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Interpolation using the Vandermonde matrix

The most basic procedure to determine the coefficients a0, a1, . . . , an of a polynomial

Pn(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n

such that it interpolates the n+ 1 points

(x0, y0), (x1, y1), . . . , (xn, yn)

is to write a linear system of equations as follows:

Pn(x0) = y0 ⇒ ao + a1x0 + a2x
2
0 + · · ·+ an−1x

n−1
0 + anx

n
0 = y0

Pn(x1) = y1 ⇒ ao + a1x1 + a2x
2
1 + · · ·+ an−1x

n−1
1 + anx

n
1 = y1

... ⇒
...

Pn(xn) = yn ⇒ ao + a1xn + a2x
2
n + · · ·+ an−1x

n−1
n + anx

n
n = yn

or, in matrix form:
1 x0 x2

0 . . . xn−1
0 xn

0
1 x1 x2

1 . . . xn−1
1 xn

1
...

...
...

...
...

1 xn−1 x2
n−1 . . . xn−1

n−1 xn
n−1

1 xn x2
n . . . xn−1

n xn
n


︸ ︷︷ ︸

V


a0
a1
...

an−1
an


︸ ︷︷ ︸

~a

=


y0
y1
...

yn−1
yn


︸ ︷︷ ︸

~b

The matrix V is called a Vandermonde matrix. We sill see that V is non-singular,
thus we can solve the system V~a = ~y to obtain the coefficients ~a = (a0, a1, . . . , an).
Let’s evaluate the merits and drawbacks of this approach:

• Cost to determine the polynomial Pn(x): VERY COSTLY since a dense
(n + 1) × (n + 1) linear system has to be solved. This will generally require
time proportional to n3, making large interpolation problems intractable. In
addition, the Vandermonde matrix is notorious for being challenging to solve
(especially with Gauss elimination) and prone to large errors in the computed
coefficients ai when n is large and/or xi ≈ xj .

• Cost to evaluate f(x) (x= arbitrary) if coefficients are known: VERY CHEAP.
Using Horner’s scheme:

a0 + a1x+ · · ·+ anx
n = a0 + x(a1 + x(a2 + · · ·+ x(an−1 + xan)))

• Availability of derivatives: VERY EASY, e.g.

P ′n(x) = a1 + 2a2x+ 3a3x
2 + · · ·+ (n− 1)an−1x

n−2 + nanx
n−1
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• Support for incremental interpolation: NOT SUPPORTED! This property
examines if interpolating through (x1, y1), . . . , (xn+1, yn+1) is easier if we al-
ready know a polynomial (of degree = n − 1) that interpolates through
(x1, y1), . . . , (xn, yn). In our case, the system V~a = ~y would have to be solved
from scratch for the (n+ 1) data points.

Lagrange interpolation
Corresponding
textbook
chapter(s):
§4.3

The Lagrange interpolation method is an alternative way to define Pn(x) without
having to solve computationally expensive systems of equations. We shall explain
how Lagrange interpolation works with an example.

Example: Pass a quadratic polynomial through (1, 2), (2,−3), (4, 0.5).

Assume we have somehow constructed 3 quadratic polynomials P (0)(x), P (1)(x), P (1)(x),
such that, P (0)(x) is equal to 1 at x0, and equals zero at the other two points x1, x2:
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P (1)(x) is designed as to equal 1 at location x1, and evaluate to zero at x0, x2:

While P (2) is similarly constructed to satisfy

Now, the idea is to scale each P (i), such that P (i)(xi) = yi and add them all
together:
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In summary, if we have a total of (n+1) data points (x0, y0), (x1, y1), . . . , (xn, yn),
define the Lagrange polynomials of n-degree l0(x), l1(x), . . . , ln(x) as:

li(xj) =
{

1 if i = j
0 if i 6= j

(6)

Then, the interpolating polynomial is simply:

P (x) = y0l0(x) + y1l1(x) + · · ·+ ynln(x) =
n∑

i=0
yili(x).

No solution of a linear system is necessary here. We just have to explain what every
li(x) looks like. Since li(x) is an n-degree polynomial with n roots

x0, x1, x2, . . . , xi−1, xi+1, xi+2, . . . , xn,

it must have the form

li(x) = Ci(x− x0)(x− x1) . . . (x− xi−1)(x− xi+1) . . . (x− xn)
= Ci

∏
j 6=i

(x− xj)
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Now, we require li(xk) = 1, thus:

1 = Ci

∏
j 6=i

(xi − xj)⇒ Ci = 1∏
j 6=i

(xi − xj) .

Thus, for every i, we have:

li(x) = (x− xo)(x− x1) . . . (x− xi−1)(x− xi+1)/ldots(x− xn)
(xi − xo)(xi − x1) . . . (xi − xi−1)(xi − xi+1)/ldots(xi − xn)

=
∏
j 6=i

( x− xj

xi − xj
)

=

∏
j 6=i

(x− xj)∏
j 6=i

(xi − xj)

Note: This result essentially proves existence of a polynomial interpolant of degree
= n that passes through (n + 1) data points. We can also use it to prove that
the Vandermonde matrix V is non-singular; if it were singular, a right-hand-side
~y = (y0, . . . , yn) would have existed such that V~a = ~y would have no solution,
which is a contradiction.

Let’s evaluate the same 4 quality metrics we saw before for the Vandermonde
matrix approach.

• Cost of determining P (x): VERY EASY. We are essentially able to write a
formula for P (x) without solving any systems. However, if we want to write
P (x) − a0 + a1s + · · · + anx

n, the cost of evaluating the ai’s would be very
high! Each li would need to be expanded ⇒ approximately N2 operations for
each li, N3 operations for P (x).

• Cost of evaluating P (x) (x = arbitrary): SIGNIFICANT. We do not really
need to compute the ai’s beforehand if we only need to evaluate P (x) at select
few locations. For each li(x) the evaluation requires N subtractions and N
multiplications⇒ total = about N2 operations (better than N3 for computing
the ai’s).

• Availability of derivatives: NOT READILY AVAILABLE. Differentiating each
li (since P ′(x) =

∑
yil
′
i(x)) is not trivial ⇒ yeilds N terms each with (N − 1)

products per term.

• Incremental interpolation: The Lagrange method does not provide any special
shortcuts to adding one extra point to the interpolation problem, however it
is very easy to simply rebuild the new interpolant P (x) from scratch.


