
18

The Bisection method
Lecture of:
5 Feb 2013 Newton’s method is a popular technique for the solution of nonlinear equations,

but alternative methods exist which may be preferable in certain situations. The
Bisection method is yet another technique for finding a solution to the nonlinear
equation f(x) = 0, which can be used provided that the function f is continuous.
The motivation for this technique is drawn from Bolzano’s theorem for continuous
functions:

Theorem (Bolzano) : If the function f(x) is continuous in [a, b] and
f(a)f(b) < 0 (i.e. the function f has values with different signs at a and b), then a
value c ∈ (a, b) exists such that f(c) = 0.

The bisection algorithm attempts to locate the value c where the plot of f
crosses over zero, by checking whether it belongs to either of the two sub-intervals
[a, xm], [xm, b], where xm is the midpoint

xm = a+ b

2

The algorithm proceeds as follows:

• If f(xm) = 0, we have our solution (xm) and the algorithm terminates.

• In the much more likely case that f(xm) 6= 0 we observe that f(xm) must
have the opposite sign than one of f(a) or f(b) (since they have opposite
signs themselves). Thus

– Either f(a)f(xm) < 0, or
– f(xm)f(b) < 0.

19

We pick whichever of these 2 intervals satisfies this condition, and continue
the bisection process with it.

The bisection algorithm is summarized (in pseudocode) as follows:

Algorithm 1 Bisection search on [a, b]
1: procedure BisectionSearch(f, a, b)
2: a0 ← a, b0 ← b, I0 ← [a0, b0] . Ik denote intervals
3: for k = 0, 1, 2, . . . , N do
4: xm ← ak+bk

2
5: if xm = 0 then
6: xm is the desired solution, return.
7: else if f(ak)f(xm) < 0 then
8: Ik+1 := [ak+1, bk+1]← [ak, xm]
9: else if f(xm)f(bk) < 0 then

10: Ik+1 := [ak+1, bk+1]← [xm, bk]
11: end if
12: end for
13: return the approximate solution xapprox = aN +bN

2
14: end procedure

Convergence Let us conventionally define the “approximation” at xk after the
k-th iteration as the midpoint

xk := ak + bk

2
of Ik. Since the actual solution f(a) = 0 satisfies a ∈ Ik, we have

|xk − a| ≤
1
2 |Ik|

where |Ik| symbolizes the length of the interval Ik. Since the length of the current
search interval gets divided in half in each iteration, we have

|ek| = |xk − a| ≤
(1

2

)k

|I0|

We interpret this behavior as linear convergence; although we cannot strictly guar-
antee that |ek+1| ≤ L|ek| (L < 1) at each iteration, this definition can also be
iterated to yield

|ek| ≤ Lk|e0|

which is qualitatively equivalent to the expression for Bisection. Since the order
of convergence is linear, we expect to gain a fixed number (or fixed fraction) of

20

significant digits at each iteration; since 0.510 ≈ 0.001 we can actually say that the
Bisection method yields about 3 additional correct significant digits after every 10
iterations.

The Bisection procedure is very robust, by virtue of Bolzano’s theorem, and
despite having only linear convergence can be used to find an approximation within
any desired error tolerance. It is often used to localize a good initial guess which can
then be rapidly improved with a Fixed Point Iteration method such as Newton’s.
Note that bisection search is not a fixed point iteration itself!

The Secant method
The secant method is yet another iterative technique for solving nonlinear equations;
it closely mimics Newton’s method, but relaxes the requirement that an analytic
expression for the derivative f ′(x) must be provided. It operates as follows:

• We bootstrap the iteration not only with one initial guess (x0), but also with
a second improved approximation x1.

• At the k-th step of the iteration, we first approximate

f ′(xk) ≈ f(xk)− f(xk−1)
xk − xk−1

Remember that since

f ′(xk) = lim
y→xk

f(xk)− f(y)
xk − y

as the iterates xk−1, xk get closer to one another (while they both approach
the solution) this approximation becomes more and more accurate.
We then replace this particular approximation for f ′(xk) in Newton’s method
xk+1 = xk − f(xk)/f ′(xk) to obtain:

xk+1 = xk −
f(xk)

f(xk)−f(xk−1)
xk−xk−1

Geometrically, Newton’s method approximates f(x) at each step by the tangent
line to the graph of f(x), while the method we just described approximates f by
the secant line as illustrated below:

21

We can show that, once we are “close enough” to the solution, the error ek for
the secant method satisfies

|ek+1| ≤ c|ek|d, where d = 1 +
√

5
2 ≈ 1.6

Thus, the secant method provides superlinear convergence. In practice, it may
need a few more iterations (about 50% more?) than Newton, but we need to weigh
in the fact that each iteration is likely cheaper, since no derivatives of f need to be
evaluated.

We also note that, despite the fact that the Secant method does not include
f ′(x) in its formula, it has exactly the same issues as Newton’s method does when
f ′(x) ≈ 0, especially close to (or at) a solution. Although the denominator is not
exactly the derivative, it is (hopefully) a good approximation to the derivative, thus
when f ′(x) ≈ 0, the Secant method will also be exposed to the danger of dividing
by near-zero quantities.

22

Interpolation

Corresponding
textbook
chapter(s):
§4.2,4.3

We are often interested in a certain function f(x), but despite the fact that f
may be defined over an entire interval of values [a, b] (which may be the entire real
line) we only know its precise value at select points x1, x2, . . . , xN :

There may be several good reasons why we could only have a limited number of
values for f(x), instead of its entire graph:

• Perhaps we do not have an analytic formula for f(x) because it is the result
of a complex process that is only observed experimentally. For example f(x)
could correspond to a physical quantity (temperature, density, concentration,
velocity, etc) which varies over time in a laboratory experiment. Instead of
an explicit formula, we use a measurement device to capture sample values of
f at predetermined points in time.

• Or, perhaps we do have a formula for f(x), but this formula is not trivially
easy to evaluate. Consider for example:

f(x) = sin(x) or f(x) = ln(x) or f(x) =
∫ x

0
e−t2

dt

Perhaps evaluating f(x) with such a formula is a very expensive operation and
we want to consider a less expensive way to obtain a “crude approximation”. In
fact, in years when computers were not as ubiquitous as today, trigonometric
tables were very popular. For example

