
38

Lecture of:
26 Feb 2013 Newton interpolation also facilitates easy evaluation:

e.g. p(x) = c0

+c1(x− x0)
+c2(x− x0)(x− x1)
+c3(x− x0)(x− x1)(x− x2)
+c4(x− x0)(x− x1)(x− x2)(x− x3)

= c0 + (x− x0) [c1 + (x− x1) [c2 + (x− x2) [c3 + (x− x3) c4︸︷︷︸
Q4(x)

]

︸ ︷︷ ︸
Q3(x)

]

︸ ︷︷ ︸
Q2(x)

]

︸ ︷︷ ︸
Q1(x)︸ ︷︷ ︸

Q0(x)

Recursively:

Qn(x) = cn

Qn−1(x) = cn−1 + (x− xn−1)Qn(x) (7)

The value of P (x) = Q0(x) can be evaluated (in linear time) by iterating this
recurrence n times. We also have:

Qn−1(x) = cn−1 + (x− xn−1)Qn(x)
⇒ Q′n−1(x) = Qn(x) + (x− xn−1)Q′n(x) (8)

Thus, if we iterate the recurrence in equation (8) along with the recurrence of
equation (7), we can ultimately compute the value of the derivative P ′(x) = Q′0(x)
in linear time as well.

Accuracy and interpolation error

We saw three methods for polynomial interpolation (Vandermonde, Lagrange, New-
ton). It is important to understand that all 3 methods compute (outside of any dis-
crepancies due to machine precision) the same exact interpolant P (x) just following
different paths which may be better or worse from a computational perspective.

The question, however, remains:

• How accurate is this interpolation? Or, in other words:

• How close is P (x) to the real function f(x) whose plot the data points (xi, yi)
were collected from?

39

Consider interpolating through the following points

(x0, y0) = (0, 0), (x1, y1) = (1, 1), . . . , (xn, yn) = (n, n)

which are sampled from the plot of the straight line f(x) = x.

Since f(x) = x is a 1-st order polynomial, any of our interpolation methods
would reconstruct it exactly. Using Lagrange polynomials, P (x)(= x) is written as:

P (x) =
n∑

i=0
yili(x)

Let us “shift” yn by a small amount δ. The new value is y∗n = yn + δ. The
updated interpolant P ∗(x) then becomes:

P ∗(x) =
n−1∑
i=0

yili(x) + y∗nln(x)

Thus, this shift in the value of yn by δ would change our computed interpolant by
P ∗(x)− P (x) = δ · ln(x).

Note that ln(x) is a function that oscillates through zero several times:

40

Thus, P ∗ looks like:

What we observe is that a local change in y-values caused a global (and drastic)
change in P (x). Perhaps the real function f would have exhibited a more graceful
and localized change, e.g.:

We will use the following theorem to compare the real function f being sampled
and the reconstructed interpolant P (x).

41

Theorem Let:

• x1 < x2 < · · · < xn−1 < xn

• yk = f(xk) k = 1, 2, . . . , n where f is a function which is n-times differen-
tiable with continuous derivatives.

• P (x) is a polynomial that interpolates (x1, y1), (x2, y2), . . . , (xn, yn).

Then for any x ∈ (x1, xn) there exists a θ = θ(x) ∈ (x1, xn) such that

f(x)− P (x) = f (n)(θ)
n! (x− x1)(x− x2) . . . (x− xn)

This theorem may be difficult to apply directly, since:

• θ is not known.

• θ changes with x.

• The nth derivative f (n)(x) may not be fully known.

However, we can use it to derive a conservative bound:

Theorem: If M = max
x∈[x1,xn]

|f (n)(x)| and h = max
1≤i≤n−1

|xi+1 − xi|, then

|f(x)− P (x)| ≤ Mhn

4n

for all x ∈ [x1, xn].

How good is this, especially when we keep adding more and more data points
(e.g. n → ∞ and h → 0)? This really depends on the higher order derivatives of
f(x). For example,

f(x) = sin(x), x ∈ [0, 2π]

All derivatives of f are ± sin(x) or ± cos(x). Thus, |f (k)(x)| ≤ 1 for any k. In this
case, M = 1, and as we add more (and denser) data points, we have

|f(x)− P (x)| ≤ Mhn

4n
h→0−−−→

n→∞
0

42

For some functions, however, the values of |f (k)(x)| grow vastly as k → 0 (i.e. when
we introduce additional points), e.g.:

f(x) = 1
x
⇒ |f (n)(x)| = n! 1

xn+1 , x ∈ (0.5, 1)

Mn = max
x∈(0.5,1)

|f (n)(x)| = n! · 2n

in this case, as n→∞:
Mnh

n

fn
= n!2nhn

4n →∞

Another commonly cited counter-example is Runge’s function:

f(x) = 1
1 + 25x2

Approximating this with a 5-degree polynomial yields:

