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Surprisingly, increasing the number of sample points to 11, and passing a 10-degree
polynomial through them does not help:

Lecture of:
28 Feb 2013Thus, in this case, the polynomials Pk(x) do not uniformly converge to f(x) as

we add more points. A possible improvement stems from the expression for the
error:

f(x)− P (x) = f (n)(θ)
n!︸ ︷︷ ︸
A

(x− x1) . . . (x− xn)︸ ︷︷ ︸
B

The quantity indicated by A is beyond our control; this is determined by the func-
tion that we seek to approximate. However, if we have the flexibility to choose the
x-locations of the data points we collect prior to polynomial interpolation, there is
a possibility of minimizing the quantity B.

The value of the product (x− x1) . . . (x− xn) is minimized by selecting the xi’s
as the Chebyshev points. If the interpolation interval is [a, b], the Chebyshev points
are given by:

xi = a+ (b− a)cos2( iπ2N ), i = 0, 1, 2, . . . , N

Graphically, these point are the projections on the x-axis of the (N + 1) data
points located along the half circle with diameter the interval [a, b] at equal arc-
lengths:
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Now, we can re-try Runge’s function using Chebyshev points:

In fact, it is possible to show that, using Chebyshev points, we can guarantee
that:

|f(x)− P (x)| −−−→
n→∞

0

provided that over [a, b] both f(x) and its derivative f ′(x) remains bounded. (The
benefit is that this condition does not place restrictions on higher-order derivatives
of f(x)).

Although using Chebyshev points mitigates some of the drawbacks of high-order
polynomial interpolants, this is still a non-ideal solution, since:

• We do not always have the flexibility to pick the xi’s.

• Polynomial interpolants of high degree typically require more than O(n) com-
putational cost to construct.

• Local changes in the data points affect the entire extent of the interpolant.
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Piecewise polynomial inteprolants

Although the use of Chebyshev points improves the applicability of polynomial
interpolation, this method has significant practical limitations. A better, more
flexible remedy is to use piecewise polynomials. Assume that the x-values {xi}ni=1
are sorted in ascending order:

a = x1 < x2 < · · · < xn−1 < xn = b

Let us write Ik = [xk, xk+1] for the k-th interval of interpolation, and let hk =
|xk+1 − xk| denote the length of that interval.

We now define a finite sequence of polynomials S1(x), S2(x), . . . , Sn−1(x) and
use each of them to define the interpolant S(x) at the respective interval Ik:

S(x) =



S1(x), x ∈ I1

S2(x), x ∈ I2
...

Sn−1(x), x ∈ In−1

The benefit of using piecewise-polynomial interpolants is that each Sk(x) can be
relatively low-order and thus non-oscillatory and easier to compute. The simplest
piecewise polynomial interpolant is a piecewise linear curve:
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In this case, every Sk can be written out explicitly as:

Sk(x) = yk + yk+1 − yk

xk+1 − xk
(x− xk)

The next step is to examine the error e(x) = f(x) − Sk(x) in the interval Ik.
From the theorem we presented in the last lecture, we have that, for any x ∈ Ik,
there is a θk = θ(xk) in Ik, such that:

e(x) = f(x)− Sk(x) = f ′′(θk)
2 (x− xk)(x− xk+1)︸ ︷︷ ︸

q(x)

(9)

We are interested in the maximum value of |q(x)| in order to determine a bound for
the error. q(x) is a quadratic function which crosses zero at xk and xk+1, thus the
extreme value is obtained at the midpoint xm = xk+1+xk

2 .

Thus |q(x)| ≤ |q(xm)| = xk+1−xk

2 = hk
4 for all x ∈ Ik.



47

Then, using equation (9) we obtain:

|f(x)− Sk(x)| ≤ max
x∈Ik

|f
′′(x)
2 | ·max

x∈Ik

|(x− xk)(x− xk+1|

= max
x∈Ik

|f
′′(x)
2 | · h

2
k

4

⇒ |f(x)− Sk(x)| ≤ 1
8 max

x∈Ik

|f ′′(x)| · h2
k for all x ∈ Ik

Additionally, if we assume all data points are equally spaced, i.e.

h1 = h2 = · · · = hn−1 = h(= b− a
n− 1)

we can additionally write:

|f(x)− S(x)| ≤ 1
8 max

x∈[a,b]
|f ′′(x)| · h2

We often express the quantity on the right-hand side using the infinity norm of a
given function, defined as:

‖f‖∞ = max
x∈[a,b]

|f(x)|

Thus, using this notation:

|f(x)− S(x)| ≤ 1
8‖f

′′‖∞ · h2

Note that:

• As h→ 0, the maximum discrepancy between f and S vanishes (proportion-
ally to h2).

• As we introduce more points, the quality of the approximation increases con-
sistently since the criterion above only considers the second derivative f ′′(x)
and not any higher order.

Lecture of:
7 Mar 2013A possible improvement from piecewise linear polynomial approximations is

given by Piecewise cubic interpolation:


