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Solving nonlinear equations

We turn our attention to the first major focus topic of our class: techniques for
solving nonlinear equations. In an earlier lecture, we actually addressed one common
nonlinear equation, the quadratic equation axz? + bz + ¢ = 0, and discussed the
potential hazards of using the seemingly straightforward quadratic solution formula.
We will start our discussion with an even simpler nonlinear equation:

2 —a= 0, a>0
The solution is obvious, x = ++/a (presuming, of course, that we have a subroutine
at our disposal that comnputes square roots). Let us, however, consider a different
approach:

e Start with zg =< initial guess >
e Jterate the sequence
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We can show (and we will, via examples) that this method is quite effective at
generating remarkably good approximations of v/a after just a few iterations. Let
us, however, attempt to analyze this process from a theoretical standpoint:

If we assume that the sequence xg, 1, T2, ... defined by this method has a limit,
how does that limit relate to the problem at hand? Assume limz, = A. Then,
taking limits on equation (1) we get
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Thus, if the iteration converges, the limit is the solution of the nonlinear equation
22 — a = 0. The second question is whether it may be possible to guarantee that

the described iteration will converge. For this, we manipulate (1) as follows
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If we denote by ex = 2 — v/a the error (or discrepancy) from the exact solution of
the approximate value xy, the previous equation reads
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For example, if we were approximating the square root of ¢ = 2, and at some point
we had e, = 1073, the previous equation would suggest that e;,; < 1076, One
more application of this equation would yield eyip < 107'2. Thus we see that,
provided the iteration starts close enough to the solution, we not only converge to
the desired value, but actually double the number of correct significant digits in
each iteration. We defer the detailed proof until after we have introduced the more
general method.

Newton’s method

This example is a special case of an algorithim for solving nonlinear equations, known
as Newton’s method (also called the Newton-Raphson method). The general idea is
as follows: If we “zoom” close enough to any smooth function, its graph looks more
and more like a straight line (specifically, the tangent line to the curve).
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Newton’s method suggests: If after k iterations we have approximated the solu-
tion of f(z) = 0 (a general nonlinear equation) as xy, then:

e Form the tangent line at (zy, f(zg))

e Select zp1 as the intersection of the tangent line with the horizontal axis
(y = 0).
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If (%n, yn) = (2n, f(z)), the tangent line to the plot of f(x) at (zn,yn) is:

Y —yn = Mx — ), where A = f'(z,) is the slope

Thus the tangent line has equation y — vy, = f'(z,)(x — z,). 1f we set y = 0 we get:
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Ultimately, Newton’s method reduces to: | Tp41 = Ty — ][,((‘L;"))

Our previous example (square root of a) is just an application of Newton’s
method to the nonlinear equation f(x) = 22 —a = 0. Newton gives:
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which is the same iteration we considered previously.
A few comments about Newton’s method:

e [t requires the function f(x) to be not only continuous, but differentiable
as well. We will later see variants that do not explicitly required knowledge



of f'. This would be an important consideration if the formula for f’'(z) is
significantly more complex, and expensive to evaluate than f(z), or in the
case we simply do not possess an analytic expression for f’; this could be the
case if f(x) is not given to us via an explicit formula, but only defined via a
black-box computer function that computes its value.

o If we ever have an approximation xx with f/(xx) = 0, we should expect prob-
lems, especially if we are not close to a solution (we would be nearly dividing
by zero). In such cases, the tangent line is almost (or exactly) horizontal, thus
the next iterate can be a very remote value, and convergence may be far from
guaranteed.
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, Fixed point iteration
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textbook Newton’s method is in itself a special case of a broader category of methods for solv-
chapter(s): ing nonlinear equations called fized point iteration methods. Generally, if f(z) =0
§2.1 is the nonlinear equation we seek to solve, a fixed point iteration method proceeds

as follows:
o Start with xg =< initial guess >

o [terate the sequence
Tre1 = g(ak)

where g(z) is a properly designed function for this purpose. Note that g(z) is
related, but otherwise different than f(x).
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Following this method, we construct the sequence wg,x1,22,...,Zk,... hoping
that it will converge to a solution of f(z) = 0. The following questions arise at this
point:

1. If this sequence converges, does it converge to a solution of f(z) = 07
2. Is the iteration guaranteed to converge?
3. How fast does the iteration converge?

4. (Of practical concern) When do we stop iterating, and declare that we have
obtained an acceptable approximation?

We start by addressing the first question: If the sequence {x;} does converge,
can we ensure that it will converge to a solution of f(x) = 0?

Taking limits on w41 = g(xy), and assuming that (a) limxzy = a and (b) the
function g is continuous, we get:

lim xpe1 = lim g(zk) = a = g(a)
k300 k—00

The simplest way to guarantee that a is a solution to f(z) = 0 (in other words,
f(a) = 0) is if we construct g(x) such that

x = g(x) is mathematically equivalent to f(x)=0.
There are many ways to make this happen, e.g.

fl)=0&z+ f(z) =2 ez = g(x), where g(z):=x+ f(z)
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The last example is exactly Newton’s method; substituting the definition of g(x)
above into the iteration 2341 = g(xx) yields the familiar Newton update equation.

Thus we know that if Newton converges, it will be to a solution of f(x) = 0.



