Lecture of: 26 Feb 2013

Newton interpolation also facilitates easy evaluation:

$$
\begin{aligned}
\text { e.g. } p(x)= & c_{0} \\
& +c_{1}\left(x-x_{0}\right) \\
& +c_{2}\left(x-x_{0}\right)\left(x-x_{1}\right) \\
& +c_{3}\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right) \\
& +c_{4}\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right) \\
= & c_{0}+\left(x-x_{0}\right)[c_{1}+\left(x-x_{1}\right)[c_{2}+\left(x-x_{2}\right)[c_{3}+\left(x-x_{3}\right) \underbrace{c_{4}}_{Q_{4}(x)}]]]
\end{aligned}
$$

Recursively:

$$
\begin{align*}
Q_{n}(x) & =c_{n} \\
Q_{n-1}(x) & =c_{n-1}+\left(x-x_{n-1}\right) Q_{n}(x) \tag{7}
\end{align*}
$$

The value of $P(x)=Q_{0}(x)$ can be evaluated (in linear time) by iterating this recurrence n times. We also have:

$$
\begin{align*}
& Q_{n-1}(x)=c_{n-1}+\left(x-x_{n-1}\right) Q_{n}(x) \\
\Rightarrow & Q_{n-1}^{\prime}(x)=Q_{n}(x)+\left(x-x_{n-1}\right) Q_{n}^{\prime}(x) \tag{8}
\end{align*}
$$

Thus, if we iterate the recurrence in equation (8) along with the recurrence of equation (7), we can ultimately compute the value of the derivative $P^{\prime}(x)=Q_{0}^{\prime}(x)$ in linear time as well.

Accuracy and interpolation error

We saw three methods for polynomial interpolation (Vandermonde, Lagrange, Newton). It is important to understand that all 3 methods compute (outside of any discrepancies due to machine precision) the same exact interpolant $P(x)$ just following different paths which may be better or worse from a computational perspective.

The question, however, remains:

- How accurate is this interpolation? Or, in other words:
- How close is $P(x)$ to the real function $f(x)$ whose plot the data points $\left(x_{i}, y_{i}\right)$ were collected from?

Consider interpolating through the following points

$$
\left(x_{0}, y_{0}\right)=(0,0),\left(x_{1}, y_{1}\right)=(1,1), \ldots,\left(x_{n}, y_{n}\right)=(n, n)
$$

which are sampled from the plot of the straight line $f(x)=x$.

Since $f(x)=x$ is a 1 -st order polynomial, any of our interpolation methods would reconstruct it exactly. Using Lagrange polynomials, $P(x)(=x)$ is written as:

$$
P(x)=\sum_{i=0}^{n} y_{i} l_{i}(x)
$$

Let us "shift" y_{n} by a small amount δ. The new value is $y_{n}^{*}=y_{n}+\delta$. The updated interpolant $P^{*}(x)$ then becomes:

$$
P^{*}(x)=\sum_{i=0}^{n-1} y_{i} l_{i}(x)+y_{n}^{*} l_{n}(x)
$$

Thus, this shift in the value of y_{n} by δ would change our computed interpolant by $P^{*}(x)-P(x)=\delta \cdot l_{n}(x)$.

Note that $l_{n}(x)$ is a function that oscillates through zero several times:

Thus, P^{*} looks like:

What we observe is that a local change in y-values caused a global (and drastic) change in $P(x)$. Perhaps the real function f would have exhibited a more graceful and localized change, e.g.:

We will use the following theorem to compare the real function f being sampled and the reconstructed interpolant $P(x)$.

Theorem Let:

- $x_{1}<x_{2}<\cdots<x_{n-1}<x_{n}$
- $y_{k}=f\left(x_{k}\right) k=1,2, \ldots, n$ where f is a function which is n-times differentiable with continuous derivatives.
- $P(x)$ is a polynomial that interpolates $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$.

Then for any $x \in\left(x_{1}, x_{n}\right)$ there exists a $\theta=\theta(x) \in\left(x_{1}, x_{n}\right)$ such that

$$
f(x)-P(x)=\frac{f^{(n)}(\theta)}{n!}\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n}\right)
$$

This theorem may be difficult to apply directly, since:

- θ is not known.
- θ changes with x.
- The nth derivative $f^{(n)}(x)$ may not be fully known.

However, we can use it to derive a conservative bound:

Theorem: If $M=\max _{x \in\left[x_{1}, x_{n}\right]}\left|f^{(n)}(x)\right|$ and $h=\max _{1 \leq i \leq n-1}\left|x_{i+1}-x_{i}\right|$, then

$$
|f(x)-P(x)| \leq \frac{M h^{n}}{4 n}
$$

for all $x \in\left[x_{1}, x_{n}\right]$.

How good is this, especially when we keep adding more and more data points (e.g. $n \rightarrow \infty$ and $h \rightarrow 0$)? This really depends on the higher order derivatives of $f(x)$. For example,

$$
f(x)=\sin (x), x \in[0,2 \pi]
$$

All derivatives of f are $\pm \sin (x)$ or $\pm \cos (x)$. Thus, $\left|f^{(k)}(x)\right| \leq 1$ for any k. In this case, $M=1$, and as we add more (and denser) data points, we have

$$
|f(x)-P(x)| \leq \frac{M h^{n}}{4 n} \xrightarrow[n \rightarrow \infty]{h \rightarrow 0} 0
$$

For some functions, however, the values of $\left|f^{(k)}(x)\right|$ grow vastly as $k \rightarrow 0$ (i.e. when we introduce additional points), e.g.:

$$
\begin{gathered}
f(x)=\frac{1}{x} \Rightarrow\left|f^{(n)}(x)\right|=n!\frac{1}{x^{n+1}}, x \in(0.5,1) \\
M_{n}=\max _{x \in(0.5,1)}\left|f^{(n)}(x)\right|=n!\cdot 2^{n}
\end{gathered}
$$

in this case, as $n \rightarrow \infty$:

$$
\frac{M_{n} h^{n}}{f_{n}}=\frac{n!2^{n} h^{n}}{4 n} \rightarrow \infty
$$

Another commonly cited counter-example is Runge's function:

$$
f(x)=\frac{1}{1+25 x^{2}}
$$

Approximating this with a 5 -degree polynomial yields:

