.e. \(x = \pm \sqrt{a}\))
* Assuming that for some \(k_0\), we have that

\[
\left| \frac{x_k - \sqrt{a}}{\sqrt{a}} \right| = "\text{small}" \quad \text{(for example, less than 1%)}
\]

then

\[
\left| \frac{x_k - \sqrt{a}}{\sqrt{a}} \right| \leq C \left| \frac{x_k - \sqrt{a}}{\sqrt{a}} \right|^2 \quad \text{for } k \geq k_0
\]

Thus, subsequent iterations **double** the correct significant digits.
This example is a special case of an algorithm for solving nonlinear equations, known as Newton's method (or, the Newton-Raphson method).

Here is the general idea:

If we "zoom" close enough to any smooth function, it looks more and more like a straight line (specifically, the "tangent" line).

The newton method suggests:

If, after \(n \) iterations we have approximated the solution of \(f(x) = 0 \) (a nonlinear equation) as \(x_n \), then:

- Form the tangent line at \((x_n, f(x_n)) \)
- Select \(x_{n+1} \) as the intersection of the tangent line with the horizontal axis (\(y=0 \)).
If \((x_n, y_n) = (x_n, f(x_n))\) the tangent line to the plot of \(f(x)\) at \(x_n, y_n\) is

\[y - y_n = \lambda (x - x_n) \]

where \(\lambda = f'(x_n)\) is the slope.

Thus

\[y = y_n + \lambda (x - x_n) = y_n + f(x_n) + f'(x_n) (x - x_n) \]

If we set \(y = 0\), we obtain

\[f(x_n) + f'(x_n) (x - x_n) = 0 \]

\[x = x_n - \frac{f(x_n)}{f'(x_n)} \]

\[x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \]

Newton's method.
Consider our previous example. The square root \sqrt{a} is the solution to the nonlinear equation $f(x) = x^2 - a = 0$.

Newton's method gives

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = x_n - \frac{x_n^2 - a}{2x_n} = \frac{2x_n^2 - x_n^2 + a}{2x_n}$$

$$\Rightarrow x_{n+1} = \frac{x_n + a}{2x_n}$$

which is the method we considered previously.

A few comments about Newton's method $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$:

* It requires the function $f(x)$ to be not only continuous, but differentiable, as well. We will later see variants that do not explicitly require knowledge of f' (in cases where the derivative may be hard to compute).

* If ever we have an approximation x_n with $f'(x_n) \approx 0$, we should expect problems, especially if we are not close to a solution (we will be nearly dividing by 0). Graphically:

* If we don't start close to a solution, convergence may not be guaranteed (or it may take a large number of iterations).
Fixed point iteration (§2.1)

Newton's method is a special case for a broader category of methods for solving nonlinear equations, called fixed point iteration methods.

Generally, if $f(x) = 0$ is the nonlinear equation we seek to solve, a fixed point iteration method proceeds as follows:

$$x_0 = \text{initial guess}$$

$$x_{n+1} = g(x_n)$$

where $g(x)$ is a properly designed function.

Thus, we construct the sequence: $x_0, x_1, x_2, \ldots, x_k, \ldots$ which should ideally converge to a solution of $f(x) = 0$.

The following questions arise:

(i) If the iteration converges, does it converge to a solution of $f(x) = 0$?

(ii) Is the iteration guaranteed to converge?

(iii) How fast does the iteration converge (and (iv) When do we stop iterating?)?
Q1. If \(\{x_n\} \) converges, does it converge to a solution of \(f(x) = 0 \) ?

Taking limits on \(x_{n+1} = g(x_n) \), and assuming that \(\lim x_n = a \) and \(g \) is continuous, we get

\[
\lim x_{n+1} = \lim g(x_n)
\]

\[
a = g(a)
\]

The simplest way to guarantee that \(a \) is a solution to \(f(x) = 0 \) (i.e. \(f(a) = 0 \)) is if we can show that \(a = g(a) \) and \(f(a) = 0 \) are equivalent expressions.

There are more than one ways to make this happen, e.g.

\[
f(x) = 0 \iff x + f(x) = x \iff x = g(x), \text{ where } g(x) = x + f(x)
\]

or

\[
(x \to 0) \quad f(x) = 0 \iff e^x f(x) = 0 \iff e^x f(x) + x^2 = x^2 \iff \\
\quad e^{-x} f(x) + x^2
\]

\[
\frac{x}{x} = x \quad \text{or} \quad x = g(x), \quad g(x) = \frac{e^x f(x) + x^2}{x}
\]

or

\[
f(x) = 0 \iff -\frac{f(x)}{f'(x)} = 0 \iff x - \frac{f(x)}{f'(x)} = x \iff \\
\quad x = g(x) \text{ with } g(x) = x - \frac{f(x)}{f'(x)} \quad \text{Newton's method!}
\]
Unfortunately, simply "constructing" \(g(x) \) in a way that \(x=g(x) \iff f(x)=0 \) does not imply that the iteration will converge! Consider \(f(x) = x^2 - a = 0 \) (solution: \(\sqrt{a} \))

Simple formulations such as:

\[x^2 = a \iff x = \frac{a}{x} = g(x) \ ? \]

\[x_1 = \frac{a}{x_0}, \quad x_2 = \frac{a}{x_1} = \frac{a}{a/x_0} = x_0 \]

Thus the sequence alternates forever \(x_0, x_1, x_0, x_1, \ldots \)

or:

\[x^2 - a + x = x \]

\[g(x) \]

Let \(x_0 = 3, \ a = 10 \)

\[x_1 = x_0^2 - 10 + x_0 = 9 - 10 + 3 = 2 \]
\[x_2 = x_1^2 - 10 + x_1 = 4 - 10 + 2 = -4 \]
\[x_3 = x_2^2 - 10 + x_2 = 16 - 10 - 4 = 2 \quad \text{repeats} \]

or Let \(x_0 = 5, \ a = 10 \) (bad initial guess)

\[x_1 = 25 - 10 + 5 = 20 \]
\[x_2 = 400 - 10 + 20 = 410 \]

"diverges to \(\infty \)!"

It is even likely that for some iterations \(x=g(x) \), the sequence will diverge regardless of how good the initial guess is (other than absolutely correct!)
Fortunately, there are ways to ensure \(\{x_n\} \) converges, for certain choices of \(g(x) \).

Definition: A function \(g(x) \) is a contraction in the interval \([a,b]\), if

\[
|g(x) - g(y)| \leq L |x - y|
\]

for any \(x, y \in [a,b] \) and \(L \leq [0,1) \).

Examples: \(g(x) = \frac{x}{2} \) : \(|g(x) - g(y)| = \frac{1}{2} |x - y| \quad \) for any \(x, y \).

\(g(x) = x^2 \) in \([0.1, 0.2]\)!

\[
|g(x) - g(y)| = |x^2 - y^2| = |x+y||x-y| \leq 0.3 |x-y|
\]

in this case we really needed \(x, y \in [a,b] \)!

With a contraction, we can show the following:

* Let \(a \) be the real solution of \(f(x) = 0 \), and assume \(|x_0 - a| < \delta \) (\(\delta \) = some positive number).

If \(g \) is a contraction on \((a-\delta, a+\delta)\), the fixed point iteration converges to \(a \)!
Proof: Since \(a \) is a solution, we have \(g(a) = a \).

\[
| x_1 - a | = | g(x_0) - g(a) | \leq L | x_0 - a | < L \delta \\
| x_2 - a | = | g(x_1) - g(a) | \leq L | x_1 - a | < L^2 \delta \\
\vdots \\
| x_k - a | < L^k \delta
\]

since \(L < 1 \) we have \(\lim_{k \to \infty} | x_k - a | = 0 \)

i.e. \(x_k \to a \).

Note: For simplicity we assumed that a value \(a \) such that \(g(a) = a \) does exist. However if \(g \) is a contraction we can more generally show that the fixed point iteration will converge, and the limit of course will satisfy \(g(a) = a \).

In some cases, it can be a lot of work to show that \(g \) is a contraction, using the definition. However, if we can compute the derivative \(g' \) we have a simpler criterion:

* If \(g \) is differentiable, and \(|g'(x)| \leq L \) (where \(0 \leq L < 1 \)) in \([a, b] \), then \(g \) is a contraction on \([a, b] \).
Proof Let \(x, y \in [a, b] \) (with \(x \neq y \)).

The mean value theorem states that
\[
\frac{g(x) - g(y)}{x - y} = g'(\xi) \quad \text{for some } \xi \in (x, y)
\]

if \(|g'(\xi)| \leq L \), then
\[
\left| \frac{g(x) - g(y)}{x - y} \right| \leq L \Rightarrow |g(x) - g(y)| \leq L |x - y|
\]

Examples: \(g(x) = \sin \left(\frac{2x}{3} \right) \)
\[
|g'(x)| = \frac{2}{3} |\cos \left(\frac{2x}{3} \right)| \leq \frac{2}{3} < 1
\]

Let’s try to apply the derivative criterion, to see if
\[g(x) = x - \frac{f(x)}{f'(x)} \quad \text{(from Newton’s method)} \]
\[\text{is a contraction!} \]

\[
g'(x) = 1 - \frac{f'(x)f(x) - f(x)f'(x)}{[f'(x)]^2} = 1 - 1 + \frac{f(x)f''(x)}{(f'(x))^2} = \frac{f(x)f''(x)}{(f'(x))^2}
\]
Now, let us assume that:

- \(f(a) = 0 \) (i.e., \(a \) is a solution of \(f(x) = 0 \))
- \(f'(a) \neq 0 \)
- \(f'' \) is bounded near \(a \) (for example, if it is continuous).

Then

\[
\lim_{x \to a} g'(x) = \frac{f(x) f''(x)}{(f'(x))^2} = 0
\]

This means that there is an interval \((a-\delta, a+\delta) \) where \(|g'(x)| \) is small (since \(\lim g'(x) = 0 \)).

Or specifically

\[|g'(x)| \leq L \quad (L < 1)\]

This means that \(g \) is a contraction on \((a-\delta, a+\delta) \) and, if \(x_0 \in (a-\delta, a+\delta) \), the iteration will converge to the solution \(a \).