The most straightforward method for determining the coefficients of \(S_k(x) = a_3x^3 + a_2x^2 + a_1x + a_0 \) mimics the Vandermonde approach for polynomial interpolation.

\[
S_k(x_k) = y_k \Rightarrow a_3x_k^3 + a_2x_k^2 + a_1x_k + a_0 = y_k \\
S_k(x_{k+1}) = y_{k+1} \Rightarrow a_3x_{k+1}^3 + a_2x_{k+1}^2 + a_1x_{k+1} + a_0 = y_{k+1} \\
S'_k(x_k) = y'_k \Rightarrow a_3 \cdot 3x_k^2 + a_2 \cdot 2x_k + a_1 = y'_k \\
S'_k(x_{k+1}) = y'_{k+1} \Rightarrow a_3 \cdot 3x_{k+1}^2 + a_2 \cdot 2x_{k+1} + a_1 = y'_{k+1}
\]

\[
\begin{bmatrix}
x_k^3 & x_k^2 & x_k & 1 \\
x_{k+1}^3 & x_{k+1}^2 & x_{k+1} & 1 \\
3x_k^2 & 2x_k & 1 & 0 \\
3x_{k+1}^2 & 2x_{k+1} & 1 & 0
\end{bmatrix}
\begin{bmatrix}
a_3 \\
a_2 \\
a_1 \\
a_0
\end{bmatrix}
=
\begin{bmatrix}
y_k \\
y_{k+1} \\
y'_k \\
y'_{k+1}
\end{bmatrix}
\]

The 2nd method attempts to mimic the Lagrange interpolation approach, in which we wrote:

\[
P(x) = y_0l_0(x) + y_1l_1(x) + \cdots + y_nl_n(x)
\]

where \(l_i(x_j) = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases} \)

Could we apply the same principle here? Consider writing \(S_k(x) \) as

\[
S_k(x) = y_kq_{00}(x) + y_{k+1}q_{01}(x) + y'_kq_{10}(x) + y'_{k+1}q_{11}(x)
\]

This polynomial will satisfy all stated conditions, if the polynomials \(q_{ij} \) are constructed such that:

\[
\begin{array}{cccc}
q_{00}(x_k) = 1 & q_{10}(x_k) = 0 & q_{01}(x_k) = 0 & q_{11}(x_k) = 0 \\
q_{00}(x_{k+1}) = 0 & q_{10}(x_{k+1}) = 0 & q_{01}(x_{k+1}) = 1 & q_{11}(x_{k+1}) = 0 \\
q'_{00}(x_k) = 0 & q'_{10}(x_k) = 1 & q'_{01}(x_k) = 0 & q'_{11}(x_k) = 0 \\
q'_{00}(x_{k+1}) = 0 & q'_{10}(x_{k+1}) = 0 & q'_{01}(x_{k+1}) = 0 & q'_{11}(x_{k+1}) = 1
\end{array}
\]

(All \(q_{ij} \)'s are cubic polynomials!)

In the special case where \(x_k = 0, x_{k+1} = 1 \), these functions are symbolized with \(h_{ij}(x) \) and called the *canonical* Hermite basis functions. Thus, in that case:

\[
S(x) = y_0h_{00}(x) + y_1h_{01}(x) + y'_0h_{10}(x) + y'_1h_{11}(x)
\]

In this case, we can either solve a \(4 \times 4 \) system for the coefficients of each \(h_{ij}(x) \), or construct it using simple algebraic arguments, e.g.

\[
\begin{align*}
h_{11}(0) = h'_{11}(0) = 0 & \Rightarrow x^2 \text{ is a factor of } h_{11}(x) \\
h_{11}(1) = 0 & \Rightarrow x - 1 \text{ is a factor of } h_{11}(x)
\end{align*}
\]
i.e. \(h_{11}(x) = C x^2 (x - 1) = C(x^3 - x^2) \)

\[
 h_1'(x) = C(3x^2 - 2x)
\]

\[1 = h_1'(x) = C(3 - 2) = C \Rightarrow C = 1 \]

Thus, \(h_{11}(x) = x^3 - x^2 \)

The 4 basis polynomials are similarly derived to be:

\[
\begin{align*}
 h_{00}(x) &= 2x^3 - 3x^2 + 1 \\
 h_{10}(x) &= x^3 - 2x^2 + x \\
 h_{01}(x) &= -2x^3 + 3x^2 \\
 h_{11}(x) &= x^3 - x^2
\end{align*}
\]

In the more general case where \(I_k = [x_k, x_{k+1}] \) (instead of \([0, 1]\)), we can obtain the basis polynomials using a change of variable \(t = \frac{x - x_k}{x_{k+1} - x_k} \) as follows:

\[
S_k(x) = y_k \underbrace{h_{00}(t)}_{q_{00}(x)} + y_{k+1} \underbrace{h_{01}(t)}_{q_{01}(x)} + y_k \underbrace{(x_{k+1} - x_k) h_{10}(t)}_{q_{10}(x)} + y_{k+1} \underbrace{(x_{k+1} - x_k) h_{11}(t)}_{q_{11}(x)}
\]

The last (and quite common) approach for generating the Hermite spline is using tools similar to Newton interpolation. Remember, when interpolating through \((x_0, y_0), \ldots, (x_3, y_3)\), we obtain:

\[
P(x) = f[x_0] \cdot 1 + f[x_0, x_1] \cdot (x - x_0) + f[x_0, x_1, x_2] \cdots (x - x_0)(x - x_1) + f[x_0, x_1, x_2, x_3] \cdots (x - x_0)(x - x_1)(x - x_2)
\]

The idea is as follows:

Perform Newton interpolation through the points

\[
(x^*_k, y^*_k), (x_k, y_k), (x_{k+1}, y_{k+1}), (x^*_{k+1}, y^*_{k+1})
\]

where

\[
\begin{align*}
x^*_k &= x_k - \varepsilon \\
x^*_{k+1} &= x_{k+1} + \varepsilon
\end{align*}
\]
We will compute this interpolant using the Newton method and ultimately set $\varepsilon \to 0$ such that x^*_k converges onto x_k and x^*_{k+1}, respectively, onto x_{k+1}. Thus:

$$S_k(x) = f[x^*_k] + f[x^*_k, x_k](x - x^*_k) + f[x^*_k, x_k, x_{k+1}](x - x^*_k)(x - x_k) + f[x^*_k, x_k, x_{k+1}, x^*_{k+1}](x - x^*_k)(x - x_k)(x - x_{k+1})$$

Taking the limit $\varepsilon \to 0$:

$$S_k(x) = (\lim_{x^*_k \to x_k} f[x^*_k]) + (\lim_{x^*_k \to x_k} f[x^*_k, x_k])(x - x_k) + (\lim_{x^*_k \to x_k} f[x^*_k, x_k, x_{k+1}]) (x - x_k)^2 + (\lim_{x^*_k \to x_k, x^*_{k+1} \to x_{k+1}} f[x^*_k, x_k, x_{k+1}, x^*_{k+1}]) (x - x_{k+1})^2$$

We use the shorthand notation:

$$f[x_k, x_k] := \lim_{x^*_k \to x_k} f[x^*_k, x_k]$$

and construct the finite difference table as usual.

<table>
<thead>
<tr>
<th>x^*_k</th>
<th>$f[x^*_k]$</th>
<th>$f[x^*_k, x_k]$</th>
<th>$f[x^*k, x_k, x{k+1}]$</th>
<th>$f[x^k, x_k, x{k+1}, x^_{k+1}]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_k</td>
<td>$f[x_k]$</td>
<td>$f[x^*_k, x_k]$</td>
<td>$f[x^*k, x_k, x{k+1}]$</td>
<td>$f[x^k, x_k, x{k+1}, x^_{k+1}]$</td>
</tr>
<tr>
<td>x_{k+1}</td>
<td>$f[x_{k+1}]$</td>
<td>$f[x_k, x_{k+1}]$</td>
<td>$f[x^*k, x_k, x{k+1}]$</td>
<td>$f[x^k, x_k, x{k+1}, x^_{k+1}]$</td>
</tr>
<tr>
<td>x^*_{k+1}</td>
<td>$f[x^*_{k+1}]$</td>
<td>$f[x^*{k+1}, x{k+1}]$</td>
<td>$f[x_k, x_{k+1}, x^*_{k+1}]$</td>
<td>$f[x^k, x_k, x{k+1}, x^_{k+1}]$</td>
</tr>
</tbody>
</table>

When $\varepsilon \to 0$, the quantities in this table that involve x^*_k or x^*_{k+1} may need to be expressed through limits, e.g.

$$x^*_k \to x_k$$
$$x^*_{k+1} \to x_{k+1}$$

$$f[x^*_k] = y^*_k \to y_k$$
$$f[x^*_{k+1}] = y^*_{k+1} \to y_{k+1}$$

$$f[x^*_k, x_k] = \lim_{x^*_k \to x_k} \frac{f[x_k] - f[x^*_k]}{x_k - x^*_k} f'(x_k) = y'_k$$

$$f[x^*_k, x_k, x_{k+1}] = \lim_{x^*_k \to x_k, x^*_{k+1} \to x_{k+1}} \frac{f[x^*_k, x_k] - f[x^*_k, x_{k+1}]}{x_{k+1} - x_{k+1}} f'(x_{k+1}) = y'_{k+1}$$

Thus, the table gets filled as follows:
The remaining divided differences are computed normally using the recursive definition. Often times we skip the “stars” on x_k’s and use the simpler notation $f[x_k, x_{k+1}], f[x_k, x_{k+1}, x_{k+1}], etc.$