

In this approach, each $S_{k}(x)$ is a cubic polynomial designed such that it interpolates the 4 data points:

$$
\left(x_{k-1}, y_{k-1}\right),\left(x_{k}, y_{k}\right),\left(x_{k+1}, y_{k+1}\right),\left(x_{k+2}, y_{k+2}\right)
$$

As we will see, the benefit is that the error can be made even smaller than with piecewise linear curves; the drawback is that (as seen in the last figure) $S(x)$ can develop kinks (or corners) where 2 pieces $S_{k}(x)$ and $S_{k+1}(x)$ are joined.

The error of piecewise cubic interpolation is:

$$
f(x)-S_{k}(x)=\frac{f^{\prime \prime \prime \prime}\left(\theta_{k}\right)}{4!}\left(x-x_{k-1}\right)\left(x-x_{k}\right)\left(x-x_{k+1}\right)\left(x-x_{k+2}\right)
$$

An analysis similar to the linear case can show that $|q(x)| \leq \frac{9}{16} \max ^{4}\left\{h_{k-1}, h_{k}, h_{k+1}\right\}$. If we again assume $h_{1}=h_{2}=\cdots=h_{k}=h$, the error bound becomes:

$$
|f(x)-S(x)| \leq \frac{1}{24}\left\|f^{\prime \prime \prime \prime}\right\|_{\infty} \cdot \frac{9}{16} h^{4}, \quad \text { or: }
$$

$$
f(x)-S(x) \leq \frac{9}{384}\left\|f^{\prime \prime \prime \prime}\right\|_{\infty} \cdot h^{4}
$$

The next possibility we shall consider is a piecewise cubic curve:

$$
S(x)=\left\{\begin{array}{cc}
S_{1}(x), & x \in I_{1} \\
\vdots & \\
S_{n-1}(x), & x \in I_{n-1}
\end{array}\right.
$$

where each $S_{k}(x)=a_{3}^{(k)} x^{3}+a_{2}^{(k)} x^{2}+a_{1}^{(k)} x+a_{0}^{(k)}$, and the coefficients $a_{i}^{(j)}$ are chosen as to force that the curve has continuous values, first and second derivatives:

$$
\begin{aligned}
S_{k}\left(x_{k+1}\right) & =S_{k+1}\left(x_{k+1}\right) \\
S_{k}^{\prime}\left(x_{k+1}\right) & =S_{k+1}^{\prime}\left(x_{k+1}\right) \\
S_{k}^{\prime \prime}\left(x_{k+1}\right) & =S_{k+1}^{\prime \prime}\left(x_{k+1}\right)
\end{aligned}
$$

The curve constructed this way is called a cubic spline interpolant.

Note the increased smoothness (continuity of values and derivatives) at the endpoints of each interval I_{k}.

Cubic spline interpolants

As always our goal in this interpolation task is to define a curve $S(x)$ which interpolates the n data points:

$$
\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\left(\text { where } x_{1}<x_{2}<\cdots<x_{n}\right)
$$

In the fashion of piecewise polynomials, we will define $S(x)$ as a different cubic polynomial $S_{k}(x)$ at each sub-interval $I_{k}=\left[x_{k}, x_{k+1}\right]$, i.e.:

$$
S(x)=\left\{\begin{array}{cc}
S_{1}(x), & x \in I_{1} \\
S_{2}(x), & x \in I_{2} \\
\vdots & \\
S_{k}(x), & x \in I_{k} \\
\vdots & \\
S_{n-1}(x), & x \in I_{n-1}
\end{array}\right.
$$

Each of the S_{k} 's is a cubic polynomial

$$
S_{k}(x)=a_{0}^{(k)}+a_{1}^{(k)} x+a_{2}^{(k)} x^{2}+a_{3}^{(k)} x^{3}
$$

This polynomial is defined by the four undetermined coefficients $a_{0}^{(k)}, \ldots, a_{3}^{(k)}$. Since we have $n-1$ piecewise polynomials, in total we shall have to determine $4(n-1)=$ $4 n-4$ unknown coefficients.

The points ($x_{2}, x_{3}, \ldots, x_{n-1}$) where the formula for $S(x)$ changes from one cubic polynomial $\left(S_{k}\right)$ to another $\left(S_{k+1}\right)$ are called knots.

Note: In some textbooks, the extreme points x_{1} and x_{n} are also included in the definition of what a knot is. We however retain the definition we stated previously.

The piecewise polynomial interpolation method described as cubic spline also requires the neighboring polynomials S_{k} and S_{k+1} to be joined at x_{k+1} with a certain degree of smoothness. In detail:

The curve should be continuous: $S_{k}\left(x_{k+1}\right)=S_{k+1}\left(x_{k+1}\right)$
The derivative (slope) should be continuous: $S_{k}^{\prime}\left(x_{k+1}\right)=S_{k+1}^{\prime}\left(x_{k+1}\right)$
The 2nd derivatives, as well: $S_{k}^{\prime \prime}\left(x_{k+1}\right)=S_{k+1}^{\prime \prime}\left(x_{k+1}\right)$
(Note: If we force the next (3rd) derivative to match, this will force S_{k} and S_{k+1} to be exactly identical.)

When determining the unknown coefficients $a_{i}^{(j)}$, each of these 3 smoothness constraints (for knots $k=2,3, \ldots, n-1$) needs to be satisfied for a total of $3(n-2)=$

