
51

3n − 6 constraint equations. We should not forget that we additionally want to
interpolate all n data points, i.e.:

S(xi) = yi for i = 1, 2, . . . , n (n equations)

In total, we have (3n− 6) + n = 4n− 6 equations to satisfy, and 4n− 4 unknowns;
consequently, we will need 2 more equations to ensure that the unknown coefficients
will be uniquely determined. Several plausible options exist on how to do that: Lecture of:

12 Mar 2013

1. The “not-a-knot” approach: We stipulate that at the locations of the first (x2)
and last knot (xn−1) the third derivative of S(x) should also be continuous,
e.g. S′′′1 (x2) = S′′′2 (x2) and S′′′n−2(xn−1) = S′′′n−1(xn−1). As we discussed before,
these 2 additional constraints will effectively cause S1(x) to be identical with
S2(x), and Sn−2(x) to coincide with Sn−1(x). In this sense, x2 and xn−1 are
no longer “knots” in the sense that the formula for S(x) “changes” at these
points (which explains the name for this approach).

2. The Complete spline method: If we have access to the derivative f ′ of the
function being sampled by the yi’s (i.e. yi = f(xi)), we can formulate the 2
additional constraints as:

S′(x1) = f ′(x1)
S′(xn) = f ′(xn)

or (10)
S′1(x1) = f ′(x1)

S′n−1(xn) = f ′(xn)

Note that, qualitatively, using the complete spline approach is a better utiliza-
tion of the flexibility of the spline curve in matching yet one move property of
f ; in contrast, the not-a-knot makes the spline “less flexible” by two degrees
of freedom in order to obtain a unique solution. However, we cannot always
assume knowledge of f ′.

Two additional methodologies are:

3. The natural cubic spline: We use the following 2 constraints:

S′′(x1) = 0
S′′(xn) = 0

Thus, S(x) reaches the endpoints looking like a straight line (instead of a
curved one).

52

4. Periodic spline:

S′(x1) = S′(xn)
S′′(x1) = S′′(xn)

This is useful when the underlying function f is also known to be periodical
over [a, b].

We will not discuss the analytic derivation of the cubic spline coefficients; in-
stead, we describe how to access this functionality within MATLAB through the
built-in functions spline and ppval.

• The function spline is called as:
S = spline(x, y)
x: The vector containing the xi values x = (x1, x2, . . . , xn)
y: A corresponding vector of yi values
S: A specially encoded result containing the necessary information for the
generalized spline. This is only used indirectly by other MATLAB functions.

The spline function can be used to implement either the not-a-knot or the com-
plete spline method.

• If length(x) = length(y), then y is assumed to contain the values y =
(y1, y2, . . . , yn) and the spline is generated using the not-a-knot approach.

• To implement the complete spline approach, we provide 2 additional values
in the vector y, starting with y′1 = f ′(x1) and ending with y′n = f ′(xn), i.e.

y = (y′1, y1, y2, . . . , yn−2, yn−1, yn, y
′
n)

In this case, we obviously have length(y) = length(x)+2. This triggers
MATLAB to implement the complete spline approach.

The ppval function takes in the information encoded in S (the output of spline)
and evaluates the spline curve at a number of different locations.

• Syntax:
v = ppval(S, u)
u: A vector of m new x-locations where we want the spline to be interpo-
lated/evaluated u = (u1, u2, . . . , um).
v: The corresponding y-values of these ui locations v = (v1, v2, . . . , vm)

53

Example:
x = 0:pi/5:2*pi;
y = sin(x);
S = spline(x,y);
u = l:pi/100:2*pi;
v = ppval(S,u);
plot(u,v);
plot(x,y,u,v);
w = sin(u)
plot(u,v,u,w);

Error analysis: For simplicity, we will again assume that h1 = h2 = · · · =
hn−1 = h (hk = xk+1 − xk). For the not-a-knot method, we have:

|f(x)− S(x)| ≤ 5
384 ||f

′′′′||∞h4

This is an approximate inequality because the interpolation error can be slightly
larger near the endpoints of the interval [a, b].

This a very comparable result with the (non-smooth) piecewise cubic polynomial
method:

|f(x)− S(x)| ≤ 9
384 ||f

′′′′||∞h4

Note, though, that the computation of the piecewise cubic method was very local and
simple (Every interval could be independently evaluated.) while the computation
of the coefficients of the cubic spline is more elaborate.

Cubic Hermite Splines

We will now consider a different approach to piecewise cubic polynomial interpola-
tion. In particular, given n x-values (in ascending order)

x1 < x2 < · · · < xn−1 < xn

and n associated y-values (sampled from a function f(x))

y1, y2, . . . , yn−1, yn, where yk = f(xk)

and assume we also know the derivative f ′(x) at the same locations, denoted by:

y′1, y
′
2, . . . , y

′
n−1, y

′
n, where y′k = f ′(xk)

54

As with other methods based on piecewise polynomials, we construct the inter-
polant as

S(x) =



S1(x), x ∈ I1

S2(x), x ∈ I2
...

Sk(x), x ∈ Ik

...
Sn−1(x), x ∈ In−1

where Ik = [xk, xk+1]

In this case, each individual Sk(x) is constructed to match both the function
values yk, yk+1 as well as the derivatives y′k, y′k+1 at the endpoints of Ik. In detail:

Sk(xk) = yk

Sk(xk+1) = yk+1

S′k(xk) = y′k

S′k(xk+1) = y′k+1

 (∗)

Since Sk(x) = a3x
3 + a2x

2 + a1x + a0 has 4 unknown coefficients, the 4 equations
(∗) uniquely define the appropriate values of a0, . . . , a3. Also note that:Lecture of:

14 Mar 2013

Sk(xk+1) = yk+1 = Sk+1(xk+1)
and S′k(xk+1) = y′k+1 = S′k+1(xk+1)

Thus, the resulting interpolant S(x) is continuous with continuous derivatives
(e.g. a C1 function). However, we do not strictly enforce that the 2nd derivative
should be continuous, and in fact, it generally will not be:

In this case S′′1 (0) = 2, while S′′2 (0) = 0.

