Parallel Sparse Direct Solvers
Performance & design survey of MKL PARDISO

Recap

We did a walk-through of PARDISO, a solver library within Intel MIKL.
PARDISO facilitates the solution of linear systems Ax=b for which:

- The coefficient matrix A is sparse (as opposed to LAPACK and many
BLAS Level 3 routines that operate on dense matrices)

- The solver works for several different types of matrices, but is particularly
efficient for symmetric (and, ideally, positive definite) matrices for which
a factorization of A iIs computed once
(the “Cholesky” decomposition, when applicable)
and re-used at low-cost for solving with different right-hand-sides

- The solver is “direct”, in that it computes the entire solution without
the need for iteration

PARDISO operates on CSR-encoded matrices - same as we used before
(but when used with symmetric matrices expects to be given just “half” matrix)

Result of direct solver

A deeper look - Solver stages

PARDISO Phase 1 : Reorder the matrix to generate favorable properties
No numerical operations done in this stage - values of matrix entries don’t
matter, the only thing that matters is the sparsity pattern
(we’ll see what those “favorable properties” are)

SparseDirect/LaplacePARDISO_0_0

PARDISO solver (DirectSolver.cpp) T

¥

// Reordering and Symbolic Factorization. This step also allocates

// all memory that is necessary for the factorization

phase = 11;

PARDISO (pt, &maxfct, &mnum, &mtype, &phase, &n,
matrix.GetValues(), matrix.GetRowOffsets(), matrix.GetColumnIndices(),
&1dum, &nrhs, iparm, &msglvl, &ddum, &ddum, &error);

if (error '=0)
throw std::runtime_error("PARDISO error during symbolic factorization");

std::cout << "Reordering completed ... " << std::endl;
std::cout << "Number of nonzeros in factors = " << 1parm[1l7] << std::endl;
std::cout << "Number of factorization MFLOPS = " << 1iparm[18] << std::endl;

// Numerical factorization

phase = 22;

PARDISO (pt, &maxfct, &mnum, &mtype, &phase, &n,
matrix.GetValues(), matrix.GetRowOffsets(), matrix.GetColumnIndices(),
&idum, &nrhs, iparm, &msglvl, &ddum, &ddum, &error);

if (error '=0)
throw std: :runtime_error("PARDISO error during numerical factorization");

std::cout << "Factorization completed ... " << std::endl;

// Back substitution and iterative refinement

phase = 33;

iparm[7] = 0; // Max numbers of iterative refinement steps
PARDISO (pt, &maxfct, &mnum, &mtype, &phase, &n,

Laplacian - Initial equation ordering

—

Laplacian - Pattern after a possible reordering

A SN SN [] A .~ T i T

Execution:
Summary: (reordering phase)

Times

Time spent in calculations of symmetric matrix portrait (fulladj): 0.046880 s

Time spent in reordering of the initial matrix (reorder) : 1.529101 s

Time spent in symbolic factorization (symbfct) : 2.171409 s

Time spent 1in data preparations for factorization (parlist) : 0.202028 s

Time spent 1n allocation of internal data structures (malloc) : 0.498570 s

Time spent in additional calculations : 0.455895 s

Total time spent : 4.903884 s

Statistics:

Parallel Direct Factorization is running on 20 OpenMP

< Linear system Ax = b >
number of equations: 2097152 ,
number of non-zeros in A: 8050652 About 10% of overall runtime
number of non-zeros in A (%): 0.00018 (z‘yp/ca//y: at least that much)
number of right-hand sides: 1

< Factors L and U >
number of columns for each panel: 96
number of independent subgraphs: @

number of supernodes: 1409897
size of largest supernode: 16591
number of non-zeros 1in L: 2065304266
number of non-zeros in U: 1

number of non-zeros in L+U: 2005304267

Reordering completed ...
Number of nonzeros in factors = 2065304267
Number of factorlzatlon MFLOPS = 22854214

I MiI\W AL JVvV \(I .Frr--v-rr, Xt -\.«J P \Arlﬁv-wv—, Xy e

A deeper look - Solver stages

PARDISO Phase 1 : Reorder the matrix to generate favorable properties
No numerical operations done in this stage - values of matrix entries don’t
matter, the only thing that matters is the sparsity pattern
(we’ll see what those “favorable properties” are)

PARDISO Phase 2 : Perform the actual Cholesky Decomposition (factorization)
This is the computation-heavy part of the algorithm, and the most expensive
part of the execution, for typical (large) matrix sizes.

Note: In accordance with theory, the Cholesky factor L includes all of the
entries in the sparsity pattern of A in its own, plus some more
(hopefully as few as possible; reordering influences that)

Sparsity of Cholesky Factor (L) vs. Laplacian Matrix

| i-

el l‘

"'"'.;::,u-::al,.. o
it ‘213'.:..,.“;
T i TT
st ipntT |
T " 71 | i,
Ty

-
i -t"?!' :..:Q:E!

SparseDirect/LaplacePARDISO_0_0
DA Dlen QI\I\IQV‘ Inir‘at\'l'in\[ar f‘l"\h\ ——————————————————————————

Execution:
Summary: (factorization phase)

Time spent in copying matrix to internal data structure (A to LU) 0.000000 s

Time spent 1in factorization step (numfct) : 44 .352600 s
Time spent in allocation of internal data structures (malloc) 1 0.022322 s
Time spent 1in additional calculations : 0.000002 s
Total time spent : 44 .374928 s
Statistics:

Parallel Direct Factorization is running on 20 OpenMP

5 .
< Linear system A = b > About 90% of overall runtime

number of equations: 2097152 (sometimes less)
number of non-zeros in A: 8050652

number of non-zeros in A (%): 0.000183

number of right-hand sides: 1

< Factors L and U >
number of columns for each panel: 96
number of independent subgraphs: 0

number of supernodes: 1410153
size of largest supernode: 16591
number of non-zeros in L: 2057589566
number of non-zeros in U: 1

number of non-zeros in L+U: 2057589567

gflop for the numerical factorization: 22775.748047
gflop/s for the numerical factorization: 513.515503

Factorization completed ... Almost 25% of peak arithmetic utilization
PARDISO (pf{ &ma¥fct{>&mnum,_&mtype, &Qﬁase,A&n, —

Obstacles to performance & parallelism

Matrix Density : The number of required operations scale (super-linearly ...)
with the number of non-zero entries in L ... thus, ensuring sparser L factors
has an immediate effect on performance

Multithreading : Cholesky, similar to Gauss Elimination, is seemingly a
very “serial” algorithm (significant dependencies between steps/loops).
We must find some way to cope with this apparent limitation.

Consider Gauss Elimination ...

-~ TN
O

ae

aee

anns

aeEes

aseees

aasenes

aeaaaesen

saEsEasaEn
SoaEsaseaEen
SEoEESENEEs
SaEaEESEEsEEn

S aaEsEsEEn

oSS EEESEERES
aSaScEaEEEEEEER
eSS EEEEEEREE
SSsEaEEESEEEEEENEN
SeSsESESEESEEEERESE
SSSEaEEEEEEGEEEEEREE

SeSEESESEESEEEEEEEEES
N -

\We need to make all these entries zero ...

-~ TN
O

ae

aee

anns

aeEes

aseees

aasenes

aeaaaesen

saEsEasaEn
SoaEsaseaEen
SEoEESENEEs
SaEaEESEEsEEn

S aaEsEsEEn
oSS EEESEERES
aSaScEaEEEEEEER
eSS EEEEEEREE
SSsEaEEESEEEEEENEN
SeSsESESEESEEEERESE
T 1 I B N1
SeEsEaESEEEEEEEEEREE

... and then continue to the next column

-~ TN
O

ae

aee

anns

aeEes

aseees

aasenes

aeaaaesen

saEsEasaEn

SoaEsaseaEen
SEoEESENEEs
SaEaEESEEsEEn

S aaEsEsEEn

oSS EEESEERES
aSaScEaEEEEEEER
eSS EEEEEEREE
SSsEaEEESEEEEEENEN

I I T 1 N0 NI J)
e eEEEEEEEEEEENEE

/.
\

but we need to wait for
in principle)

(...

We can do each row of this operation
this column before moving to the next

in parallel ...

-~ TN
O

ae

aee

anns

aeEes

aseees

aasenes

aeaaaesen

saEsEasaEn
SoaEsaseaEen
SEoEESENEEs
SaEaEESEEsEEn

S aaEsEsEEn
oSS EEESEERES
aSaScEaEEEEEEER
eSS EEEEEEREE
SSsEaEEESEEEEEENEN
SeSsESESEESEEEERESE
T 1 I B N1
SeEsEaESEEEEEEEEEREE

Obstacles to performance & parallelism

Matrix Density : The number of required operations scale (super-linearly ...)
with the number of non-zero entries in L ... thus, ensuring sparser L factors
has an immediate effect on performance

Multithreading : Cholesky, similar to Gauss Elimination, is seemingly a
very “serial” algorithm (significant dependencies between steps/loops).
We must find some way to cope with this apparent limitation.

Vectorization/SIMD : Sparse matrices don’t have the regularity that SIMD
operations require; we need to “engineer” such requilarity if possible

Tasks that we would normally
consider candidates for SIMD
are not at all requilar ...

Engineering/Maximizing Sparsity

Sparsity pattern of A
(lower-triangular part only)

~ N
O

ol

aes

saea

SEEas

aeanes

SEaEeans

SaEsEnEn

SEnEEsEnEn
SoEnEEeENEn
SEEasaaEsaEns
SaEaesEEEaEn

[aea

s aes

aea aes
aaea aes
sanea aes
sSeaaes aea
SEaEaes saa

SEesEanEn aes
N~ -

Engineering/Maximizing Sparsity

Theory can prove that:
If there's a rectanqgular gap in the
sparsity pattern of A ...

~ N
O

ol

aes

saea

SEEas

aeanes

SEaEeans

SaEsEnEn

SEnEEsEnEn
SoEnEEeENEn
SEEasaaEsaEns
SaEaesEEEaEn

[aea

s aes

aea aes
aaea aes
sanea aes
sSeaaes aea
SEaEaes aes

SEesEanEn aes
N~ -

Engineering/Maximizing Sparsity

-
-
o
o O~
T < S
hpo
20>
QT »
c =9
al
S =8
W;NC
©
Oge
O L
& e =
_/._hl.m
vl N
O
88
LI
L X
IR LA
SEBEEN
SNEEEEN
SEEENEEn
LTI LRI R LI
S EEEEEED
SBEEEOEBEEEEN
S EESEEEEEN
(] LI
88 LI
B8 a L
LI L
TN LR (X
SEEEEN LI
TR IR LI LI
S EEn S8 0
N -

Engineering/Maximizing Sparsity

N
Be \
e
N
B 88
O O
SBEES
2 8 8 88
: s A sparse matrix A can have such gaps
O without being “dense” elsewhere ...
B 88
B 88
O an
O O
2 8 88
0 e 0
O e B0 88 O

v

Engineering/Maximizing Sparsity

[
\

... and the corresponding factor L
(even if it becomes denser away
from such gaps) does retain
these “holes” in its sparsity pattern

Parallel Sparse Direct Solvers
Performance & design survey of MKL PARDISO

Engineering/Maximizing Sparsity

Sparsity pattern of A
(lower-triangular part only)

~ N
O

ol

aes

saea

SEEas

aeanes

SEaEeans

SaEsEnEn

SEnEEsEnEn
SoEnEEeENEn
SEEasaaEsaEns
SaEaesEEEaEn

[aea

s aes

aea aes
aaea aes
sanea aes
sSeaaes aea
SEaEaes saa

SEesEanEn aes
N~ -

Engineering/Maximizing Sparsity

Theory can prove that:
If there's a rectanqgular gap in the
sparsity pattern of A ...

~ N
O

ol

aes

saea

SEEas

aeanes

SEaEeans

SaEsEnEn

SEnEEsEnEn
SoEnEEeENEn
SEEasaaEsaEns
SaEaesEEEaEn

[aea

s aes

aea aes
aaea aes
sanea aes
sSeaaes aea
SEaEaes aes

SEesEanEn aes
N~ -

Engineering/Maximizing Sparsity

-
-
o
o O~
T < S
hpo
20>
QT »
c =9
al
S =8
W;NC
©
Oge
O L
& e =
_/._hl.m
vl N
O
88
LI
L X
IR LA
SEBEEN
SNEEEEN
SEEENEEn
LTI LRI R LI
S EEEEEED
SBEEEOEBEEEEN
S EESEEEEEN
(] LI
88 LI
B8 a L
LI L
TN LR (X
SEEEEN LI
TR IR LI LI
S EEn S8 0
N -

Engineering/Maximizing Sparsity

N
Be \
e
N
B 88
O O
SBEES
2 8 8 88
: s A sparse matrix A can have such gaps
O without being “dense” elsewhere ...
B 88
B 88
O an
O O
2 8 88
0 e 0
O e B0 88 O

v

Engineering/Maximizing Sparsity

[
\

... and the corresponding factor L
(even if it becomes denser away
from such gaps) does retain
these “holes” in its sparsity pattern

/.

Engineering/Maximizing Sparsity

T

o —

~ N
O
as
as
s
)
e O
as
s
e [
s
as O
s O O
l
s
as
s B
as O
s B
] O O
s)

Engineering/Maximizing Sparsity

® O ® ®
® O ® ®
® @ @ ®
® ® ® ®
@ & @ @
~ N
O
as
]
s
)
e O
as
s
e [
s
as O
s O O
l
s
as
s B
as O
s B
as [)
s)
N— -

Engineering/Maximizing Sparsity

¢,
[[‘==.
\ ..) O -] O

Second benefit:

Cholesky can process each of these
two blocks in-parallel!

Laplacian - Pattern after a possible reordering

Laplacian - Pattern after a possible reordering

Laplacian - Pattern after a possible reordering

Laplacian - Pattern after a possible reordering

Laplacian - Pattern after a possible reordering

Sparsity of Cholesky Factor (L) vs. Laplacian Matrix

| i-

el l‘

"'"'.;::,u-::al,.. o
it ‘213'.:..,.“;
T i TT
st ipntT |
T " 71 | i,
Ty

-
i -t"?!' :..:Q:E!

Laplacian - Pattern after a possible reordering

These blocks, too, can be
processed in parallel

e

