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ggclgsgzgig Newton interpolation also facilitates easy evaluation:

eg. p(z) = oo

+c1(x — o)

+eo(x — xo) (T — 1)

+es(x — xo)(x — 1) (T — 22)

+ea(x — xo)(x — 1) (T — 22) (T — 3)

= co+ (x—xzo)[c1+ (x — 1) [ca + (x — 22) [e3 + (x — x3) \cﬁ/]]]
Qa(x)
Qs(x)
Q2(z)
Q1(w)
Qo(x)
Recursively:
Qn(z) = cn
Qn-1(z) = cpo1+ (2 — 2n-1)Qn() (7)

The value of P(x) = Qo(z) can be evaluated (in linear time) by iterating this
recurrence n times. We also have:

anl(x) =cCp-1+ (l' - xnfl)Qn(l')
= Qn1(2) = Qn(@) + (7 — 2p-1)Qy(2) (8)
Thus, if we iterate the recurrence in equation (8) along with the recurrence of

equation (7), we can ultimately compute the value of the derivative P'(x) = Qp(x)
in linear time as well.

Accuracy and interpolation error

We saw three methods for polynomial interpolation (Vandermonde, Lagrange, New-

ton). It is important to understand that all 3 methods compute (outside of any dis-

crepancies due to machine precision) the same exact interpolant P(z) just following

different paths which may be better or worse from a computational perspective.
The question, however, remains:

e How accurate is this interpolation? Or, in other words:

e How close is P(z) to the real function f(z) whose plot the data points (z;, y;)
were collected from?
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Consider interpolating through the following points

(x(]:y()) = (070)7 (xlvyl) = (17 1)7' < (xn,yn) = (TL,TL)

which are sampled from the plot of the straight line f(z) = =.

f

(0,0)

Since f(xz) = x is a 1-st order polynomial, any of our interpolation methods
would reconstruct it exactly. Using Lagrange polynomials, P(z)(= z) is written as:

Let us “shift” y, by a small amount §. The new value is v = y, + 6. The
updated interpolant P*(z) then becomes:

n—1
PH(x) =Y wili(x) + ypln(x)
=0

Thus, this shift in the value of y,, by § would change our computed interpolant by
P*(z) — P(x) =6 - l,(x).
Note that I,,(z) is a function that oscillates through zero several times:
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Thus, P* looks like:

v7‘r—— -
K/

What we observe is that a local change in y-values caused a global (and drastic)
change in P(x). Perhaps the real function f would have exhibited a more graceful
and localized change, e.g.:

f&)

b ”

We will use the following theorem to compare the real function f being sampled
and the reconstructed interpolant P(x).
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Theorem Let:
0 T < T2 < < Tp—1 <y

e yr = f(xr) k=1,2,...,n where f is a function which is n-times differen-
tiable with continuous derivatives.

e P(x) is a polynomial that interpolates (x1,y1), (x2,¥2), .-, (Tn, Yn)-

Then for any x € (x1,x,) there exists a § = 0(z) € (x1,z,) such that

(r —x1)(x —22) ... (T — )

This theorem may be difficult to apply directly, since:
e 0 is not known.

e () changes with x.

e The nth derivative £ (z) may not be fully known.

However, we can use it to derive a conservative bound:

Theorem: If M = max |f(™(z)] and h= max |z;41 — x4, then
TE€[x1,2n] 1<i<n—1
Mh™
— Pa)| <
7(@) Pl < 1

for all x € [z1, xy].

How good is this, especially when we keep adding more and more data points
(e.g. n — oo and h — 0)7 This really depends on the higher order derivatives of
f(x). For example,

f(z) =sin(z), = € [0, 27]

All derivatives of f are +sin(z) or 4 cos(z). Thus, |f*)(x)| < 1 for any k. In this
case, M = 1, and as we add more (and denser) data points, we have

MA™ h—0
< — ——

f@) — P@) < = 220

n—oo
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For some functions, however, the values of | f(*) ()| grow vastly as k — 0 (i.e. when
we introduce additional points), e.g.:

in this case, as n — oo:
Mph™  nl2™h"

%
fn 4dn >
Another commonly cited counter-example is Runge’s function:
1
J@) = 50
IN

O

Approximating this with a 5-degree polynomial yields:




