
Welcome to CS639! 
Undergraduate Topics In Computing:   
Parallel and Throughput-Optimized Programming
Spring 2020, 2:30-3:45 Tue/Thu



Today’s lecture

• Introduce the content and motivation for this class

• What is the technological context?

• Why care about optimized parallel programming?

• What methods and applications will we target?

• Discuss class logistics, expected work from students, 
prerequisites, grading and instructional support

• A few samples of throughput-conscious applications

• Get a first sample of the type of questions we will 
be addressing, and our design/evaluation philosophy



About the instructor

• Education

• BSc CS (’00), BSc Math (’02) - Univ of Crete, Greece

• PhD Computer Science (’07) - Stanford

• PostDoc CS & Applied Math (07-10) - UCLA

• At UW since early 2011

• Classes taught:

• Undergrad : Computer Graphics,  
   Intro to Numerical Methods (and now this class!)

• Graduate :  Advanced Computer Graphics,  
   Physics-Based Modeling & Simulation



About the instructor

• Research Interests

• Physics-Based Modeling

• Digital Humans

• Visual Simulation  
(natural phenomena)

• Biomechanics

• Visual effects

• Fast math (in general)

• Current Company affiliations

• Weta Digital, Disney Research|Studios



About the instructor

• Research Interests 
 
 
 
 
 
 
 
 
 
 
 
(we’ll talk about some of these later)  



Motivation for this class

• Modern computers have vastly higher performance potential

• Modern desktop vs. 2010’s cluster

• $30k Server today vs.  
2012-era supercomputer

• Drastically improved opportunities 
for high-performance computation

• Performance potential vs. guarantee

• Programming such platforms is much more intricate 
(you need to be very conscious of platform quirks)

• Accelerating legacy algorithms is highly nontrivial

• Hardware and APIs becoming more specialized



Motivation for this class

• Should you care? 
(i.e. is this your problem to figure out?)

• Everybody cares about performance and scalability 
(better productivity, improved capabilities, improved user 
experience)

• If you are a developer of a performance-sensitive software 
library or application, chances are you should care 
(too much performance left on the table if you don’t)

• If you are predominantly a user of optimized APIs and 
software libraries, you might not need to get hand dirty …  
… still a valuable skill to be able to understand what a 
modern platform should be able to do for you  
(even if somebody else implements it)



Motivating Applications

• What motivated your instructor to offer this class?  
(although somewhat “outside” my core research area …)

• A distillation of lessons learned through nearly 20 years of 
development of scale/performance-sensitive applications

• (Selfish reason) The skills that I wish new students working 
for me could easily obtain through a formal class

• In the new era of parallel computing (post-Moore’s law) 
performance advances require buy-in from application 
specialists vs. just better compilers & hardware  
(this is shaping to be a near-consensus view …)
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Tech concatenation, or symbiotic interplay?

Conceptual  
Phenomenon

Visual 
Content

Quantitative 
modeling 

(e.g. continuous 
PDE)

Discretization

Geometrical  
modeling

Data structures

Numerical 
algorithms

Algorithmic 
accelerations

Hardware 
optimization

Software engineering, programming models, computation delivery ...
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Performance : Incremental benefit or critical feature?
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able future, so that CMPs capable of executing applications tens of
times faster than today’s uniprocessors are on the horizon. Such
CMPs would provide exactly the acceleration opportunity needed
for production-quality physical simulation applications.
However, for an application to harness the computation power

of such a CMP, it must effectively utilize multiple threads. Paral-
lelization of a large code base as used by production-quality physi-
cal simulation applications is not trivial, especially when the target
parallel scalability is tens of threads.
Our contributions are:

1. We have parallelized three state-of-the-art real-world production-
quality physics applications that represent and span the phys-
ical simulation problem space: fluid dynamics [4], human
face animation [11, 12, 15], and cloth simulation [1, 2]. Our
parallelization goal was to achieve performance scaling up to
at least 64 threads.

2. We provide a detailed characterization of the key modules
of our applications using real-world inputs via simulation of
a CMP with 64 cores. Our characterization focuses on the
parallel behavior of the applications, including their parallel
scalability and synchronization behavior. We also examine
their memory behavior, including the working sets and inter-
thread communication. Our key findings are:

The modules have parallel scaling on 64 threads of at least
23x. Our modules see significant performance benefits with an in-
creasing number of threads up to at least 64 threads. We expect
even higher performance on 128 threads or beyond for all but one
module. For the portions of the applications covered by the key
modules, we achieve parallel scaling on 64 cores of 45x, 50x, and
30x for fluid, face, and cloth simulations, respectively.
Most modules are parallelized via data-level parallelism. For

most modules, the primary data structures are a representation of
the physical system being simulated. The modules typically per-
form their computation by iterating over the data structures. To
parallelize these modules, we partition the data structure (i.e., split
the loop), with each partition defining a parallel task. Some of these
modules are not purely data parallel and require locking along par-
tition boundaries. For others, we replicate data around partition
boundaries to avoid locking.
The best serial algorithm does not always lead to the best par-

allel algorithm. While the initial implementation of a key module
in fluid simulation used one algorithm, our best parallelization of
the module uses an alternative algorithm. The alternative is 57%
slower when serial, but has significantly more thread-level paral-
lelism, and so is 116% faster with 64 threads.
Somemodules are dominated by small parallel regions. These

regions are entered often enough to account for a large portion
of the applications’ execution time, so their scalability is impor-
tant. However, being small makes these modules sensitive to task
scheduling overheads and barrier cost.
Load imbalance reduces parallel scaling for many modules.

9 of our 14 modules have more than 10% load imbalance when run
with 64 threads. This is due to variance in task size and too few
tasks. The modules that suffer from load imbalance would incur
significant overheads (e.g., redundant computation) to increase the
number of tasks — we believe we have chosen reasonable tradeoffs
between load imbalance and parallelization overhead.
Two modules have high parallelization overhead from lock-

ing. These modules use locking to protect small operations in a
tight loop, leading to high parallelization overhead (>60%). How-
ever, the locks have little contention, so this does not impact parallel
scalability.

Few modules have high inherent inter-thread communica-
tion. While six modules have a large fraction of their L1 misses
to shared data, false sharing is the source for two of those, and
barrier synchronization is the source for another two. The lack of
inter-thread communication is largely intentional, since we a priori
assumed it would limit scalability (in many cases we avoid it with
redundant computation).
Most modules are streaming. Many of the modules perform

numerical operations on vectors, matrices, and/or elements in a spa-
tial representation of the problem (i.e., a grid or mesh). This leads
to a streaming access pattern. Some modules repeatedly stream
over their data structures (e.g., iterative solvers), leading to a large
amount of temporal locality. In those cases, the last-level per-
thread working set size also decreases with an increasing number
of threads, due to our use of partitioning for parallelization.
Some modules have high on-die and off-die bandwidth us-

age. Many of the streaming modules also perform relatively little
computation per element per invocation or iteration. This results in
high bandwidth usage. Five modules have on-die communication-
to-computation ratios of at least one byte per ALU operation, and
three have off-die ratios exceeding 0.5 bytes per ALU operation.
Since CMPs have a large number of threads sharing both the on-
die and off-die interconnects, those must provide high bandwidth
or this will limit the scalability of these applications.

2. APPLICATIONS
Our applications are derived from the physical simulation pack-

age called PhysBAM, developed at Stanford [9]. The package in-
cludes techniques for solving a variety of physics-based modeling
problems such as fluids, rigid bodies, and deformable solids. The
code base has more than 150,000 lines of code. It has not been
hand-coded with single-instruction-multiple-data (SIMD) instruc-
tions.
We have chosen to study three physical simulation applications

that are representative of and span the space of physics-based com-
puter animation: computational fluid dynamics using a particle level-
set method, facial simulation using the finite element method, and
cloth simulation using a mass-spring system. Each is representa-
tive of the state-of-the-art in its respective domain. Figure 1 shows
example output frames from the applications, using the real-world
inputs that we use in this study. Face and cloth simulation include
similar collision detection modules. For cloth simulation, collision
detection is a key part of the application. However, for face simu-
lation it is only a minor part of the application, and is significantly
simpler computationally than for cloth simulation. Therefore, we
disable the collision detection part of face simulation.
The applications we study are thematically similar to other nu-

merical computing and physical simulation codes from popular bench-
mark suites such as SPLASH-2 [17] and SPEC CPU2006 [13].
However, our target applications are quite different in scope and
context from these other codes. This leads to fundamentally differ-
ent domains, governing equations, algorithms, and computational
behavior. The unique requirements of a special effects production
environment typically dictate specific choices of theoretical and al-
gorithmic formulations which substantially limit the overlap with
other implementations of numerical computing techniques.
We next describe each of our applications.

2.1 Fluid Simulation
Simulated water volumes are key elements in an increasing num-

ber of feature films, making fluid simulation (a.k.a., computational
fluids dynamics, or CFD) very common in the special effects indus-
try today. Our fluid simulation application uses the incompressible
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Figure 7: On-die data traffic shown as bytes per ALU operation. The traffic is broken down into usefully prefetched data, uselessly
prefetched data, and data from demand accesses (includes writebacks).

all modules, the hardware prefetcher creates little useless prefetch
traffic. The figure also shows that for the modules with high band-
width requirements (except for HI), most of the data communica-
tion is from useful prefetches.
Our hardware stride prefetcher is most effective for modules with

high spatial locality and predictable access patterns. Therefore,
modules that touch large structures in a streaming manner will ben-
efit most. Many of our modules have a streaming access pattern;
therefore, most modules with the highest bandwidth usage also see
the highest fraction of their data successfully prefetched.

Memory Traffic. Figure 8 shows the data traffic between the shared
L2 and main memory, as a communication-to-computation ratio,
separated into reads and writes.5
The off-die memory traffic for the modules follows similar pat-

terns as for on-die traffic. The off-die communication-to-computation
ratios are very insensitive to the number of threads because inter-
thread communication is on-die, not off-die, and because there is
limited constructive and destructive sharing in these modules.6
PCG, CG-face, and AF have high off-die bandwidth usage in ad-

dition to the previously discussed high on-die bandwidth usage. On
the other hand, CG-cloth has extremely low off-die bandwidth us-
age because the entire data set for this iterative module fits in the
L2 cache. CL and FSM see a similar effect. Also, the off-die band-
width usage for HI is dramatically lower than the on-die because
most of its on-die traffic is related to inter-thread communication.
The off-die bandwidth usage of some of the modules is so high,

especially for PCG, that it is likely to limit parallel scalability on
most current and near-future systems. On our simulated system,
assuming a 3GHz clock, PCG uses an average of 64GB/s of main
memory bandwidth for 64 threads. The average bandwidth usage
for each of the applications is significantly lower than the peak
bandwidth usage. However, the scaling of a worst-case module can
limit the scaling of an entire application if insufficient bandwidth is
available.

7.3 Data Sharing
Figure 9 shows the on-die data communication-to-computation

ratios broken down into four components: non-shared reads from
the L2 to an L1, shared reads from the L2 to an L1, cache-to-cache

5Dirty data left in the L2 at the end of each module is not counted as being written
back to memory.
6Constructive sharing is when a thread brings a line into a shared cache and is sub-
sequently used by another thread; this can greatly reduce off-die traffic. Destructive
sharing is when two or more threads are contending for the same set in a cache — this
results in additional conflict misses.

transfers, and writes from an L1 to the L2. We distinguish between
shared and non-shared reads from by examining the sharing vec-
tor on every L2 access — if another L1 has its sharing bit set, we
classify the access as shared, otherwise, non-shared.
Many of the modules are dominated by non-shared reads from

the L2 and writes to the L2, indicating little data sharing. This
is expected, since most modules partition their primary data struc-
tures, and each partition is touched by only one thread. However,
six modules have large fractions of their traffic from shared data
(CL, FSM, PCG, CG-cloth, AF, and HI). There are three primary
sources for the data sharing in these modules.
First, PCG and FSM have true inter-thread communication due

to differences in partitioning across parallel sections. That is, these
modules contain multiple parallel sections, and do not partition
their data consistently across all sections. Therefore, in some sec-
tions an element will belong to thread A’s partition, while in others
it will belong to thread B’s. FSM has additional sharing since in
its largest section multiple threads may simultaneously operate on
a given partition.
Second, CL, FSM, and HI exhibit significant false sharing. CL

and FSM update a 3D array partitioned into cubes. Cube bound-
aries may not be aligned on cache line boundaries, triggering false
sharing. HI keeps some per-task state laid out in a 1D array. Up-
dates to this state trigger false sharing.7
Third, CG-cloth and AF have very small parallel regions (see Ta-

ble 2). The barrier cost is significant for these modules when the
number of threads is large. Accesses to the shared variables asso-
ciated with the barriers grows with the number of threads, quickly
becoming a large fraction of the on-die traffic. CG-face simula-
tion, UPBS-cloth, and CPL have similar patterns, but they are less
pronounced since their parallel regions are larger.

8. CONCLUSIONS
We have studied a set of applications that span the important

emerging workload domain of physical simulation for computer an-
imation and visual effects: fluid, face, and cloth simulation. These
are all computationally demanding, and therefore can benefit from
large speedups. To provide these speedups, we parallelized these
applications for a large-scale CMP. We cover code that accounts
for at least 96% of the serial execution time for all three applica-
tions, and identified that at least 99.9% of the time is parallelizable
with reasonable effort. We identified and characterized the most
important modules in each application.

7This false sharing does not impact performance significantly, so we did not alter the
data structure.

Performance potential: The rant begins ...



“My serial implementation of algorithm X on machine Y ran in Z seconds. 
When I parallelized my code, I got a speedup of 15x on 16 cores ...”

Well-intended evaluation practices ...

“... when I ported my implementation to CUDA, this numerical solver 
ran 200 times faster than my original MATLAB code ...”

... are sometimes abused like this: 

(frequent culprit: flawed understanding of how the 
computing platform works @ low level)

Are we pursuing the right efficiency? RANT ALERT!



Watch for warning signs:
• Speedup across platforms grossly exceeding specification ratios

• e.g. NVIDIA Titan RTX vs. Intel Cascade Lake Xeon
• Relative (peak) specifications : 

• GPU has about 3x higher (peak) compute capacity
• GPU has about 8x higher (peak) memory bandwidth

• Significantly higher speedups likely indicate:
• Different implementations on the 2 platforms
• Baseline code was not optimal/parallel enough

• “Standard” parallelization yields linear speedups on many cores
• [Good case] Implementation is CPU-bound
• [Bad case] Implementation is CPU-wasteful

Are we pursuing the right efficiency? RANT ALERT!



Watch for warning signs:
• Speedup across platforms grossly exceeding specification ratios

• e.g. NVIDIA Titan RTX vs. Intel Cascade Lake Xeon
• Relative (peak) specifications : 

• GPU has about 6x higher (peak) compute capacity
• GPU has about 4x higher (peak) memory bandwidth

• Significantly higher speedups likely indicate:
• Different implementations on the 2 platforms
• Baseline code was not optimal/parallel enough

• “Standard” parallelization yields linear speedups on many cores
• [Good case] Implementation is CPU-bound
• [Bad case] Implementation is CPU-wasteful

Are we pursuing the right efficiency? RANT ALERT!
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Watch for warning signs:
• Speedup across platforms grossly exceeding specification ratios

• e.g. NVIDIA Titan RTX vs. Intel Cascade Lake Xeon
• Relative (peak) specifications : 

• GPU has about 6x higher (peak) compute capacity
• GPU has about 4x higher (peak) memory bandwidth

• Significantly higher speedups likely indicate:
• Different implementations on the 2 platforms
• Baseline code was not optimal/parallel enough

• “Standard” parallelization yields linear speedups on many cores
• [Reasonable scenario] Implementation is CPU-bound
• [Problematic scenario] Implementation is CPU-wasteful

Are we pursuing the right efficiency? RANT ALERT!



“ ... after optimizing my code, the runtime is about 5x slower than the 
best possible performance that I could expect from this machine ...”

A different perspective ...

... i.e. 20% of maximum theoretical 
efficiency!

Challenge : How can we tell how fast 
the best implementation could have 

been? 
(without implementing it ...)

Are we pursuing the right efficiency? RANT ALERT!



Example : Solving the quadratic equation ax2 + bx+ c = 0

What is the minimum amount of time needed to solve this?

“We cannot solve this faster than the time 
needed to read a,b,c and write x”

Data access cost bound 

“We cannot solve this faster than the time 
needed evaluate the polynomial, for given 

values of a,b,c and x” 
(i.e. 2 ADDs, 2 MULTs plus data access)

Solution verification 
bound  

Equivalent operation 
bound   “We cannot solve this faster than the time 

it takes to compute a square root”

Are we pursuing the right efficiency? RANT ALERT!



What about linear systems of equations?

It is theoretically possible to compute the 
solution to a linear system (with certain 

properties) with a cost comparable to 10x the 
cost of verifying that a given value x is an 

actual solution

“Textbook Efficiency”  
(for certain types 

of problems)

Ax = b

It is theoretically possible to compute the 
solution to a linear system at 10x the cost of 
computing the r=b-Ax and verifying that r=0... or ...

Are we pursuing the right efficiency? RANT ALERT!



Scope of Class

• Narrower platform/API focus for this semester

• Single-chassis multiprocessors 
(but substantial similarity to GPU programming)

• Will not focus on distributed or highly heterogeneous 
programming (e.g. MPI) 



Scope of Class

• Technical topics

• Multithreaded programming; Synchronization; Using the 
OpenMP API

• Instruction Level Parallelism; Vectorization and challenges; SIMD 
intrinsics

• Memory hierarchy and its implications; Caches; Virtual Memory

• Assessing efficiency, predicting parallel potential, and 
benchmarking performance

• Understanding the role of compute and/or memory throughput 
as a limiting factor of performance

• Optimizing data structures for target architecture; Memory 
allocation and management



Scope of Class

• Application focus

• Sparse linear algebra; Matrix representations; Iterative solvers 
for sparse systems

• Dense linear algebra; Matrix/Vector operations; Matrix 
Factorizations; Using the MKL library

• Grid and stencil computations; Convolutions and their use in 
neural networks

• Fourier transforms; Eigenvalue problems; PCA and Singular Value 
Decomposition

• Optimization methods; Least-squares and approximation; 
Descent methods



Course logistics

• Location : Grainger Hall 2080

• 3 credits 

• Class meets : TTh 2:30pm - 3:45pm

• Office hours (by instructor) - CS6387  
Mondays 11:00am - 11:45am 
Wednesdays 1:15pm - 2:00pm (starting Jan 29th)  
Fridays : 4:15pm - 5:00pm (starting Jan 24th)

• Friday slot will likely transform into an in-class  
review/help session within a couple weeks 
(location to be announced - in CS building)



Course information

• Piazza

• Signup link : http://piazza.com/wisc/spring2020/cs639

• Class link : piazza.com/wisc/spring2020/cs639/home

• Email the instructor if you are have issues enrolling

• Email : sifakis@cs.wisc.edu

• Please add “[CS639]” in the beginning of the subject line!

• Email policy : Feel free to email as frequently as you need. 
Typically you will receive a response within 24hrs. However, be 
prepared to wait until next office hours (worst case) to get a 
comprehensive answer. If urgent, ask for an appointment.

http://piazza.com/wisc/spring2020/cs639
http://piazza.com/wisc/spring2020/cs639/home
mailto:sifakis@cs.wisc.edu


Evaluation

• Grading

• 60% - Regular Programming Assignments

• 15% - Optional Midterm - Friday March 6th, 7:15-9:15pm

• 25% - Final Exam

• Midterm grade will only count if greater than final exam. 
Otherwise the final exam will count for 40%

• There may be opportunities for bonus credit, for example:

• Assistance with class infrastructure

• Scribing lecture notes

• Strong and helpful presence on Piazza



Prerequisites

Prerequisites not strictly enforced in this first offering, but ...

• You should be comfortable with programming in the C language

• CS354, or equivalent, is strongly encouraged. Talk to the instructor if 
you’re not sure of your background/preparation in C programming.

• You should be comfortable with debugging applications in C, using version 
control systems (e.g. Git, Mercurial, SVN), and simple build systems (e.g. 
Make/CMake). Some resources will be provided to help.

• We will review relevant APIs (e.g. OpenMP) in class.

• Case studies and application topics will be mostly from scientific computing

• Familiarity with basic linear algebra will be useful (but not essential)



Welcome to CS639! 
Undergraduate Topics In Computing:   
Parallel and Throughput-Optimized Programming
Spring 2020, 2:30-3:45 Tue/Thu


