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more application of this equation would yield ek+2 < 10−12. Thus we see that,
provided the iteration starts close enough to the solution, we not only converge to
the desired value, but actually double the number of correct significant digits in
each iteration. We defer the detailed proof until after we have introduced the more
general method.

Newton’s method
Lecture of:
29 Jan 2013 This example is a special case of an algorithm for solving nonlinear equations, known

as Newton’s method (also called the Newton-Raphson method). The general idea is
as follows: If we “zoom” close enough to any smooth function, its graph looks more
and more like a straight line (specifically, the tangent line to the curve).

Newton’s method suggests: If after k iterations we have approximated the solu-
tion of f(x) = 0 (a general nonlinear equation) as xk, then:

• Form the tangent line at (xk, f(xk))

• Select xk+1 as the intersection of the tangent line with the horizontal axis
(y = 0).
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If (xn, yn) = (xn, f(xn)), the tangent line to the plot of f(x) at (xn, yn) is:

y − yn = λ(x− xn), where λ = f ′(xn) is the slope

Thus the tangent line has equation y− yn = f ′(xn)(x− xn). If we set y = 0 we get:

−f(xn) = f ′(xn)(x− xn)⇒ x = xn −
f(xn)
f ′(xn) := xn+1

Ultimately, Newton’s method reduces to: xn+1 = xn − f(xn)
f ′(xn)

Our previous example (square root of a) is just an application of Newton’s
method to the nonlinear equation f(x) = x2 − a = 0. Newton gives:

xk+1 = xk −
f(xk)
f ′(xk) = xk −

x2
k − a
2xk

= 2x2
k − x2

k + a

2xk
= x2

k + a

2xk

which is the same iteration we considered previously.
A few comments about Newton’s method:

• It requires the function f(x) to be not only continuous, but differentiable
as well. We will later see variants that do not explicitly required knowledge
of f ′. This would be an important consideration if the formula for f ′(x) is
significantly more complex, and expensive to evaluate than f(x), or in the
case we simply do not possess an analytic expression for f ′; this could be the
case if f(x) is not given to us via an explicit formula, but only defined via a
black-box computer function that computes its value.

• If we ever have an approximation xk with f ′(xk) ≈ 0, we should expect prob-
lems, especially if we are not close to a solution (we would be nearly dividing
by zero). In such cases, the tangent line is almost (or exactly) horizontal, thus
the next iterate can be a very remote value, and convergence may be far from
guaranteed.
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Fixed point iteration
Corresponding
textbook
chapter(s):
§2.1

Newton’s method is in itself a special case of a broader category of methods for solv-
ing nonlinear equations called fixed point iteration methods. Generally, if f(x) = 0
is the nonlinear equation we seek to solve, a fixed point iteration method proceeds
as follows:

• Start with x0 =< initial guess >

• Iterate the sequence
xk+1 = g(xk)

where g(x) is a properly designed function for this purpose.

Following this method, we construct the sequence x0, x1, x2, . . . , xk, . . . hoping
that it will converge to a solution of f(x) = 0. The following questions arise at this
point:

1. If this sequence converges, does it converge to a solution of f(x) = 0?

2. Is the iteration guaranteed to converge?

3. How fast does the iteration converge?

4. (Of practical concern) When do we stop iterating, and declare that we have
obtained an acceptable approximation?

Note: The function g(x) is related, but otherwise different than f(x). In fact,
there could be many different functions g(x) that could be successfully used in a
fixed point iteration of this form, all for solving the same equation f(x) = 0.

We start by addressing the first question: If the sequence {xk} does converge,
can we ensure that it will converge to a solution of f(x) = 0?

Taking limits on xk+1 = g(xk), and assuming that (a) lim xk = a and (b) the
function g is continuous, we get:

lim
k→∞

xk+1 = lim
k→∞

g(xk)⇒ a = g(a)

That is, the limit of the fixed point iteration (if it exists) will satisfy the equation
a = g(a). The question is: can we guarantee that this limit value will actually be
a solution to our original equation, i.e. f(a) = 0? The simplest way to ensure this
property is to construct g(x) such that

x = g(x) is mathematically equivalent to f(x) = 0.

There are many ways to make this happen, e.g.

f(x) = 0⇔ x+ f(x) = x⇔ x = g(x), where g(x) := x+ f(x)
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or

f(x) = 0⇔ e−xf(x) = 0⇔ e−xf(x) + x2 = x2 ⇔ e−xf(x) + x2

x
= x⇔

⇔ g(x) = x, where g(x) := e−xf(x) + x2

x
or

f(x) = 0⇔ − f(x)
f ′(x) = 0⇔ x− f(x)

f ′(x) = x⇔ g(x) = x, where g(x) := x− f(x)
f ′(x)

The last example is exactly Newton’s method; substituting the definition of g(x)
above into the iteration xk+1 = g(xk) yields the familiar Newton update equation.
Thus we know that if Newton converges, it will be to a solution of f(x) = 0.

As we see, there are many possible ways to define the function g(x), all of which
guarantee at least one desirable property : if the iteration ever converges, the limit
will be a solution of f(x) = 0. Unfortunately, not all of these different possibilities
for g(x) will lead to a method that actually converges! For example, consider the
nonlinear equation f(x) = x2−a = 0 (Solution: ±

√
a) and the function g(x) = a/x.

We can easily verify that

x = g(x) = a

x
⇔ x2 = a⇔ x2 − a = 0 = f(x)

However, the iteration xk+1 = g(xk) = a/xk yields

x1 = a

x0
, x2 = a

x1
= a

a/x0
= x0

Thus, the sequence alternates forever between the values x0, x1, x0, x1, . . . regardless
of the initial value. Other choices of g(x) may also create divergent sequences, often
regardless of the value of the initial guess.

Fortunately, there are ways to ensure that the sequence {xk} converges, by
making an appropriate choice of g(x). We will use the following definition:

Definition: A function g(x) is called a contraction in the interval [a, b], if
there exists a number L ∈ [0, 1) such that

|g(x)− g(y)| ≤ L|x− y|

for any x, y ∈ [a, b].
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Examples:

• g(x) = x/2 :

|g(x)− g(y)| = 1
2 |x− y|

for any x, y ∈ R.

• g(x) = x2, in [0.1, 0.2] :

|g(x)− g(y)| = |x2 − y2| = |x+ y||x− y| ≤ 0.4|x− y|

for x, y ∈ [0.1, 0.2] (in this case this condition is essential!)

If we can establish that the function g in the fixed point iteration xk+1 = g(xk)
is a contraction, we can show the following:

Theorem: Let a be the actual solution of f(x) = 0, and assume |x0−a| < δ
(δ is an arbitrary positive number). If g is a contraction on (a − δ, a + δ), the
fixed point iteration is guaranteed to converge to a.

Any proofs
printed in a
shaded box
need not be
memorized
for exams

Proof : Since a is the solution we have a = g(a). Thus:

|x1 − a| = |g(x0)− g(a)| ≤ L|x0 − a| < Lδ

|x2 − a| = |g(x1)− g(a)| ≤ L|x1 − a| < L2δ

...
|xk − a| < Lkδ

Since L < 1 we have lim |xk − a| = 0, i.e. xk → a.

In some cases, it can be cumbersome to apply the definition directly to show
that a given function g is a contraction. However, if we can compute the derivative
g′(x) we have a simpler criterion:

Theorem: If g is differentiable and a number L ∈ [0, 1) exists such that
|g′(x)| ≤ L for all x ∈ [a, b], then g is a contraction on [a, b].



13

Proof : Let x, y ∈ [a, b] and, without loss of generality, assume x < y. The mean
value theorem states that

g(x)− g(y)
x− y

= g′(c) for some c ∈ (x, y).

Now, if |g′(x)| ≤ L for all x ∈ [a, b], then regardless of the exact value of c we have

|g′(c)| ≤ L⇒
∣∣∣∣g(x)− g(y)

x− y

∣∣∣∣ ≤ L⇒ |g(x)− g(y)| ≤ L|x− y|

Examples:

• Let g(x) = sin(2x
3 ). Then:

|g′(x)| = 2
3

∣∣∣∣cos
(2x

3

)∣∣∣∣ ≤ 2
3 < 1

thus g is a contraction. Lecture of:
31 Jan 2013

• Let us try to apply the derivative criterion, to see if the function

g(x) = x = f(x)/f ′(x)

which defines Newton’s method is a contraction:

g′(x) = 1− f ′(x)f ′(x)− f(x)f ′′(x)
[f ′(x)]2 = f(x)f ′′(x)

[f ′(x)]2

Now let us assume that

– f(a) = 0, i.e. a is a solution of f(x) = 0,
– f ′(a) 6= 0, and
– f ′′ is bounded near a (for example, if f ′′ is continuous).

Then
lim
x→a

g′(x) = f(a)f ′′(a)
[f ′(a)]2 = 0

This means that there is an interval (a− δ, a+ δ) where |g′(x)| is small (since
lim g′(x) = 0). Specifically, we can find an L < 1 such that |g′(x)| ≤ L when
|x − a| < δ. This means that g is a contraction on (a − δ, a + δ), and if the
initial guess also falls in that interval, the iteration is guaranteed to converge
to the solution a.


