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Angle sin(θ) sin(θ)
· · · · · · · · ·
440 0.695 0.719
450 0.707 0.707
460 0.719 0.695
470 0.731 0.682
· · · · · · · · ·

If we were asked to approximate the value of sin(44.60) it would be natural
to consider deriving an estimate from these tabulated values, rather than
attempting to write an analytic expression for this quantity.

Lecture of:
7 Feb 2013Interpolation methods attempt to answer questions about the value of f(x) at

points other than the ones it was sampled at. An obvious question would be to
ask what is an estimate for f(x∗) for a value x∗ different than any sample we have
collected; similar questions can be asked about the derivatives f ′(x∗), f ′′(x∗), . . . at
such locations.

The question of how to reconstruct a smooth function f(x) that agrees with a
number of collected sample values is not a straightforward one, especially since there
is more than one way to accomplish this task. First, let us introduce some notation:
Let us write x1, x2, . . . , xN for the x-locations where f is being sampled and denote
the known value of f(x) at x = x1 as y1 = f(x1), at x = x2 as y2 = f(x2), etc.
Graphically, we seek to reconstruct a function f(x), x ∈ [a, b] such that the plot of
f passes through then following points:

(x1, y1) , (x2, y2) , . . . , (xN , yN )

Here are some possible ways to do that:

• For every x, pick the xi closest to it, and set f(x) = yi
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Or, simply pick the value to the “left”:

• Try connecting every two horizontally neighboring points with a straight line

• Or, try to find a smoother curve that connects them all . . .

It is not trivial to argue that any particular one of these alternatives is “bet-
ter”, without having some knowledge of the nature of f(x), or the purpose this
reconstructed function will be used for. For example:
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• It may appear that the discontinuous approximation generated by the “pick
the closest sample” method is awkward and not as well behaved. However,
the real function f(x) being sampled could have been just as discontinuous
to begin with, for example if f(t) denoted the transaction amount for the
customer of a bank being served at time = t.

• Sometimes, we may know that the real f(x) is supposed to have some degree
of smoothness. For example, if f(t) is the position of a moving vehicle in a
highway, we would expect both f(t) and f ′(t) (velocity), possibly even f ′′(t)
(acceleration) to be continuous functions of time. In this case, if we seek to es-
timate f ′(t) at a given time, we may prefer the piecewise-linear reconstruction.
If f ′′(t) is needed, the even smoother method might be preferable.

Polynomial Interpolation

A commonly used approach is to use a properly crafted polynomial function:

f(x) = Pn(x) = a0 + a1x+ a2x
2 + · · ·+ an−1x

n−1 + anx
n

to interpolate the points (x0, y0), . . . , (xk, yk).

Benefits of using polynomials for interpolation include:

• Polynomials are relatively simple to evaluate. In fact, this can be done with
just n multiplications and n additions by writing:

Pn(x) = a0 + x(a1 + x(a2 + x(a3 · · ·+ an−1 + xan)))

• We can easily compute derivatives P ′n, P ′′n if desired.

• Reasonably established procedure to determine the ai’s.

• Polynomial approximations are familiar from, e.g. Taylor series.

And some disadvantages:

• Fitting polynomials can be problematic when:

(i) We have many data points (k is large), or
(ii) Some of the samples are too close together (‖xi − xj‖ = small).

In the interest of simplicity (and not only), we try to find the most basic, yet
adequare, Pn(x) that interpolates (x0, y0), . . . , (xk, yk). For example:
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• If k = 0 (only one data sample), we have to interpolate through (x0, y0) only.
A 0-degree polynomial (constant) will achieve that if P0(x) = y0.

• If k = 1, we have 2 points (x1, y1) and (x2, y2). A 0-degree polynomial P0(x) =
a0 will not always be able to pass through both points (unless y1 = y2), but
a 1-degree polynomial P1(x) = a0 + a1x always can.
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These are not the only polynomials that accomplish the task, e.g.

The problem with using a degree higher than the minimum necessary is that:

• More than one solution becomes available, with the “right” one being unclear

• Wildly varying curves become permissible, producing questionable approxi-
mations.

Lecture of:
12 Feb 2013In fact, we can show that using a polynomial Pn(x) of degree n is the best choice

when interpolating n+ 1 points. In this case, the following properties are assured:

• Existence: Such a polynomial always exists. (Assuming that all the xi’s are
different! It would be impossible for a function to pass through 2 points on the
same vertical line.) We will show this later by constructing such a function.

• Uniqueness: We can sketch a proof:

Assume that

Pn(x) = p0 + p1x+ · · ·+ pnx
n

Qn(x) = q0 + q1x+ · · ·+ qnx
n

both interpolate every (xi, yi), i.e. Pn(xi) = Qi(xi) = yi ∀i. Define another n-degree
polynomial

r0 + r1x+ · · ·+ rnx
n = Rn(x) = Pn(x)−Qn(x).

Apparently, Rn(xi) = 0 ∀i = 1, 2, . . . , n + 1. From algebra, we know that every
polynomial of degree n has at most n real roots unless it is the zero polynomial, i.e.
r0 = r1 = · · · = rn = 0. Since we have Rn(x) = 0 for n1 distinct values, we must
have Rn(x) ≡ 0 or Pn(x) ≡ Qn(x).


