

Parallel Sparse Direct Solvers

Performance & design of MKL PARDISO (wrap-up)

+ A few concluding notes on memory prefetching

Sparse Factorizations: Obstacles to performance & parallelism

Matrix Density: The number of required operations scale (super-linearly ...) with the number of non-zero entries in **L** ... thus, ensuring sparser **L** factors has an immediate effect on performance

Multithreading: Cholesky, similar to Gauss Elimination, is seemingly a very "serial" algorithm (significant dependencies between steps/loops). We must find some way to cope with this apparent limitation.

DARNICO colver (DirectColver con) Execution:

```
Summary: (factorization phase)
Times:
____
Time spent in copying matrix to internal data structure (A to LU): 0.000000 s
Time spent in factorization step (numfct)
                                                                 : 44.352600 s
Time spent in allocation of internal data structures (malloc)
                                                                 : 0.022322 s
Time spent in additional calculations
                                                                 : 0.000002 s
Total time spent
                                                                 : 44.374928 s
Statistics:
Parallel Direct Factorization is running on 20 OpenMP
                                                              About 90% of overall runtime
< Linear system Ax = b >
                                                                    (sometimes less)
            number of equations:
                                           2097152
            number of non-zeros in A:
                                      8050652
            number of non-zeros in A (%): 0.000183
            number of right-hand sides:
< Factors L and U >
            number of columns for each panel: 96
            number of independent subgraphs: 0
            number of supernodes:
                                                      1410153
            size of largest supernode:
                                                      16591
            number of non-zeros in L:
                                                      2057589566
            number of non-zeros in U:
                                                     2057589567
            number of non-zeros in L+U:
            aflop for the numerical factorization: 22775.748047
            gflop/s for the numerical factorization: 513.515503
```

_Almost 25% of peak arithmetic utilization

PARDISO (pt, &maxfct, &mnum, &mtype, &phase, &n,

Factorization completed ...

Second benefit: Cholesky can process each of these two blocks in-parallel!

Laplacian - Pattern after a possible reordering

Laplacian - Pattern after a possible reordering

Obstacles to performance & parallelism

Matrix Density: The number of required operations scale (super-linearly ...) with the number of non-zero entries in **L** ... thus, ensuring sparser **L** factors has an immediate effect on performance

Multithreading: Cholesky, similar to Gauss Elimination, is seemingly a very "serial" algorithm (significant dependencies between steps/loops). We must find some way to cope with this apparent limitation.

<u>Vectorization/SIMD</u>: Sparse matrices don't have the regularity that SIMD operations require; we need to "engineer" such regularity if possible

This transformation was predicated on the grid "partitions" having the same sparsity pattern ...

... but can be made to work even if the sparsity patterns are "almost" the same (this near-similarity needs to be discovered...)

Laplacian - Pattern after a possible reordering

Laplacian - Pattern after a possible reordering

SparseDirect/LaplacePARDISO_0_0

PARDISO solver (DirectSolver.cpp)

```
// NUMBER LCUL TUCCUR LZUCLUM
phase = 22;
PARDISO (pt, &maxfct, &mnum, &mtype, &phase, &n,
    matrix.GetValues(), matrix.GetRowOffsets(), matrix.GetColumnIndices(),
   &idum, &nrhs, iparm, &msglvl, &ddum, &ddum, &error);
if ( error != 0 )
    throw std::runtime_error("PARDISO error during numerical factorization");
std::cout << "Factorization completed ... " << std::endl;</pre>
// Back substitution and iterative refinement
phase = 33:
iparm[7] = 0; // Max numbers of iterative refinement steps
PARDISO (pt, &maxfct, &mnum, &mtype, &phase, &n,
    matrix.GetValues(), matrix.GetRowOffsets(), matrix.GetColumnIndices(),
   &idum, &nrhs, iparm, &msglvl, static_cast<void*>(&f[0][0][0]), &x[0][0][0], &error);
if ( error != 0 )
    throw std::runtime_error("PARDISO error during solution phase");
std::cout << "Solve completed ... " <<std::endl;</pre>
// Termination and release of memory.
phase = −1; // Release internal memory
PARDISO (pt, &maxfct, &mnum, &mtype, &phase, &n,
   &ddum, matrix.GetRowOffsets(), matrix.GetColumnIndices(),
   &idum, &nrhs, iparm, &msglvl, &ddum, &ddum, &error);
if (writeOutput) WriteAsImage("x", x, 0, 0, XDIM/2);
```

PARDISO solver (DirectSolver.cpp)

Execution:

```
Summary: ( solution phase )
Times:
Time spent in direct solver at solve step (solve)
                                                                 : 0.463208 s
Time spent in additional calculations
                                                                 : 0.021776 s
Total time spent
                                                                 : 0.484984 s
Statistics:
_____
Parallel Direct Factorization is running on 20 OpenMP
                                                           Almost <1-2% of the factorization
< Linear system Ax = b >
            number of equations:
                                           2097152
                                                             cost (which is what we hope!)
            number of non-zeros in A:
                                           8050652
            number of non-zeros in A (%): 0.000183
            number of right-hand sides:
< Factors L and U >
            number of columns for each panel: 96
            number of independent subgraphs: 0
            number of supernodes:
                                                      1407769
            size of largest supernode:
                                                      16591
            number of non-zeros in L:
                                                      2080602470
            number of non-zeros in U:
            number of non-zeros in L+U:
                                                      2080602471
            gflop for the numerical factorization: 23028.583984
            gflop/s for the numerical factorization: 512.041504
iparm[7] = 0;
                      // Max numbers of iterative refinement steps
PARDISO (pt, &maxfct, &mnum, &mtype, &phase, &n,
```


Parallel Sparse Direct Solvers

Performance & design of MKL PARDISO (wrap-up)

+ A few concluding notes on memory prefetching

 $\mathbf{x}[]$

for
$$i = 0, ..., N$$

$$\mathbf{y}[i] += \alpha \mathbf{x}[i]$$

for
$$i = 0, ..., N$$

$$\mathbf{y}[i] += \alpha \mathbf{x}[i]$$

For full-bandwidth use: If computation is here ...

for
$$i = 0, \dots, N$$

$$\mathbf{y}[i] += \alpha \mathbf{x}[i]$$

For full-bandwidth use: If computation is here ...

Then, data up to here better be in L1 Cache ...

for
$$i = 0, \dots, N$$

$$\mathbf{y}[i] += \alpha \mathbf{x}[i]$$

Then, data up to here better be in L1 Cache ...

for
$$i = 0, \dots, N$$

$$\mathbf{y}[i] += \alpha \mathbf{x}[i]$$

Hardware prefetching:
If following a certain
stride while accessing memory

for
$$i = 0, \dots, N$$

$$\mathbf{y}[i] += \alpha \mathbf{x}[i]$$

Hardware prefetching:
If following a certain
stride while accessing memory

for
$$i = 0, \dots, N$$

$$\mathbf{y}[i] += \alpha \mathbf{x}[i]$$

Hardware prefetching:
If following a certain
stride while accessing memory

(Dense) Saxpy

for
$$i = 0, \dots, N$$

$$\mathbf{y}[i] += \alpha \mathbf{x}[i]$$

Hardware prefetching:
If following a certain
stride while accessing memory

... the CPU automatically "looks ahead" and prefetches according to the same ("apparent") stride into caches

Sparse Saxpy

for
$$i = \text{(some indices)}$$

$$\mathbf{y}[i] += \alpha \mathbf{x}[i]$$

Effective hardware prefetching is hard:
- We don't know what to prefetch
- Even if we guess, good chance what's prefetched will be wasted

Our specific benchmark: Indirectly indexed Saxpy

for
$$i = 0, ..., N$$

$$\mathbf{y}[\mathsf{offset}[i]] += \alpha \mathbf{x}[\mathsf{offset}[i]]$$

Indices originate from array offsets[]

- There <u>is</u> a logic of where to prefetch from (the offsets array has that information)
- But the compiler/CPU cannot infer that; the user might have to help

Main routine (main.cpp)

```
#include "Timer.h"
#include "Utilities.h"
#include "PointwiseOps.h"
int main(int argc, char *argv[])
{
    std::vector<int> blockOffsets;
    float *x;
    float *y;
    InitializeArrays(blockOffsets, x, y);
    // Initialization
    for (int run = 0; run < 30; run++)
        Timer timer;
        timer.Start();
        SparseSaxpy(blockOffsets, x, y, 3.14f);
        timer.Stop("SparseSaxpy time : ");
    }
    return 0;
```

|Prefetching/SparseSaxpy_0_0

Initialization utilities (Utilities.h/cpp)

```
#pragma once
#include <vector>
#include "Parameters.h"

void* AlignedAllocate(const std::size_t size, const std::size_t alignment);
void InitializeArrays(std::vector<int>& blockOffsets, float *&x, float *&y);
```

Benchmark Parameters (Parameters.h)

```
#define BLOCK_SIZE 16
#define MAX_CLUSTER_SIZE 4
#define MAX_CLUSTER_DISTANCE 32
#define NUMBER_OF_BLOCKS 4*1024*1024
```

#pragma once

Sparse Saxpy

Our test collection of array entries comes in chunks of aligned 16-tuples (for simplicity)

Each "square" in the illustration below corresponds to 16-contiguous entries

(16 = BLOCK_SIZE in Parameters.h)

Sparse Saxpy

Array blockOffsets[] contains the location of where each block-of-16 entries starts

MAX_CLUSTER_SIZE is the maximum of how many blocks to "bundle/cluster" together (layout is randomly initialized) while MAX_CLUSTER_DISTANCE is the average distance between block clusters


```
#include "PointwiseOps.h"

void SparseSaxpy(std::vector<int>& blockOffsets, const float *x, float *y, const float scale)
{
#pragma omp parallel for
    for (int b = 0; b < blockOffsets.size(); b++)
        for (int i = 0; i < BLOCK_SIZE; i++)
            y[blockOffsets[b]+i] += scale * x[blockOffsets[b]+i];
}</pre>
```

```
Execution:
          Allocated total of 4194304 blocks (67108864 entries; 256MB of actual data)
             in a span of 1946.55MB
         [[SparseSaxpy time : 33.5354ms]
#include
          [SparseSaxpy time : 25.3708ms]
          [SparseSaxpy time : 25.3139ms]
void SparseSaxpy time : 24.32ms]
                                                                                     at scale)
          [SparseSaxpy time : 25.3662ms]
#pragma on [SparseSaxpy time : 24.3337ms]
    for (i[SparseSaxpy time : 24.3135ms]
        fo[SparseSaxpy time : 26.3057ms]
          [SparseSaxpy time : 25.3865ms]
          [SparseSaxpy time : 24.3556ms]
          [SparseSaxpy time : 25.3534ms]
          [SparseSaxpy time : 24.1806ms]
          [SparseSaxpy time : 24.1684ms]
          [SparseSaxpy time : 25.1663ms]
          [SparseSaxpy time : 24.1898ms]
          [SparseSaxpy time : 25.138ms]
```

```
#include "PointwiseOps.h"
#include "immintrin.h"
void SparseSaxpy(std::vector<int>& blockOffsets, const float *x, float *y, const float scale)
    static constexpr int L2_PREFETCH_DISTANCE = 64;
    static constexpr int L1_PREFETCH_DISTANCE = 8;
#pragma omp parallel for
    for (int b = 0; b < blockOffsets.size(); b++) {
        _mm_prefetch ( &x[blockOffsets[b+L2_PREFETCH_DISTANCE]], _MM_HINT_T2 );
        _mm_prefetch ( &x[blockOffsets[b+L1_PREFETCH_DISTANCE]], _MM_HINT_T1 );
        _mm_prefetch ( &y[blockOffsets[b+L2_PREFETCH_DISTANCE]], _MM_HINT_T2 );
        _mm_prefetch ( &y[blockOffsets[b+L1_PREFETCH_DISTANCE]], _MM_HINT_T1 );
#pragma omp simd
        for (int i = 0; i < BLOCK_SIZE; i++)
            y[blockOffsets[b]+i] += scale * x[blockOffsets[b]+i];
}
```

for both L1 and L2 caches

(note: prefetch typically does not

fault if given an invalid memory)

```
#include "PointwiseOps.h"
#include "immintrin.h"
void SparseSaxpy(std::vector<int>& blockOffsets, const float *x, float *y, const float scale)
    static constexpr int L2_PREFETCH_DISTANCE = 64;
    static constexpr int L1_PREFETCH_DISTANCE = 8;
#pragma omp parallel for
    for (int b = 0; b < blockOffsets.size(); b++) {
        _mm_prefetch ( &x[blockOffsets[b+L2_PREFETCH_DISTANCE]], _MM_HINT_T2 );
        _mm_prefetch ( &x[blockOffsets[b+L1_PREFETCH_DISTANCE]], _MM_HINT_T1 );
        _mm_prefetch ( &y[blockOffsets[b+L2_PREFETCH_DISTANCE]], _MM_HINT_T2 );
        _mm_prefetch ( &y[blockOffsets[b+L1_PREFETCH_DISTANCE]], _MM_HINT_T1 );
#pragma omp simd
        for (int i = 0; i < BLOCK_SIZE; i++)
            y[blockOffsets[b]+i] += scale * x[blockOffsets[b]+i];
                                                   We provide explicit prefetching hints
```

```
#include "PointwiseOps.h"
#include "immintrin.h"
                                            Execution:
void Sparse Allocated total of 4194304 blocks (67108864 entries; 256MB of actual data)
                                                                                          scale)
           in a span of 1945.54MB
    static [SparseSaxpy time : 21.6707ms]
    static [SparseSaxpy time : 12.3966ms]
           [SparseSaxpy time : 12.3517ms]
#pragma omp [SparseSaxpy time : 12.3327ms]
    for (in [SparseSaxpy time : 12.3688ms]
        -mm [SparseSaxpy time : 12.3316ms]
        -mm [SparseSaxpy time : 12.333ms]
        -mm [SparseSaxpy time : 12.3355ms]
        -mm [SparseSaxpy time : 12.3285ms]
#pragma omp [SparseSaxpy time : 12.333ms]
        for [SparseSaxpy time : 12.3489ms]
           [SparseSaxpy time : 12.3211ms]
           [SparseSaxpy time : 12.3352ms]
}
           [SparseSaxpy time : 12.3222ms]
           [SparseSaxpy time : 12.3475ms]
           [SparseSaxpy time : 12.3308ms]
```

```
#include "PointwiseOps.h"
#include "immintrin.h"
                                           Execution:
void Sparse Allocated total of 4194304 blocks (67108864 entries; 256MB of actual data)
                                                                                        scale)
           in a span of 1945.54MB
    static [SparseSaxpy time : 21.6707ms]
    static [SparseSaxpy time : 12.3966ms]
           [SparseSaxpy time : 12.3517ms]
#pragma omp [SparseSaxpy time : 12.3327ms]
    for (in [SparseSaxpy time : 12.3688ms]
                                                   Note: Performance boost is highly
        -mm [SparseSaxpy time : 12.3316ms]
                                                 variable depending on compiler, CPU,
        -mm [SparseSaxpy time : 12.333ms]
        -mm [SparseSaxpy time : 12.3355ms]
                                                     optimization level, and context!
        -mm [SparseSaxpy time : 12.3285ms]
#pragma omp [SparseSaxpy time : 12.333ms]
        for [SparseSaxpy time : 12.3489ms]
           [SparseSaxpy time : 12.3211ms]
           [SparseSaxpy time : 12.3352ms]
}
           [SparseSaxpy time : 12.3222ms]
           [SparseSaxpy time : 12.3475ms]
           [SparseSaxpy time : 12.3308ms]
```