Interpolation using the Vandermonde matrix

The most basic procedure to determine the coefficients $a_{0}, a_{1}, \ldots, a_{n}$ of a polynomial

$$
P_{n}(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}
$$

such that it interpolates the $n+1$ points

$$
\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)
$$

is to write a linear system of equations as follows:

$$
\begin{aligned}
P_{n}\left(x_{0}\right)=y_{0} & \Rightarrow a_{o}+a_{1} x_{0}+a_{2} x_{0}^{2}+\cdots+a_{n-1} x_{0}^{n-1}+a_{n} x_{0}^{n}=y_{0} \\
P_{n}\left(x_{1}\right)=y_{1} & \Rightarrow a_{o}+a_{1} x_{1}+a_{2} x_{1}^{2}+\cdots+a_{n-1} x_{1}^{n-1}+a_{n} x_{1}^{n}=y_{1} \\
\vdots & \Rightarrow \vdots \\
P_{n}\left(x_{n}\right)=y_{n} & \Rightarrow a_{o}+a_{1} x_{n}+a_{2} x_{n}^{2}+\cdots+a_{n-1} x_{n}^{n-1}+a_{n} x_{n}^{n}=y_{n}
\end{aligned}
$$

or, in matrix form:

$$
\underbrace{\left[\begin{array}{cccccc}
1 & x_{0} & x_{0}^{2} & \ldots & x_{0}^{n-1} & x_{0}^{n} \\
1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{n-1} & x_{1}^{n} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \\
1 & x_{n-1} & x_{n-1}^{2} & \ldots & x_{n-1}^{n-1} & x_{n-1}^{n} \\
1 & x_{n} & x_{n}^{2} & \ldots & x_{n}^{n-1} & x_{n}^{n}
\end{array}\right]}_{\mathbf{V}} \underbrace{\left[\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{n-1} \\
a_{n}
\end{array}\right]}_{\vec{a}}=\underbrace{\left[\begin{array}{c}
y_{0} \\
y_{1} \\
\vdots \\
y_{n-1} \\
y_{n}
\end{array}\right]}_{\vec{b}}
$$

The matrix \mathbf{V} is called a Vandermonde matrix. We sill see that \mathbf{V} is non-singular, thus we can solve the system $\mathbf{V} \vec{a}=\vec{y}$ to obtain the coefficients $\vec{a}=\left(a_{0}, a_{1}, \ldots, a_{n}\right)$. Let's evaluate the merits and drawbacks of this approach:

- Cost to determine the polynomial $P_{n}(x)$: VERY COSTLY since a dense $(n+1) \times(n+1)$ linear system has to be solved. This will generally require time proportional to n^{3}, making large interpolation problems intractable. In addition, the Vandermonde matrix is notorious for being challenging to solve (especially with Gauss elimination) and prone to large errors in the computed coefficients a_{i} when n is large and/or $x_{i} \approx x_{j}$.
- Cost to evaluate $f(x)(x=$ arbitrary $)$ if coefficients are known: VERY CHEAP. Using Horner's scheme:

$$
a_{0}+a_{1} x+\cdots+a_{n} x^{n}=a_{0}+x\left(a_{1}+x\left(a_{2}+\cdots+x\left(a_{n-1}+x a_{n}\right)\right)\right)
$$

- Availability of derivatives: VERY EASY, e.g.

$$
P_{n}^{\prime}(x)=a_{1}+2 a_{2} x+3 a_{3} x^{2}+\cdots+(n-1) a_{n-1} x^{n-2}+n a_{n} x^{n-1}
$$

- Support for incremental interpolation: NOT SUPPORTED! This property examines if interpolating through $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n+1}, y_{n+1}\right)$ is easier if we already know a polynomial (of degree $=n-1$) that interpolates through $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$. In our case, the system $\mathbf{V} \vec{a}=\vec{y}$ would have to be solved from scratch for the $(n+1)$ data points.

Lagrange interpolation

The Lagrange interpolation method is an alternative way to define $P_{n}(x)$ without having to solve computationally expensive systems of equations. We shall explain

Corresponding textbook chapter(s): §4.3 how Lagrange interpolation works with an example.

Example: Pass a quadratic polynomial through $(1,2),(2,-3),(4,0.5)$.

Assume we have somehow constructed 3 quadratic polynomials $P^{(0)}(x), P^{(1)}(x), P^{(1)}(x)$, such that, $P^{(0)}(x)$ is equal to 1 at x_{0}, and equals zero at the other two points x_{1}, x_{2} :

$P^{(1)}(x)$ is designed as to equal 1 at location x_{1}, and evaluate to zero at x_{0}, x_{2} :

While $P^{(2)}$ is similarly constructed to satisfy

Now, the idea is to scale each $P^{(i)}$, such that $P^{(i)}\left(x_{i}\right)=y_{i}$ and add them all together:

In summary, if we have a total of $(n+1)$ data points $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$, define the Lagrange polynomials of n-degree $l_{0}(x), l_{1}(x), \ldots, l_{n}(x)$ as:

$$
l_{i}\left(x_{j}\right)=\left\{\begin{array}{l}
1 \text { if } i=j \tag{6}\\
0 \text { if } i \neq j
\end{array}\right.
$$

Then, the interpolating polynomial is simply:

$$
P(x)=y_{0} l_{0}(x)+y_{1} l_{1}(x)+\cdots+y_{n} l_{n}(x)=\sum_{i=0}^{n} y_{i} l_{i}(x) .
$$

No solution of a linear system is necessary here. We just have to explain what every $l_{i}(x)$ looks like. Since $l_{i}(x)$ is an n-degree polynomial with n roots

$$
x_{0}, x_{1}, x_{2}, \ldots, x_{i-1}, x_{i+1}, x_{i+2}, \ldots, x_{n}
$$

it must have the form

$$
\begin{aligned}
l_{i}(x) & =C_{i}\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots\left(x-x_{i-1}\right)\left(x-x_{i+1}\right) \ldots\left(x-x_{n}\right) \\
& =C_{i} \prod_{j \neq i}\left(x-x_{j}\right)
\end{aligned}
$$

Now, we require $l_{i}\left(x_{k}\right)=1$, thus:

$$
1=C_{i} \prod_{j \neq i}\left(x_{i}-x_{j}\right) \Rightarrow C_{i}=\frac{1}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)} .
$$

Thus, for every i, we have:

$$
\begin{aligned}
l_{i}(x) & =\frac{\left(x-x_{o}\right)\left(x-x_{1}\right) \ldots\left(x-x_{i-1}\right)\left(x-x_{i+1}\right) / \operatorname{ldots}\left(x-x_{n}\right)}{\left(x_{i}-x_{o}\right)\left(x_{i}-x_{1}\right) \ldots\left(x_{i}-x_{i-1}\right)\left(x_{i}-x_{i+1}\right) / \operatorname{ldots}\left(x_{i}-x_{n}\right)} \\
& =\prod_{j \neq i}\left(\frac{x-x_{j}}{x_{i}-x_{j}}\right) \\
& =\frac{\prod_{j \neq i}\left(x-x_{j}\right)}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)}
\end{aligned}
$$

Note: This result essentially proves existence of a polynomial interpolant of degree $=n$ that passes through $(n+1)$ data points. We can also use it to prove that the Vandermonde matrix V is non-singular; if it were singular, a right-hand-side $\vec{y}=\left(y_{0}, \ldots, y_{n}\right)$ would have existed such that $V \vec{a}=\vec{y}$ would have no solution, which is a contradiction.

Let's evaluate the same 4 quality metrics we saw before for the Vandermonde matrix approach.

- Cost of determining $P(x)$: VERY EASY. We are essentially able to write a formula for $P(x)$ without solving any systems. However, if we want to write $P(x)-a_{0}+a_{1} s+\cdots+a_{n} x^{n}$, the cost of evaluating the a_{i} 's would be very high! Each l_{i} would need to be expanded \Rightarrow approximately N^{2} operations for each l_{i}, N^{3} operations for $P(x)$.
- Cost of evaluating $P(x)$ ($x=$ arbitrary): SIGNIFICANT. We do not really need to compute the a_{i} 's beforehand if we only need to evaluate $P(x)$ at select few locations. For each $l_{i}(x)$ the evaluation requires N subtractions and N multiplications \Rightarrow total $=$ about N^{2} operations (better than N^{3} for computing the a_{i} 's).
- Availability of derivatives: NOT READILY AVAILABLE. Differentiating each l_{i} (since $\left.P^{\prime}(x)=\sum y_{i} l_{i}^{\prime}(x)\right)$ is not trivial \Rightarrow yeilds N terms each with $(N-1)$ products per term.
- Incremental interpolation: The Lagrange method does not provide any special shortcuts to adding one extra point to the interpolation problem, however it is very easy to simply rebuild the new interpolant $P(x)$ from scratch.

