Parallel Sparse Direct Solvers
Performance & design survey of MKL PARDISO
We did a walk-through of PARDISO, a solver library within Intel MKL. PARDISO facilitates the solution of linear systems $Ax=b$ for which:

- The coefficient matrix A is sparse (as opposed to LAPACK and many BLAS Level 3 routines that operate on dense matrices)

- The solver works for several different types of matrices, but is particularly efficient for symmetric (and, ideally, positive definite) matrices for which a factorization of A is computed once (the “Cholesky” decomposition, when applicable) and re-used at low-cost for solving with different right-hand-sides

- The solver is “direct”, in that it computes the entire solution without the need for iteration

PARDISO operates on CSR-encoded matrices - same as we used before (but when used with symmetric matrices expects to be given just “half” matrix)
Result of direct solver

SparseDirect/LaplacePARDISO_0_0
PARDISO Phase 1: Reorder the matrix to generate favorable properties. No numerical operations done in this stage - values of matrix entries don’t matter, the only thing that matters is the sparsity pattern (we’ll see what those “favorable properties” are).
error = 0; // Initialize error flag

// Initialize the internal solver memory pointer. This is only
// necessary for the FIRST call of the PARDISO solver
for (i = 0; i < 64; i++)
{
pt[i] = 0;
}

// Reordering and Symbolic Factorization. This step also allocates
// all memory that is necessary for the factorization
phase = 11;
PARDISO (pt, &maxfct, &mnum, &mtype, &phase, &n,
 &idum, &nrhs, iparm, &msglvl, &ddum, &ddum, &error);
if (error != 0)
 throw std::runtime_error("PARDISO error during symbolic factorization");

std::cout << "Reordering completed ... " << std::endl;
std::cout << "Number of nonzeros in factors = " << iparm[17] << std::endl;
std::cout << "Number of factorization MFLOPS = " << iparm[18] << std::endl;

// Numerical factorization
phase = 22;
PARDISO (pt, &maxfct, &mnum, &mtype, &phase, &n,
 &idum, &nrhs, iparm, &msglvl, &ddum, &ddum, &error);
if (error != 0)
 throw std::runtime_error("PARDISO error during numerical factorization");

std::cout << "Factorization completed ... " << std::endl;

// Back substitution and iterative refinement
phase = 33;
iparm[7] = 0; // Max numbers of iterative refinement steps
PARDISO (pt, &maxfct, &mnum, &mtype, &phase, &n,
 &idum, &nrhs, iparm, &msglvl, &ddum, &ddum, &error);
if (error != 0)
 throw std::runtime_error("PARDISO error during back substitution and iterative refinement");
Laplacian - Initial equation ordering

\[
\begin{pmatrix}
-6 & 1 & 1 & 1 \\
1 & -6 & 1 & 1 \\
1 & -6 & 1 & 1 \\
& & & \ddots \\
1 & & & & 1 \\
& & & & 1 \\
1 & & & & 1 \\
& & & & 1 \\
& & & & 1 \\
& & & & 1 \\
1 & 1 & 1 & -6 & 1 \\
1 & 1 & 1 & -6 & 1 \\
& & & & 1 \\
\end{pmatrix}
\begin{pmatrix}
\vdots \\
\end{pmatrix} = \mathbf{b}
\]
Laplacian - Pattern after a possible reordering
error = 0; // Initialize error flag

// Initialize the internal solver memory pointer. This is only
// necessary for the FIRST call of the PARDISO solver

for (i = 0; i < 64; i++)
{
 pt[i] = 0;
}

// Reordering and Symbolic Factorization. This step also allocates
// all memory that is necessary for the factorization

phase = 11;
PARDISO (pt, &maxfct, &mnum, &mtype, &phase, &n,
 &idum, &nrhs, iparm, &msglvl, &ddum, &ddum, &error);
if (error != 0)
 throw std::runtime_error("PARDISO error during symbolic factorization");
std::cout << "Reordering completed ... " << std::endl;
std::cout << "Number of nonzeros in factors = " << iparm[17] << std::endl;
std::cout << "Number of factorization MFLOPS = " << iparm[18] << std::endl;

// Numerical factorization

phase = 22;
PARDISO (pt, &maxfct, &mnum, &mtype, &phase, &n,
 &idum, &nrhs, iparm, &msglvl, &ddum, &ddum, &error);
if (error != 0)
 throw std::runtime_error("PARDISO error during numerical factorization");
std::cout << "Factorization completed ... " << std::endl;

// Back substitution and iterative refinement

phase = 33;
iparm[7] = 0; // Max numbers of iterative refinement steps
PARDISO (pt, &maxfct, &mnum, &mtype, &phase, &n,
 &idum, &nrhs, iparm, &msglvl, &ddum, &ddum, &error);

Parallel Direct Factorization is running on 20 OpenMP
< Linear system Ax = b >
 number of equations: 2097152
 number of non-zeros in A: 8050652
 number of non-zeros in A (%): 0.00018
 number of right-hand sides: 1

< Factors L and U >
 number of columns for each panel: 96
 number of independent subgraphs: 0
 number of supernodes: 1409897
 size of largest supernode: 16591
 number of non-zeros in L: 2065304266
 number of non-zeros in U: 1
 number of non-zeros in L+U: 2065304267

Reordering completed ...
Number of nonzeros in factors = 2065304267
Number of factorization MFLOPS = 22854214

About 10% of overall runtime
(typically: at least that much)
A deeper look - Solver stages

PARDISO Phase 1: Reorder the matrix to generate favorable properties. No numerical operations done in this stage - values of matrix entries don't matter, the only thing that matters is the sparsity pattern (we'll see what those “favorable properties” are).

PARDISO Phase 2: Perform the actual Cholesky Decomposition (factorization). This is the computation-heavy part of the algorithm, and the most expensive part of the execution, for typical (large) matrix sizes.

Note: In accordance with theory, the Cholesky factor L includes all of the entries in the sparsity pattern of A in its own, plus some more (hopefully as few as possible; reordering influences that).
Sparsity of Cholesky Factor (L) vs. Laplacian Matrix
error = 0; // Initialize error flag

// Initialize the internal solver memory pointer. This is only
// necessary for the FIRST call of the PARDISO solver
for (i = 0; i < 64; i++)
{
 pt[i] = 0;
}

// Reordering and Symbolic Factorization. This step also allocates
// all memory that is necessary for the factorization
phase = 11;
PARDISO (pt, &maxfct, &mnum, &mtype, &phase, &n,
&idum, &nrhs, iparm, &msglvl, &ddum, &ddum, &error);
if (error != 0)
 throw std::runtime_error("PARDISO error during symbolic factorization");
std::cout << "Reordering completed ... " << std::endl;
std::cout << "Number of nonzeros in factors = " << iparm[17] << std::endl;
std::cout << "Number of factorization MFLOPS = " << iparm[18] << std::endl;

// Numerical factorization
phase = 22;
PARDISO (pt, &maxfct, &mnum, &mtype, &phase, &n,
&idum, &nrhs, iparm, &msglvl, &ddum, &ddum, &error);
if (error != 0)
 throw std::runtime_error("PARDISO error during numerical factorization");
std::cout << "Factorization completed ... " << std::endl;

// Back substitution and iterative refinement
phase = 33;
iparm[7] = 0; // Max numbers of iterative refinement steps
PARDISO (pt, &maxfct, &mnum, &mtype, &phase, &n,
PARDISO solver (DirectSolver.cpp)
SparseDirect/LaplacePARDISO_0_0
Summary: (factorization phase)
=======
Time spent in copying matrix to internal data structure (A to LU): 0.000000 s
Time spent in factorization step (numfct) : 44.352600 s
Time spent in allocation of internal data structures (malloc) : 0.022322 s
Time spent in additional calculations : 0.000002 s
Total time spent : 44.374928 s
Statistics:
============
Parallel Direct Factorization is running on 20 OpenMP
< Linear system Ax = b >
 number of equations: 2097152
 number of non-zeros in A: 8050652
 number of non-zeros in A (%): 0.000183
 number of right-hand sides: 1
< Factors L and U >
 number of columns for each panel: 96
 number of supernodes: 1410153
 size of largest supernode: 16591
 number of non-zeros in L: 2057589566
 number of non-zeros in U: 1
 number of non-zeros in L+U: 2057589567
 gflop for the numerical factorization: 22775.748047
 gflop/s for the numerical factorization: 513.515503
Factorization completed ...
Obstacles to performance & parallelism

Matrix Density: The number of required operations scale (super-linearly ...) with the number of non-zero entries in \(L \) ... thus, ensuring sparser \(L \) factors has an immediate effect on performance.

Multithreading: Cholesky, similar to Gauss Elimination, is seemingly a very “serial” algorithm (significant dependencies between steps/loops). We must find some way to cope with this apparent limitation.
Consider Gauss Elimination …
We need to make all these entries zero …
... and then continue to the next column
We can do each row of this operation in parallel … but we need to wait for this column before moving to the next (... in principle)
Obstacles to performance & parallelism

Matrix Density: The number of required operations scale (super-linearly ...) with the number of non-zero entries in L. Thus, ensuring sparser L factors has an immediate effect on performance.

Multithreading: Cholesky, similar to Gauss Elimination, is seemingly a very “serial” algorithm (significant dependencies between steps/loops). We must find some way to cope with this apparent limitation.

Vectorization/SIMD: Sparse matrices don’t have the regularity that SIMD operations require; we need to “engineer” such regularity if possible.
Tasks that we would normally consider candidates for SIMD are not at all regular …
Engineering/Maximizing Sparsity

Sparsity pattern of A
(lower-triangular part only)
Theory can prove that:
If there’s a rectangular gap in the sparsity pattern of A ...
Theory can prove that:
… that gap will also be present in the Cholesky factor L.
A sparse matrix \mathbf{A} can have such gaps without being “dense” elsewhere …
... and the corresponding factor L (even if it becomes denser away from such gaps) does retain these “holes” in its sparsity pattern.
Parallel Sparse Direct Solvers
Performance & design survey of MKL PARDISO
Engineering/Maximizing Sparsity

Sparsity pattern of A
(lower-triangular part only)
Engineering/Maximizing Sparsity

Theory can prove that:
If there’s a rectangular gap in the sparsity pattern of A ...
Theory can prove that:
... that gap will also be present in the Cholesky factor L.

Engineering/Maximizing Sparsity
Engineering/Maximizing Sparsity

A sparse matrix \mathbf{A} can have such gaps without being “dense” elsewhere …
... and the corresponding factor L (even if it becomes denser away from such gaps) does retain these “holes” in its sparsity pattern.
Engineering/Maximizing Sparsity
Engineering/Maximizing Sparsity
Second benefit: Cholesky can process each of these two blocks in-parallel!
Laplacian - Pattern after a possible reordering
Sparsity of Cholesky Factor (L) vs. Laplacian Matrix
Laplacian - Pattern after a possible reordering

These blocks, too, can be processed in parallel.