Parallel Sparse Direct Solvers
Performance & design of MKL PARDISO (wrap-up)
+ A few concluding notes on memory prefetching



Sparse Factorizations:
Obstacles to performance & parallelism

Matrix Density : The number of required operations scale (super-linearly ...)
with the number of non-zero entries in L ... thus, ensuring sparser L factors
has an immediate effect on performance

Multithreading : Cholesky, similar to Gauss Elimination, is seemingly a
very “serial” algorithm (significant dependencies between steps/loops).
We must find some way to cope with this apparent limitation.




SparseDirect/LaplacePARDISO_0_0
DA Dlen QI\I\IQV‘ Inir‘at\'l'in\[ar f‘l"\h\ ——————————————————————————

Execution:
Summary: ( factorization phase )

Time spent in copying matrix to internal data structure (A to LU) 0.000000 s

Time spent 1in factorization step (numfct) : 44 .352600 s
Time spent in allocation of internal data structures (malloc) 1 0.022322 s
Time spent 1in additional calculations : 0.000002 s
Total time spent : 44 .374928 s
Statistics:

Parallel Direct Factorization is running on 20 OpenMP

5 .
< Linear system A = b > About 90% of overall runtime

number of equations: 2097152 (sometimes less)
number of non-zeros in A: 8050652

number of non-zeros in A (%): 0.000183

number of right-hand sides: 1

< Factors L and U >
number of columns for each panel: 96
number of independent subgraphs: 0

number of supernodes: 1410153
size of largest supernode: 16591
number of non-zeros in L: 2057589566
number of non-zeros in U: 1

number of non-zeros in L+U: 2057589567

gflop for the numerical factorization: 22775.748047
gflop/s for the numerical factorization: 513.515503

Factorization completed ... Almost 25% of peak arithmetic utilization
PARDISO (pf{ &ma¥fct{>&mnum,_&mtype, &Qﬁase,A&n, —




Engineering/Maximizing Sparsity




Engineering/Maximizing Sparsity

T

o —

~ N
O
as
as
s
)
e O
as
s
e [
s
as O
s O O
l
s
as
s B
as O
s B
] O O
s )




Engineering/Maximizing Sparsity

® O ® ®
® O ® ®
® @ @ ®
® ® ® ®
@ & @ @
~ N
O
as
]
s
)
e O
as
s
e [
s
as O
s O O
l
s
as
s B
as O
s B
as [ )
s )
N— -




Engineering/Maximizing Sparsity

¢,
[ [ ‘==.
\ .. ) O - ] O

Second benefit:

Cholesky can process each of these
two blocks in-parallel!




Laplacian - Pattern after a possible reordering




Laplacian - Pattern after a possible reordering

These blocks, too, can be
processed in parallel

e




Obstacles to performance & parallelism

Matrix Density : The number of required operations scale (super-linearly ...)
with the number of non-zero entries in L ... thus, ensuring sparser L factors
has an immediate effect on performance

Multithreading : Cholesky, similar to Gauss Elimination, is seemingly a
very “serial” algorithm (significant dependencies between steps/loops).
We must find some way to cope with this apparent limitation.

Vectorization/SIMD : Sparse matrices don’t have the regularity that SIMD
operations require; we need to “engineer” such requilarity if possible




Engineering/Maximizing Sparsity

T

o —

~ N
O
as
as
s
)
e O
as
s
e [
s
as O
s O O
l
s
as
s B
as O
s B
] O O
s )




Engineering/Maximizing Sparsity

\

o —

N
O
as
as
s
)
e O
as
s
e [
s
as O
O 0J O O
[
e
as
s O
o O
ol O
an [ )
a8 O
N— -




Engineering/Maximizing Sparsity

\

o —

N
O
as
as
s
)
e O
as
s
e [
s
as O
[
s
as
a2 O
as O
s O
an ] O
O O [
) O




Engineering/Maximizing Sparsity

_ \ /
_




Engineering/Maximizing Sparsity

T

o —

~ N
O
as
as
s
)
e O
as
s
e [
s
as O
) O O
l
s
as
s B
as O
s B
an O O
) )




Engineering/Maximizing Sparsity

T

o —

~ N
n
e
|
e
]
e O
(T |
(]
(Y 0
e
1 O]
i (] (]
]
e
(|
ae O
| n
an O
ne O O
1. []




Engineering/Maximizing Sparsity

T

o —

~ N
O
as
as
s
)
e O
as
s
e [
s
as O
s O O
l
s
as
s B
as O
s B
] O O
s )




Engineering/Maximizing Sparsity

(]
e
ae
B8
an




Engineering/Maximizing Sparsity

o

=/

After reordering:
Sparsity pattern becomes a (sparse)
collection of diagonal blocks




Engineering/Maximizing Sparsity

After reordering:
Sparsity pattern becomes a (sparse)
collection of diagonal blocks




(

Engineering/Maximizing Sparsity

s,

=/

After reordering:
Sparsity pattern becomes a (sparse)
collection of diagonal blocks




Engineering/Maximizing Sparsity

o

=/

After reordering:
Sparsity pattern becomes a (sparse)
collection of diagonal blocks




Engineering/Maximizing Sparsity

This transformation was predicated
on the grid “partitions” having the same
sparsity pattern ...




Engineering/Maximizing Sparsity

(am

=,

... but can be made to work even
if the sparsity patterns are
“almost” the same
(this near-similarity needs
to be discovered...)




Laplacian - Pattern after a possible reordering

s

s

A

Via a similar process ... any patterns that exhibit
16X repetition on this layout, can be engineered
to be processed in parallel using SIMD ...




Laplacian - Pattern after a possible reordering

s

s

A

... In fact, this blocking accelerates not only

factorization, but also forward/backward

substitution (by allowing SIMD operation)




SparseDirect/LaplacePARDISO_0_0

PARDISO solver (DirectSolver.cpp) T

e —

/7 NUINESTLCUL 1TUCLUIMLZULLOUII

phase = 22;

PARDISO (pt, &maxfct, &mnum, &mtype, &phase, &n,
matrix.GetValues(), matrix.GetRowOffsets(), matrix.GetColumnIndices(),
&1dum, &nrhs, iparm, &msglvl, &ddum, &ddum, &error);

if ( error '=0 )
throw std::runtime_error("PARDISO error during numerical factorization");

std::cout << "Factorization completed ... " << std::endl;
// Back substitution and iterative refinement
phase = 33;
iparm[7] = 0; // Max numbers of iterative refinement steps
PARDISO (pt, &maxfct, &mnum, &mtype, &phase, &n,
matrix.GetValues(), matrix.GetRowOffsets(), matrix.GetColumnIndices(),
&1dum, &nrhs, iparm, &msglvl, static_cast<void*>(&f[O][0O][0]), &x[QO][Q][@], &error);
if ( error '=0 )
throw std: :runtime_error("PARDISO error during solution phase");

std::cout << "Solve completed ... <<std::endl;

// Termination and release of memory.

phase = -1; // Release internal memory

PARDISO (pt, &maxfct, &mnum, &mtype, &phase, &n,
&ddum, matrix.GetRowOffsets(), matrix.GetColumnIndices(),
&1dum, &nrhs, iparm, &msglvl, &ddum, &ddum, &error);

1f (writeOutput) WriteAsImage("x", x, @, @, XDIM/2);



SparseDirect/LaplacePARDISO_0_0

PARDISO solver (DirectSolver.cpp) T

Execution:
Summary: ( solution phase )

Time spent 1n direct solver at solve step (solve)
Time spent 1in additional calculations

Total time spent

Statistics:

Parallel Direct Factorization is running on 20 OpenMP
< Linear system Ax = b >

number of equations: 2097152
number of non-zeros in A: 8050052
number of non-zeros in A (%): 0.000183
number of right-hand sides: 1

< Factors L and U >
number of columns for each panel: 96
number of independent subgraphs: 0

: 0.463208 s
: 0.021776 s
: 0.484984 s

Almost <1-2% of the factorization
cost (which is what we hcz,ore!)

number of supernodes: 1407769
size of largest supernode: 16591
number of non-zeros in L: 2080602470
number of non-zeros in U: 1
number of non-zeros in L+U: 2080002471
gflop for the numerical factorization: 23028.583984
gflop/s for the numerical factorization: 512.041504
P 1M ety —
iparm[7] = 0; // Max numbers of iterative refinement steps

PARDISO (pt, &maxfct, &mnum, &mtype, &phase, &n,



Parallel Sparse Direct Solvers
Performance & design of MKL PARDISO (wrap-up)
+ A few concluding notes on memory prefetching



(Dense) Saxpy

e ——

for 1=0,...,N
yli] += ax]i]

le

y A i 2R iR A RR IR RRRRRRR R RRARRRRRRRARRRR R



(Dense) Saxpy

I ——

for 1=0,...,N
yli] += ax]i]

For full-bandwidth use:
I[f computation is here ...

—

le

y .-lllllE.l.-ll.ll.l..ll.ll.l..ll.ll.l.-ll



(Dense) Saxpy

I ——

for 1=0,...,N
yli] += ax]i]

For full-bandwidth use:
I[f computation is here ...

—

le

y .-ll.llE.l.-lIlill.l.-ll.ll.l.-lllll.l.-ll

Then, data up to here better be in L1 Cache ...




(Dense) Saxpy

I ——

for 1=0,...,N
yli] += ax]i]

For full-bandwidth use:
I[f computation is here ... ... and everything up to here already in L2 cache

—

le

y .-ll.llill.-lI.Ell.l.-llllli.l.-lllll.l.-ll

Then, data up to here better be in L1 Cache ...




(Dense) Saxpy

I ——

for 1=0,...,N
yli] += ax]i]

Hardware prefetching:
If following a certain
stride while accessing memory

le

y .-ll;.;ll.l.-lIlll.l.-ll.ll.l.-lllll.l.-ll



(Dense) Saxpy

I ——

for 1=0,...,N
yli] += ax]i]

Hardware prefetching:
If following a certain
stride while accessing memory

le

y .-ll.;l;l.l.-lIlll.l.-ll.ll.l.-lllll.l.-ll



(Dense) Saxpy

I ——

for 1=0,...,N
yli] += ax]i]

Hardware prefetching:
If following a certain
stride while accessing memory

le

y .-ll.léli.l.-lIlll.l.-ll.ll.l.-lllll.l.-ll



(Dense) Saxpy

for 1=0,...,N

yli] += axli
Hardware prefetching: ... the CPU automatically “looks ahead”
If following a certain and prefetches according to the same
stride while accessing memory (“apparent”) stride into caches

e e

e
1 | [ |
g ° o' g ° -J g ° o'

° 1 ° d ° |
A R A AR AH AR AR REARARAERAMRRAHARAERAARMRIARARAND
° [ ] ° d ° ']

le

Y| sesssssssssssssssssssssssssEsEEEsEEEEEES



Sparse Saxpy

R —

for i = (some indices)

yli| += ax]i]
Effective hardware prefetching is hard:
- We don’t know what to prefetch
- Even if we guess, good chance what's
prefetched will be wasted
X|| ssm === E = smsss E sEsm m = B

y|| ssm =sas B = ssES B s=s B = B



Our specific benchmark : Indirectly indexed Saxpy

for 1=0,...,N
y|offset|i]] += ax|offset|:|]

Indices originate from array offsets[]
- There is a logic of where to prefetch from
(the offsets array has that information)
- But the compiler/CPU cannot infer that;
the user might have to help

le

y|| mmm  sae B = ssES B s=s B = B



Main routine (main.cpp)

-

#include "Timer.h"
#include "Utilities.h"
#include "PointwiseOps.h"

int main(int argc, char *argv[])

{
std: :vector<int> blockOffsets;
float *x;
float *y;

InitializeArrays(blockOffsets, x, y);

// Initialization

for (int run = 0; run < 30; run++)

{
Timer timer;
timer.Start();
SparseSaxpy(blockOffsets, x, y, 3.14f);
timer.Stop("SparseSaxpy time : ");

}

return 0;

Fr—————— = = = = = = = = = - = - = - - - - - - - =

' Prefetching/SparseSaxpy_0_0



Fr—————— = = = = = = = = = - = - = - - - - - - - =

' Prefetching/SparseSaxpy_0_0

Initialization utilities (Utilities.h/cpp)

——

#pragma once
#include <vector>
#include "Parameters.h"

void* AlignedAllocate(const std::size_t size, const std::size_t alignment);
vold InitializeArrays(std: :vector<int>& blockOffsets, float *&x, float *&y);

Benchmark Parameters (Parameters.h)

R

#pragma once

#define BLOCK_SIZE 16

#define MAX_CLUSTER_SIZE 4

#define MAX_CLUSTER_DISTANCE 32
#define NUMBER_OF_BLOCKS 4*1024*1024



Sparse Saxpy

B —

Our test collection of array entries comes in chunks of aligned 16-tuples (for simplicity)
Each “square” in the illustration below corresponds to 16-contiguous entries
L 16 = BLOCK_SIZE in Parameters.h)

le

y|| ssm =sas B = ssES B s=s B = B



Sparse Saxpy

R —

Array blockOffsets[] contains the location of where each block-of-16 entries starts

MAX_CLUSTER_SIZE is the maximum of how many blocks to “bundle/cluster”
together (layout is randomly initialized)
while MAX_CLUSTER_DISTANCE s the average distance between block clusters

le

y|| ssm =sas B = ssES B s=s B = B



Fr—————— = = = = = = = = = - = - = - - - - - - - =

' Prefetching/SparseSaxpy_0_0

Stock saxpy routine (PointwiseOps.cpp)

#include "PointwiseOps.h"

void SparseSaxpy(std::vector<int>& blockOffsets, const float *x, float *y, const float scale)

{
#pragma omp parallel for

for (int b = 0; b < blockOffsets.size(); b++)
for (int 1 = 0; 1 < BLOCK_SIZE; 1i++)
y[blockOffsets[b]+1] += scale * x[blockOffsets[b]+1];



Stock saxpy routine (PointwiseOps.cpp)

Execution:

Fr—————— = = = = = = = = = - = - = - - - - - - - =

' Prefetching/SparseSaxpy_0_0

Allocated total of 4194304 blocks (67108864 entries; 256MB of actual data)
of 1946.55MB

1n a span
[SparseSaxpy
[SparseSaxpy
, [SparseSaxpy
vold Spars[sparsesaxpy
{ [SparseSaxpy
#pragma O 'SparseSaxpy
for (irsparseSaxpy
O[SparseSaxpy
[SparseSaxpy

¥ [SparseSaxpy
[SparseSaxpy
[SparseSaxpy
[SparseSaxpy
[SparseSaxpy
[SparseSaxpy
[SparseSaxpy

#1include

time :

time :

time

time :

time

time :
time :
time :
time :
time :
time :
time :
time :

time

time :
time :

33.
25.
. 25.
24 .
. 25.
24 .

24

5354ms]
3708ms]
3139ms]]
32ms]

3662ms]]
3337ms]

.3135ms]]
26.
25.
24 .
25.
24 .
24 .
: 25.
24 .
25.

3057ms]
3865ms]
3556ms]
3534ms]]
1806ms ]
1684ms ]
1663ms ]
1898ms ]
138ms]]

at scale)




= ——— e —— - - —— -
|
|

Prefetching/SparseSaxpy_0_1

Stock saxpy routine (PointwiseOps.cpp)

——————

#1include "PointwiseOps.h"
#include "immintrin.h"

vold SparseSaxpy(std::vector<int>& blockOffsets, const float *x, float *y, const float scale)
{

static constexpr int LZ2_PREFETCH_DISTANCE = 64;

static constexpr int L1_PREFETCH_DISTANCE = 8;

#pragma omp parallel for
for (int b = @; b < blockOffsets.s1ize(); b++) {
_mm_prefetch ( &«[blockOffsets[b+L2_PREFETCH_DISTANCE]], _MM_HINT_TZ );
_mm_prefetch ( &x[blockOffsets[b+L1_PREFETCH_DISTANCE]], _MM_HINT_T1 );
_mm_prefetch ( &y[blockOffsets[b+L2_PREFETCH_DISTANCE]], _MM_HINT_TZ );
_mm_prefetch ( &y[blockOffsets[b+L1_PREFETCH_DISTANCE]], _MM_HINT_T1 );
#pragma omp simd
for (int 1 = 0; 1 < BLOCK_SIZE; 1++)
y[blockOffsets[b]+1] += scale * x[blockOffsets[b]+1];



r--"-"-"-"-"-"-"-"-"--"~-"~"~~"~-~"~"~"-~"“~" -~~~ =" =-” "=/ 7~ I

Prefetching/SparseSaxpy_0_1

#1include "PointwiseOps.h"
#include "immintrin.h"

vold SparseSaxpy(std::vector<int>& blockOffsets, const float *x, float *y, const float scale)
{

static constexpr int LZ2_PREFETCH_DISTANCE = 64;

static constexpr int L1_PREFETCH_DISTANCE = 8;

#pragma omp parallel for
for (int b = @; b < blockOffsets.s1ize(); b++) {
_mm_prefetch ( &x[blockOffsets[b+LZ2_PREFETCH_DISTANCE]], _MM_HINT_TZ );
_mm_prefetch ( &x[blockOffsets[b+L1_PREFETCH_DISTANCE]], _MM_HINT_T1 );
_mm_prefetch ( &y[blockOffsets[b+L2_PREFETCH_DISTANCE]], _MM_HINT_TZ );
_mm_prefetch ( &y[blockOffsets[b+L1_PREFETCH_DISTANCE]], _MM_HINT_T1 );
#pragma omp simd
for (int 1 = 0; 1 < BLOCK_SIZE; 1++)
y[blockOffsets[b]+1] += scale * x[blockOffsets[b]+1];

¥ We provide explicit prefetching hints
for both L1 and L2 caches
(note: prefetch typically does not
fault if given an invalid memory)




#1include
#include

{

"PointwiseOps.h"

"tmmintrin.h"

in a span of

static [SparseSaxpy
static [SparseSaxpy

#pragma

for (

#pragma

[SparseSaxpy
OMP[SparseSaxpy
LN[SparseSaxpy
- SparseSaxpy
- SparseSaxpy
-"MTSparseSaxpy

- SparseSaxpy
Omp[SparseSaxpy
forSparseSaxpy

[SparseSaxpy

[SparseSaxpy

[SparseSaxpy

[SparseSaxpy

[SparseSaxpy

1945. 54MB
time : 21
time : 12.
time : 12
time : 12.
time : 12
time : 12.
time : 12
time : 12
time : 12
time : 12
time : 12.
time : 12.
time : 12.
time : 12
time : 12.
time : 12

.6707ms]]

3966ms ]

.3517ms]]

3327ms]]

.3688ms ]

3316ms]]

.333ms]]
.3355ms]
.3285ms]]
.333ms]]

3489ms ]
3211ms]
3352ms]]

.3222ms]]

3475ms ]

.3308ms ]

_ Execution:
void Sparsepliocated total of 4194304 blocks (67108864 entries;

256MB of actual data) Scale)




e —

#1include "PointwiseOps.h"
#include "immintrin.h"

_ Execution:
void Sparsepiiocated total of 4194304 blocks (67108864 entries; 256MB of actual data) Scale)
i 1n a span of 1945, 54MB
static [SparseSaxpy time : 21.6707ms]
static [SparseSaxpy time : 12.3966ms]
[SparseSaxpy time : 12.3517ms]
#pra%ma gmp[SparseSaxpy time : 12.3327ms]
or (IN[SparseSaxpy time : 12.3688ms] , S
MM [SparseSaxpy time - 12.3316ms] Note. Performgnce boost IS highly
MM SparseSaxpy time : 12.333ms] variable depending on compiler, CPU,
- SparseSaxpy time : 12.3355ms] R T
- SparseSaxpy time : 12.3285ms] Qgt/mlzat/on level, and COI’)Z‘G)_(I./A
#pragma Omp[SparseSaxpy time : 12.333ms]
forSparseSaxpy time : 12.3489ms]
[SparseSaxpy time : 12.3211ms]
¥ [SparseSaxpy time : 12.3352ms]
¥ [SparseSaxpy time : 12.3222ms]
[SparseSaxpy time : 12.3475ms]
[SparseSaxpy time : 12.3308ms]




