Dense Matrix Solvers - LAPACK routines
Introduction to Parallel Sparse Direct solvers



Introduction

e

BLAS Level 3 routines provide convenient optimized operations that involve
operations between multiple matrices, e.qg.
- Multiply two matrices (GEMM)
- Add a (special) product of two matrices to a third matrix (rank-k update)
- Solve a triangular system LX = B where X & B are matrices (not vectors)

So far, we haven’t seen routines to solve linear systems of equations
(With the exception of the triangular system solve; but that's a special case)

Typical mode of use for routines we will examine:
- We may want to solve systems of the form Ax = b where the matrix A IS not
necessarily an “easy” one to handle (i.e. a triangular matrix)

- For many applications we may need to solve several systems like the one
above with the same matrix A but for different right-hand-sides b1, bz, bs, ...
(@nd correspondingly producing multiple solutions X1, X2, X3, ...)

- In many cases we can afford a more expensive “one-time” pre-computation
for the sake of accelerating the solution of subsequent problems.




BLAS Level 3 Routines

BLAS Level 3 routines perform matrix-matrix operations. The following table lists the BLAS Level 3 routine
groups and the data types associated with them.

BLAS Level 3 Routine Groups and Their Data Types

cblas ?gemm s,d,c,z Computes a matrix-matrix product with general matrices.

cblas ?hemm C,Z Computes a matrix-matrix product where one input matrix
is Hermitian.

cblas ?herk C,Z Performs a Hermitian rank-k update.

cblas ?her2k C,Z Performs a Hermitian rank-2k update.

cblas ?symm s,d,c,z Computes a matrix-matrix product where one input matrix
is symmetric.

cblas ?syrk s,d,c,z Performs a symmetric rank-k update.

cblas ?syr2k s,d,c,z Performs a symmetric rank-2k update.

cblas ?trmm s,d,c,z Computes a matrix-matrix product where one input matrix
is triangular.

cblas ?trsm s,d,c,z Solves a triangular matrix equation.
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Solvers for linear systems (Ax = b) come in two (main) flavors:
- [terative solvers (e.q. Conjugate Gradients) that converge to the solution
after a number of iterations (hopefully not too many ...)
- Direct solvers produce the solution without iteration, by following a set
algorithm that does not involve progressive “improvement” of a guess
(e.9. Gauss Elimination, or Forward/Backward substitution when applicable)

Pros/Cons of iterative methods :
+ Relatively easy to set-up, as a general rule they don’t require much
pre-computation to be used
+ Some can be used without building the matrix explicitly
(as in our earlier use of Conjugate Gradients)
- They may require many, many iterations to converge
(“pre-conditioners” help, but are difficult to design)
- Some matrices can be particularly bad for them
(it can be common that you need to use double-precision computation

to barely get single-precision accurate results)
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Solvers for linear systems (Ax = b) come in two (main) flavors:
- [terative solvers (e.q. Conjugate Gradients) that converge to the solution
after a number of iterations (hopefully not too many ...)
- Direct solvers produce the solution without iteration, by following a set
algorithm that does not involve progressive “improvement” of a guess
(e.9. Gauss Elimination, or Forward/Backward substitution when applicable)

Pros/Cons of direct methods :

+ No need to worry about how many iterations it will take (they “just” work ...)
+ In many cases they are capable of computing solutions to higher accuracy,
even for some “bad/problematic” matrices
- They require significant amounts of computation
(up to O(NS) for systems with N equations and N unknowns)

- Pre-computation often required, which is only amortized if solving for
many right-hand sides
72?7 Parallel Potential: Relatively easy to leverage for dense systems,
much more challenging for sparse systems.




Solving a dense or a sparse matrix?

Systems (Ax = b) where the matrix A is dense offer the most direct opportunity
for accelerated parallel computation
- Support in MKL provided through “LAPACK routines” (we will see next)
- Generally, matrices are given in row-major/column-major format
(With some modestly-space-saving variants we will discuss ...)
- Parallel optimizations follow the pattern we have seen in GEMM-style
operations (blocking, targeted vectorization, cache optimization)

Systems (Ax = b) where the matrix A is sparse offer the most highest impact,
since they can scale to many millions of equations relatively easily (as opposed
to dense methods that are rarely used beyond ~50,000 equations/unknowns)
- Support in MKL provided through the PARDISO library
(will visit briefly today, in more detail next lecture)
- Generally, matrices are given in CSR/CSC compressed format
- Parallel optimizations use highly advanced ideas and concepts,
with great degree of sophistication both in theory and parallel programming
(we will attempt to appreciate at least the “spirit” of such optimizations)
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LAPACK Linear Equation Computational Routines

Table "Computational Routines for Systems of Equations with Real Matrices" lists the LAPACK computational
routines for factorizing, equilibrating, and inverting real matrices, estimating their condition numbers, solving
systems of equations with real matrices, refining the solution, and estimating its error. Table "Computational
Routines for Systems of Equations with Complex Matrices" lists similar routines for complex matrices.

Computational Routines for Systems of Equations with Real Matrices

Matrix type, Factorize | Equilibrate Condition | Estimate
storage scheme matrix matrix number error

general ?getrf ?geequ, ?getrs ?7gecon ?gerfs, ?getri
?geequb ?gerfsx
general band ?gbtrf ?gbequ, ?gbtrs ?gbcon ?gbrfs,
?gbequb ?gbrfsx
general ?gttrf ?gttrs ?gtcon ?gtrfs
tridiagonal
diagonally ?dttrfb ?dttrsb
dominant
tridiagonal
symmetric ?potrf ?poequ, ?potrs ?pocon ?porfs, ?potri
positive-definite
?poequb ?porfsx
symmetric ?pptrf ?ppequ ?pptrs ?ppcon ?pprfs ?pptri
positive-definite,
packed storage
symmetric ?pftrf ?pftrs ?pftri
positive-definite,
RFP storage
symmetric ?pbtrf ?pbequ ?pbtrs ?pbcon ?pbrfs

positive-definite,
band
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LAPACK Linear Equation Computational Routines

Table "Computational Routines for Systems of Equations with Real Matrices" lists the LAPACK computational
routines for factorizing, equilibrating, and inverting real matrices, estimating their condition numbers, solving
systems of equations with real matrices, refining the solution, and estimating its error. Table "Computational
Routines for Systems of Equations with Complex Matrices" lists similar routines for complex matrices.

Computational Routines for Systems of Equations with Real Matrices

Matrix type, Factorize Equilibrate Condition Estimate
storage scheme matrix matrix number error

general ?getrf ?geequ, ?getrs ?7gecon ?gerfs, ?getri
?geequb ?gerfsx
general band ?gbtrf ?gbequ, ?gbtrs ?gbcon ?gbrfs,
?gbequb ?gbrfsx
general ?gttrf ?gttrs ?gtcon ?gtrfs
tridiagonal
diagonally ?dttrfb ?dttrsb
dominant
tridiagonal
symmetric ?potrf ?poequ, ?potrs ?pocon ?porfs, ?potri
positive-definite
?poequb ?porfsx
symmetric ?pptrf ?ppequ ?pptrs ?ppcon ?pprfs ?pptri
positive-definite,
packed storage
symmetric ?pftrf ?pftrs ?pftri
positive-definite,
RFP storage
symmetric ?pbtrf ?pbequ ?pbtrs ?pbcon ?pbrfs

positive-definite,
band
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Factorization Stage: Compute LU
A =PLU Factorization (or LU
“decomposition”)
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General matrices
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Factorization Stage: Compute LU
Factorization (or LU
“decomposition”)
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General matrices

S — S

aijp Q12 aiz Aai4

A_PLU A — az1 G22 d4d23 0G24

as;p asz2 ass asg4
a4q1 Q42 QA43 Q44

1 \ /Un Uz U13 U14\ (1 \

L = l21 1 U — U22 U23 U4 p_ 1
31 I3 1 U3z Usq 1

\ Lo Lz lag 1) \ U44/ \ 1 /

Lower-triangular factor
(“unitary” along the diagonal)

Upper-triangular factor Permutation matrix

CTTE—— ——r




. Factorization Stage: Compute LU
General matrices Factorization (or LU

JR— — “decomposition”)

. —

aijp Q12 aiz Aai4

A_PLU A — az1 G22 d4d23 0G24

as;p asz2 ass asg4
a4q1 Q42 QA43 Q44

/U11 Uiz U13 U14\ (1 \

o o1 u22 U23 U4 L 1
Aafter = lsp  lao  Uss  Usg P = !
\ lar lao la3 sy ) \ 1 /
Both factors returned in-place Returned as a vector

‘overwriting the input matrix (encoding the permutation)

L TTTEE—— e T




?getrf

Computes the LU factorization of a general m-by-n matrix.

Syntax

lapack int LAPACKE sgetrf (int matrix layout , lapack intm, lapack intn, float * a,
lapack int Ida, lapack int * ipiv);

lapack int LAPACKE dgetrf (int matrix layout , lapack intm, lapack int n, double * a,
lapack int Ida, lapack int * ipiv);

Description

The routine computes the LU factorization of a general m-by-n matrix A as
A = P*L*(,

where P is a permutation matrix, L is lower triangular with unit diagonal elements (lower trapezoidal if m > n)
and U is upper triangular (upper trapezoidal if m < n). The routine uses partial pivoting, with row interchanges.

NOTE
This routine supports the Progress Routine feature. See Progress Function for details.



Input Parameters

matrix layout Specifies whether matrix storage layout is row major
(LAPACK _ROW MAJOR) or column major (LAPACK COL MAJOR).

m The number of rows in the matrix A (m= 0).
n The number of columns in A; n> 0.
a Array, size at least max(1, 1da*n) for column-major layout or

max(1, 1da*m) for row-major layout. Contains the matrix A.

lda The leading dimension of array a, which must be at least max(1, m)
for column-major layout or max(1, n) for row-major layout.

Output Parameters

a Overwritten by L and U. The unit diagonal elements of L are not
stored.
ipiv Array, size at least max (1, min (m, n)).Contains the pivot

indices; for 1 <i< min (m, n),row i was interchanged with row
ipiv(i).



General matrices

Computational complexity : O(NS) arithmetic operations, O(N2) memory
- Uses very similar opportunities for parallelization as GEMM (e.q. blocking)
- Starts being compute-bound for matrix sizes exceeding approximately 1000




General matrices

Computational complexity : O(NS) arithmetic operations, O(N2) memory
- Uses very similar opportunities for parallelization as GEMM (e.q. blocking)
- Starts being compute-bound for matrix sizes exceeding approximately 1000
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V 1. Introduction

The GPU path of the cuSolver library assumes data is already in the device memory. It is the responsibility of the developer to allocate memory and to
copy data between GPU memory and CPU memory using standard CUDA runtime API routines, such as cudaMalloc(), cudaFree(),
cudaMemcpy () , and cudaMemcpyAsync() .

1.1. cuSolverDN: Dense
LAPACK

1.2. cuSolverSP: Sparse
LAPACK

1.3. cuSolverRF:
Refactorization

cuSolverMg is GPU-accelerated ScaLAPACK. By now, cuSolverMg supports 1-D column block cyclic layout and provides symmetric eigenvalue solver.

Note: The cuSolver library requires hardware with a CUDA compute capability (CC) of at least 2.0 or higher. Please see the CUDA C++ Programming
Guide for a list of the compute capabilities corresponding to all NVIDIA GPUs.

cuSolverDN: Dense LAPACK
The cuSolverDN library was designed to solve dense linear systems of the form

1.4. Naming Conventions

1.5. Asynchronous Execution

1.6. Library Property Ax=b
1.7. high precision package

> 2. Using the CUSOLVER API

> 3. Using the CUSOLVERMG API

> A. cuSolverRF Examples

D> B. CSR QR Batch Examples

> C. QR Examples

> D. LU Examples

D> E. Cholesky Examples

D> F. Examples of Dense Eigenvalue
Solver

where the coefficient matrix A € R nxn , right-hand-side vector b € R n and solution vector x e R n

The cuSolverDN library provides QR factorization and LU with partial pivoting to handle a general matrix A, which may be non-symmetric.

Cholesky factorization is also provided for symmetric/Hermitian matrices. For symmetric indefinite matrices, we provide Bunch-Kaufman (LDL)
factorization.

The cuSolverDN library also provides a helpful bidiagonalization routine and singular value decomposition (SVD).

The cuSolverDN library targets computationally-intensive and popular routines in LAPACK, and provides an APl compatible with LAPACK. The user
can accelerate these time-consuming routines with cuSolverDN and keep others in LAPACK without a major change to existing code.

>G. Examples of Singular Value cuSolverSP: Sparse LAPACK
S The cuSolverSP lib inly designed to a sol l t
> H. Examples of multiGPU e cuSolverSP library was mainly designed to a solve sparse linear system
eigenvalue solver
. . Ax=b
> I. Examples of multiGPU linear

solver



General matrices Solve Stage: Use LU decomposition
in triangular substitution steps
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A =PLU Ax=PLUx =D



General matrices Solve Stage: Use LU decomposition
in triangqular substitution steps

R — S

A =PLU Ax=PLUx =D

Pw =Db Solve for w by permuting elements of b




General matrices

S — B —

A =PLU
Pw =D
Lz =w

Solve Stage: Use LU decomposition
in triangular substitution steps

Ax =PLUx =b

Solve for z using forward substitution




General matrices

A =PLU
Pw =D
Lz =w
Ux =1z

Solve Stage: Use LU decomposition
in triangular substitution steps

Ax=PLUx=Db

Solve for x using backward substitution




7getrs

Solves a system of linear equations with an LU-factored square coefficient matrix, with multiple right-hand
sides.

Syntax

lapack int LAPACKE sgetrs (int matrix layout , char trans, lapack int n, lapack int
nrhs , const float * a, lapack int Ida, const lapack int * ipiv, float * b, lapack int
1db) ;

lapack int LAPACKE dgetrs (int matrix layout , char trans, lapack int n, lapack int
nrhs , const double * a, lapack int Ida, const lapack int * ipiv, double * b, lapack int
1db) ;

Description

The routine solves for X the following systems of linear equations:

A*X = B if trans="N",
AT*x = B if trans="T",
Afxx = B if trans="C" (for complex matrices only).

Before calling this routine, you must call 2getrf to compute the LU factorization of A.



Symmetric, positive definite matrices

Defining property
- (for any nonzero vector x)
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xTAx > 0




Symmetric, positive definite matrices

LU decomposition is replaced by
“Cholesky” factorization
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A = A s a symmetric matrix
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Symmetric, positive definite matrices

A =TLLT LU decomposition is replaced by
R “Cholesky” factorization

L TT— S

I, — lo1 o2 Only a single lower-triangular factor
[31 39 33 ~ (used twice, via transpose)




Symmetric, positive definite matrices

LU decomposition is replaced by
“Cholesky” factorization

—
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The factor L is returned in-place




?potrf

Computes the Cholesky factorization of a symmetric (Hermitian) positive-definite matrix.

Syntax

lapack int LAPACKE spotrf (int matrix layout , char uplo, lapack intn, float * a,
lapack int lda);

lapack int LAPACKE dpotrf (int matrix layout , char uplo, lapack int n, double * a,
lapack int Ida);

Description

The routine forms the Cholesky factorization of a symmetric positive-definite or, for complex data, Hermitian
positive-definite matrix A:

A = UT* uforrealdata, A = U”* Uforcomplex data if uplo="U"

A = L*LTforreal data, A = L*L” for complex data if uplo="L"

where L is a lower triangular matrix and U is upper triangular.



LAPACK Linear Equation Computational Routines

Table "Computational Routines for Systems of Equations with Real Matrices" lists the LAPACK computational
routines for factorizing, equilibrating, and inverting real matrices, estimating their condition numbers, solving
systems of equations with real matrices, refining the solution, and estimating its error. Table "Computational
Routines for Systems of Equations with Complex Matrices" lists similar routines for complex matrices.

Computational Routines for Systems of Equations with Real Matrices

Matrix type, Factorize Equilibrate Condition Estimate
storage scheme matrix matrix number error

general ?getrf ?geequ, ?getrs ?7gecon ?gerfs, ?getri
?geequb ?gerfsx
general band ?gbtrf ?gbequ, ?gbtrs ?gbcon ?gbrfs,
?gbequb ?gbrfsx
general ?gttrf ?gttrs ?gtcon ?gtrfs
tridiagonal
diagonally ?dttrfb ?dttrsb
dominant
tridiagonal
symmetric ?potrf ?poequ, ?potrs ?pocon ?porfs, ?potri
positive-definite
?poequb ?porfsx
symmetric ?pptrf ?ppequ ?pptrs ?ppcon ?pprfs ?pptri
positive-definite,
packed storage
symmetric ?pftrf ?pftrs ?pftri
positive-definite,
RFP storage
symmetric ?pbtrf ?pbequ ?pbtrs ?pbcon ?pbrfs

positive-definite,
band



Compact storage (RFP)




Compact storage (RFP)




Compact storage (RFP)




Compact storage (RFP)




LAPACK Linear Equation Computational Routines

Table "Computational Routines for Systems of Equations with Real Matrices" lists the LAPACK computational
routines for factorizing, equilibrating, and inverting real matrices, estimating their condition numbers, solving
systems of equations with real matrices, refining the solution, and estimating its error. Table "Computational
Routines for Systems of Equations with Complex Matrices" lists similar routines for complex matrices.

Computational Routines for Systems of Equations with Real Matrices

Matrix type, Factorize Equilibrate Condition Estimate
storage scheme matrix matrix number error

general ?getrf ?geequ, ?getrs ?7gecon ?gerfs, ?getri
?geequb ?gerfsx
general band ?gbtrf ?gbequ, ?gbtrs ?gbcon ?gbrfs,
?gbequb ?gbrfsx
general ?gttrf ?gttrs ?gtcon ?gtrfs
tridiagonal
diagonally ?dttrfb ?dttrsb
dominant
tridiagonal
symmetric ?potrf ?poequ, ?potrs ?pocon ?porfs, ?potri
positive-definite
?poequb ?porfsx
symmetric ?pptrf ?ppequ ?pptrs ?ppcon ?pprfs ?pptri
positive-definite,
packed storage
symmetric ?pftrf ?pftrs ?pftri
positive-definite,
RFP storage
symmetric ?pbtrf ?pbequ ?pbtrs ?pbcon ?pbrfs

positive-definite,
band



